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For two matrices A and B of order n X n which satisfy xn - 1 = 0, it is shown that the 
transformation matrix TAB which connects A and B via A TAB = TABB becomes general 
involutional when AB = wBA, w being a primitive nth root of unity. 

PACS numbers: 02.1O.Sp, 03.65. - w 

General involutional transformations are matrices sa
tisfying the relation 

Tn = kI, k = const. 

The properties of these matrices were studied by Santhanam 
et al. and the applications of them in physics were already 
known. I Recently Kim2 developed a new method of matrix 
transformation and studied involutional transformations. 
For two matrices A and B of order n X n satisfying a monic 
quadratic equation with two roots Al and A2 , he observed 
that the transformation matrix TAB (Ref. 2) which connects 
A and B via A TAB = TABB becomes involutional when the 
anticommutator of 

A = A - !lAI + A2 )I 

and 

(1) 

is a c number. In this note we consider the case of the nth 
degree equation 

xn - 1 = 0, (2) 

and prove that TAB becomes general involutional when A 

and B satisfy 

n-I 

AB = wBA, (3) 

where w is a primitive nth root of unity. 
Weyl3 has shown that the abelian rotations in ray space 

defined by Eq. (3) is a finite group and has a single unique 
(apart from ordering) irreducible representation given by 

A = (a rs ), ars = tJ"s_ I; r<n, s<,n, 

ans = tJI,s; s<,n, 
(4) 

B = (brs), brs = wstJrs , (5) 

tJ being the Kronecker symbol. In the limit of continuous 
spectrum and as n goes to 00, the representation becomes 
that of Heisenberg and Schrodinger. 

Obviously A n = B n = I and the transformation matrix 
TAB (Ref. 4) takes the form 

n-I 

TAB = LAn - I - kB \ 
k=O 

which becomes in our case 

(6) 

where tk k = W k2lk , - k, - I); kl,k2 = 0,1,2, ... , n - Lit is easy , , 
to observe that 

tr(Tm) = L k,lk, - k, - I) + k,lk, - k, - I) + ... + kmlkm _ 1- km - I) + k,lkm - k, - I) 
W , (7) 

k l .k2 ..... k m = 0 

where tr denotes the trace of a matrix. 
For each fixed (m - I)-tuple (/2"", 1m) such that 

0<,/2,,,,, 1m <,n - 1, put 

km=kl+lm' 

km_ 1 =kl +lm_1 

k2 = kl + 12, 
Then the terms in the above sum (7) reduce to 
w - mk, + 1,1-1, - I) + I,ll, -I, - I) + 1.(13 -I. - I) + ... + Im(lm_1 -1m - I) 

for each fixed (m - I)-tuple and for any kl such that 
O<,kl<,n - 1. 

(8) 

On summing over kl in (8) we observe that the coeffi
cient of each term 

WI,I - I, - I) + I,ll, - I, - I) + ... + Im(lm _ I - 1m - I) 

is zero unless m = n. Hence, tr(Tm) = 0 provided m #n. We 

now apply the Hamilton-Cayley theorem to conclude that 

Tn = CnI, 

where 

Cn = n- I tr(Tn). 
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A simple proof is given of the simultaneous existence of a real set of 3jm and 6j symbols for the 
unitary groups U(n) and SU(n); including the case of mixed tensor representations. We observe 
that simultaneity is incompatible with the conventional permutation symmetries for U(n) with 
n > 3. The relevance of these results to the Schur-Weyl duality ofU(n) with the symmetric groups 
S/ is discussed. 

PACS numbers: 02.20. + b, 11.30.Jw, 11.30.Kx, 03.65.Fd 

I. INTRODUCTION 

Since irreducible representations (irreps) of the unitary 
group U(n) remain irreducible on restriction to its unimodu
lar subgroup SU(n), it is fairly simple to deduce that the 3jm 
and 6j symbols, arising in the Wigner-Racah (or coupling) 
algebra 1.2 may be the same for both groups. We shall refer to 
such an equality by the term "simultaneity." Many authors 
have naively concluded from this that the SU(n) algebra pos
sesses all of the known properties of the U(n) algebra and 
sometimes carelessly use U(n) techniques for SU(n) groups. 
Simultaneity is however actually rather subtle because the 
entire series of "associated" irreps in U(n), which are related 
by Kronecker products with the one-dimensional determin
antal irrep, become equivalent in SU(n) as a consequence of 
the determinantal (pseudoscalar) irrep subducing to the 
identity (scalar) irrep. It is most important to realize that 
only one of the equivalent irrep bases should be used in cal
culations. Thus, if the 3jm and 6j symbols are to be the same 
for U(n) and SU(n), it is necessary that for associated U(n) 
irreps the U(n) symbols must be identical? This restriction 
could well be at variance with those phase choices necessary 
to realize certain desirable properties of the U(n) symbols, 
e.g., reality and simple permutation symmetries. Certainly, 
one is not entitled to assume that the existence ofU(n) sym
bols with these properties implies that SU(n) symbols will 
also possess them. 

An alternative way of seeing that simultaneity is nontri
vial is to note than U(n) is isomorphic to [U( 1) X SU(n )]/Zn , 
where Zn = en XIn with en being the n-fold cyclic group 
whose elements are the nth roots of unity and In the trivial 
group whose only element is the identity matrix of order n. 
For any direct product of groups, in particular U(n) X en 
~U(I)xSU(n), one can choose a factorizable (direct-pro
duct) basis such that the 3jm and 6j symbols for the product 
group are a product of 3jm and 6j symbols, respectively, for 
the two groups. In the present case we note that both en and 
U( I) are abelian, and therefore only have one-dimensional 
irreps, so that one may readily choose2.4 all of their 3jm and 
6j symbols to be + 1. Thus one might hope to equate U(n) 
and SU(n) 3jm and 6j symbols (as well as 9j symbols,2 etc.) by 
using a basis which is simultaneously factorizable for 
en xU(n) and U(I)XSU(n). Although this is possible it de
pends on certain choices being made for the U(n) symbols. In 
general, we only have that the U(n) symbols can be chosen 

the same as for U( 1) X SU(n) and the former need not be fac
torizable, especially if various symmetries have been im
posed. The possibility of 3jm and 6j symbols for U(n) which 
are simultaneously 3jm and 6j symbols for SU(n) is so attrac
tive that it deserves very high priority in making choices for 
U(n), perhaps even if this means foregoing other symmetries. 
Nonetheless, nonfactorizable choices for U(n) do appear in 
the literature.5 

Although it is well known from the existence of closed 
formulas6 (and also from a more abstract argument 7) that the 
3jm and 6j symbols of SU(2) can be chosen real, a rigorous 
prooffor general SU(n) groups is lacking. Real symbols can 
be of practical value, particularly in computer calculations, 
but despite their interest it is only recently that the general 
criteria for reality are becoming understood. We now knows 
that several finite groups, in particular the alternating 
groups A / for all odd I greater than 8 and all even I greater 
than 15, do not admit real 3jm symbols. In addition, it is 
known that, even for groups which do admit real 3jm sym
bols, the 3jm factors2 (which result when Racah's factoriza
tion lemma9 is applied to the 3jm symbols in a subgroup
symmetry-adapted basis) cannot always be chosen real.4

,10 

Thus the use ofa symmetry-adapted basis may preclude real 
3jm symbols. S On the other hand, since a 6j symbol is a (basis 
independent) contraction of products of four 3jm symbols 
together with what are essentially some "trivial" 3jm sym
bols involving the identity representation,I.2 a real set of 6j 
symbols exists if the 3jm symbols can all be chosen real in 
anyone basis. We shall use this to avoid explicit treatment of 
the 6j symbols. 

It is known (at least in the case of fully covariant, or 
contravariant, tensor irreps) that real 3jm and 6j symbols for 
U(n) exist, as do real3jm factors for the important subgroup 
symmetry schemes U(nm):>U(n) X U(m) and U(n + m) 
::JU(n)xU(m). The existence of real sets can be related to the 
Schur-Weyl duality that exists between the unitary groups 
U(n) and the symmetric group S/. 11,12 This duality can be 
used to calculate 3jm and 6j symbols, etc. for U(n) via Young 
symmetrizers in S/. I3 Indeed the results for the more funda
mental, but unsymmetrized, recoupling coefficients and 
isoscalar factors-respectively, related to 6j symbols and 
3jm factors--can be expressed directly in terms of various 
coefficients for chains of symmetric groups. 14--20 Thus their 
values are independent of n and they display S/ symmetries, 
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evident lS in U(n) as, for example, Regge21 symmetries. In 
particular, since all irreps of S[ are of the first Frobenius
Schur kind,22 all of the matrix irreps and various coefficients 
in S[ can be chosen real and reality of the U(n) coefficients 
follows. The n-independence is spoilt for the 3jm factors and 
6j symbols by irrep dimensionality factors but nevertheless 
an n-independent calculation is still possible and the reality 
issue is unaltered. Neither the 3jm symbols nor the unsym
metrized coupling (or Clebsch-Gordan) coefficients are n
independent but by setting up a chain of unitary groups end
ing in U(I)X ... XU(I) (n times), with real3jm factors for 
each stage, we see that real choices are possible. Such pre
scriptions alone though do not guarantee that the U(n) coef
ficients obtained have all the properties desirable of that 
group. Of concern is whether the U(n) 3jm and 6j symbols 
obtained via the duality relations are factorizable and in par
ticular whether the real symbols thus obtained are factoriza
ble. We may also ask whether they possess conventional 
symmetries under permutation or complex conjugation of 
irreps. To cast a little doubt on the reality issue we recall that 
the imposition of certain "maximal" symmetry require
ments forces some SU(n) 6j symbols to be imaginary. 23 While 
the calculations of that paper do not explicitly use the sym
metric groups they can-to the extent that they have pro
ceeded---easily be cast in an n-independent form.24-27 

A direct solution to this problem, by considering the 
possible phase choices subject to the symmetries implied by 
duality, has recently been proposed.28 However, such an ap
proach is necessarily rather intricate and because it proceeds 
by exhausting all possibilities it is difficult to be sure that the 
necessary conditions considered are also sufficient. 28 We 
also note that the argument omitted mixed tensor irreps of 
U(n) and furthermore the full permutational symmetry of 
the 3jm and 6j symbols was not explicitly considered. In any 
case it would be preferable to investigate the reality aspect in 
more general terms. 

In this article we give, independently of symmetric 
group choices, a relatively straightforward proof of reality 
for both U(n) and SU(n), including the important (and oft 
neglected) case of mixed tensor irreps, and demonstrate that 
real coefficients for both groups may be identified with each 
other. We begin by recalling a general criterion for reality29 
and then show that the standard matrix irreps for U(n) and 
SU(n) obey that criterion simultaneously. The results are ex
tended to 3jm factors and the implications for the permuta
tional properties of the 3jm symbols, etc. are considered. 
Compatibility of the simultaneity property with duality, in 
conjunction with both reality and permutational symme
tries, is then discussed. We conclude with some further re
marks on our reality observations. 

II. CRITERION FOR REALITY 

Damhus29 has previously noted that the 3jm symbols 

(r.1 r2 r3)r 
II i2 i3 

of a (compact) group G can be chosen real if and only if the 
matrix r123 with elements 
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~3)r 
13 

(lb) 

can be chosen real. The real 3jm symbols are selected from 
the columns of r123 using the freedom in the product multi
plicity separation r. (Observe that r123 can be real for com
plex 3jm symbols.) A sufficient condition for r123 to be real 
is29 that G possess an involutory automorphism 7" such that 
for every matrix irrep r (R ) we have 

r (-r(R )) = r (R )*, for all REG. (2) 

We now show that both U(n) and SU(n) possess such an auto
morphism. 

III. MATRIX IRREPS OF UNITARY GROUPS AND PROOF 
OF REALITY 

Consider the mapping 

7":A-+A* (3) 

of n X n unitary matrices. It is trivial to show that it is an 
involutory automorphism for both U(n) and SU(n). More
over, these defining matrices themselves form a matrix irrep 
which clearly satisfies(2). 

Further representations of U(n) may be found by con
sidering the tensor powers A x 1 of A. They are justthe invar
iant matrices of Schur. II The tensor powers may be trans
formed into a direct sum of irreducible invariant matrices 
A 1-< I whose characteristics are the S-functions30 II!. J of the 
characteristic roots of A. II If A is a transformation of covar
iant vectors, then A 1-< I may be considered as a transforma
tion of their I th covariant tensor powers symmetrized so as 
to transform under S[ according to the irrep [I!. ] correspond
ing to the partition I!. of I. This is the Schur-Weyl duality 11. 12 
and stems from the appearance of Sl X U(n) as a subgroup of 
the wreath product group U(n) wr Sl where the U(n) factor in 
the subgroup is the diagonal subgroup of the base group 

U(n)xl CU(n) wr S[.31 This group structure is quite general 
and not specific to U(n). In the case ofU(n) however there is a 
one-to-one correspondence between the irrep [I!. ] of S[ and 
the irrep II!. J ofU(n) which yields the simple branching rule 
under restriction ofU(n) xl to U(n) 

(4) 

where the sum is over all [I!. ] in Sl consistent with symmetri
zation on n variables. Thus the number of copies of admissi
ble A 1 -< I in the reduction of A x [ is given by the dimension 
II!. lSI of [I!. ]. Contravariant and mixed tensor irreps,denoted 
by lfi J = lfi;O J and lfi;v J, respectively, in composite (or 
back-to-back) notation,32.33 can also be constructed; either in 
a like manner or, more directly, by considering the associat
ed series of irreps formed by the tensor products 

A {il;vl = (A WI) XPXA (-< J. (5) 

Here, the S-function lIn J labels the (one-dimensional) de
terminantal irrep ofU(n) and (for true irreps)p is a positive or 
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neg,.ative integer. Note that while any equivalent matrix irrep 
A !,u;v} can be resolved in the form of(5), in general the basis 
for A ! A I would tum out to be different for differing members 
ofthe associated series. [Observe also that use of a dual basis, 
as suggested by the action of U(n) wr SI on the tensor pro
duct basis for U(n)X/, neither guarantees nor unavoidably 
violates (5), since the action of the dual subgroups SI and 
U(n) on that product space commute.] 

Because irreps ofU(n) remain irreducible on restriction 
to SU(n) these matrices are also irrep matrices of SU(n). 
However, the entire series of asociated irreps becomes equi
valent to a single irrep in SU(n) and in general only one mem
ber of that series may be used at one time without leading to 
inconsistencies. It is conventional to choose that member of 
the associated series which becomes standard in SU(n) to be 
that covariant irrep corresponding to a partition into less 
than n parts. [In that case the power pin Eq. (5) is minus the 
first part of the partition,u for contravariant or mixed tensor 
irreps33 and plus the last, i.e., nth, part of the partition v for 
covariant irreps.] 

The elements of an irreducible invariant matrix of A are 
homogeneous polynomials in the elements of A II and since 
in the canonical form the coefficients of these polynomials 
are real34,3s we immediately have that 

(A*)!ji;vl = (A!ji;VI)*. (6) 

Thus the condition (2) is realized for all irreps of U(n) and 
SU(n), In particular it is realized when the irreps ofU(n) are 
ofthe form (5). 

IV. SIMULTANEITY 

There is no a priori reason to expect that r 123 is the same 
for U(n) and SU(n). However, we note that the 3jm symbols 
are defined, I up to a transformation in the product multiplic
ity, by 

(
rl r2 

. .4., Ir31 i; i~ 
'1'2'1'2 

X (
r.1 r.2 r.3)... i' = r3(R )* 3;, (7) 
II 12 13 

for all REG, where 1F31 is the dimension of r 3 • Since irreps of 
U(n) remain irreps on restriction to SU(n) it is clear from (7) 
that, for a given triad (rlr2r3), the 3jm symbols for U(n) are 
also 3jm symbols for SU(n). Indeed they may not differ by 
more than a unitary transformation in r and hence Eq. (Ib) 
shows that r 123 is the same for U(n) and SU(n). Furthermore, 
for those elements A of U(n) which are also elements of 
SU(n), (A [1"1) xp = + I and thus all matrix irreps of A con
structed via (5) subduce to an identical matrix irrep in SU(n). 
(Note that this is only indirectly related to the factorization 
of groups discussed in the Introduction.) For such a basis 
then, r123 will also be the same for all triads (rlr2r3) ofU(n) 
which become equivalent under SU(n). It now follows that 
by resolving the multiplicity for each triad in an analogous 
manner to the resolution made for real3jm symbols in SU(n), 
all corresponding 3jm symbols in U(n) will be equal with 
each other and identical with the SU(n) 3jm symbols. 

This result immediately follows on for 6j symbols of 
U(n) and SU(n), by the argument mentioned in the Introduc-
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tion. However, the 6j symbols are basis independent and, 
therefore, neither their reality nor their simultaneity should 
depend on the use (as compared to existence) of irrep matri
ces constructed via (5). This prompts us to probe a little deep
er. Indeed, given that a real set of 3jm symbols possessing a 
simultaneous resolution of multiplicity exists, we can clearly 
perform a basis transformation on the irrep matrices which 
may spoil both the simultaneity and the reality of the 3jm 
symbols but which, because it does not affect the multiplicity 
resolution, will affect neither the reality nor the simultaneity 
of the 6j symbols. 

It is worthwhile noting that a U(n) triad will be related 
by equivalence in SU(n) to the U(n) triad ({,ul;vd, {,u2;V2 J, 
{,u3;V3} ) if and only if it is of the form 

({P7} {,uI;VI!, {pn {,ul;vd,{pn {,u3;V3}), 

where 

PI +P2 +P3 =0 (8) 

and { - pn J is interpreted as {.on }. The multiplicity of the 
product is clearly the same for all such triads. [In proving 
this result we have to show that the Kronecker product of 
two irreps in U(n) never contains more than one distinct 
member of the associated series. That this is the case easily 
follows by writing the product in terms of fully covariant 
tensor irreps, using powers of { In} , and then noting that all 
terms appearing in the Kronecker product of two covariant 
irreps involve partitions of the same number.] Notice that 
since all associated irreps become equivalent in SU(n) we 
would be quite entitled to relax the condition (8) within that 
group. However, to do so in the present context could be 
confusing as a triad violating (8) will not exist in U(n). 

In connection with the last remark it deserves to be 
emphasized that simultaneity only refers to a numerical 
equality of the U(n) and SU(n) coefficients and merely allows 
one to retain the same coupling algebra on restriction from 
U(n) to SU(n). It does not mean that the tensor products of 
irrep matrices of elements outside of SU(n) may be reduced 
by SU(n) coupling coefficients. An example will illustrate 
this point. Let A be an element of SU(2) and let Z be an 
element of U(2) for which det Z# 1. Then, while it is true 
that the same SU(2) coefficients which reduce A [II XA III to 
A {Ol -+- {21 also reduceZ 111 xZ 111 toZ (I'I +Z 121, the SU(2) 
coefficients which reduce A 101 xA 111 to A [II are readily 
seen to reduce Z [1'1 xZ 111 to Z[ 21 1 = (det Z)Z#ZIII . It is 
clearly not possible to match the arguments of the entire set 
of SU(2) coefficients with all U(2) decompositions. This re
mark assumes considerable significance in any attempt to 
prove the necessity of (2) (cf. Ref.8). 

We should also note that simultaneity is not peculiar to 
the unitary groups. The cyclic groups provide many trivial 
examples of this, e.g., for both C6 and its subgroup C3 all 
coefficients may be chosen + 1. 

V. 3jm FACTORS 

The above proofs apply to all n. However, in order to 
use Racah's factorization lemma to extend the results to 3jm 
factors for SU(n)~SU(nl)XSU(n2)' where n = n l n 2 or 
n) + n2 , we must show that the result for U(n) applies in the 
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appropriate symmetry-adapted basis. In fact, the mapping 
(3) in the defining irrep meets all the necessary requirements 
in any basis. We must show though that (6) still applies. This 
will be so if we can show that for the standard irrep matrices 
A IAI used in (5), and which satisfy (6) for aHA belonging to 
Urn), A IAI is diagonal in branching multiplicity and sub
group irrep labels for those A belonging to the subgroup, and 
further, that the subgroup irrep matrices appearing on the 
diagonal factorize into irrep matrices A l~,1 XA l~21 of 
U(nl)x U(n2 ); for which we will also require that (6) holds. 

Consider n = n ln2 • Let the n-dimensional vector space 
mapped by the defining irrep of U(n) be a tensor product of 
n l - and n2-dimensional spaces so that for those elements A of 
Urn) which also belong to U(nl)X U(n 2 ) the defining irrep 
matrices are 

A (II = A (II XA (II. (9) 
n "1 "2 

It is well known that the [A ]-symmetrized parts of the I th 
tensor powers of this product space are just a direct sum of 
tensor products of the Lu I)-symmetrized parts of the I th ten
sor power of the first space with the Lu2]-symmetrized parts 
of the I th tensor power of the second space, where the multi
plicity gf'IP2A in the direct sum is just the multiplicity of [A ] in 
the inner product of Lui] and Lu2] in Sf. (Such results are 
elegantly expressed using Littlewood's plethysm of S-func
tions. 34) Clearly then, forthoseA n belonging to U(n l) XU(n2) 

AlAI = +' g A 1f'.lXA 1f',1 (10) 
n P,IJL2A", n2 ' 

J.LII-lZ 

which certainly suffices if A );,' I and A );,21 are standard. For 
general A jf;vl, we simply note that 

A ll"1 = (A ('I) xn,X (A l!"'I) Xn, (11) 

and the form of (10) is unaffected. If A );,.1 and A );,21 appear
ing in (10) are nonstandard, as will frequently be the case, it 
will still be true with the present construction that the condi
tion (6) is satisfied within both U(n l) and U(n2) and so reality 
of the 3jm symbols for both groups in these bases is assured. 
Since these bases can be obtained from those ofthe type (5) 
without affecting the simultaneity of the multiplicity resolu
tions in U(n l) and U(n2) and because the 3jm factors for 
U(npU(n l)XU(n2) do not depend on the bases ofU(n l) or 
U(n2)-but do depend on their product multiplicity resolu
tions-this is all that is required. Thus, applying the results 
of Secs. III and IV together with Racah's factorization 
lemma2

,9 we deduce that 3jm factors for SU(nln2pSU(nd 
X SU(n2) may be real and simultaneously 3jm factors for 
Urn In2):::> U(nd X U(n2)' 

The case n = n I + n2 follows similarly by letting the 
vector space mapped by the defining irrep ofU(n) be a direct 
sum of n l - and n2-dimensional spaces. Hence, for those ele
mentsA ofU(n) which also belong to U(n l) XU(n2) the defin
ing irrep matrices are 

A (11 = A III -+- A (11. 
n "I n2 

In analogy with Eqs. (10) and (11) we find 

A IA I = +' r A If'.l XA 1f'21 
n JLI,uzA n l n2 

PIJ-lZ 

(12) 

(13) 

(where rf',f'2A ' commonly referred to as the outer product 
multiplicity, is the multiplicity of [A ] when the representa
tion of Sf induced by the direct product representation 
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Lui] X Lu2] of Sf, XSf2 , where II + 12 = I, is restricted to ir
reps of Sf) and 

A (1"1 =A 11"'1 xA (1"'1. (14) 
n n l n2 

Thus we are also able to deduce that 3jm factors for 
SU(nl + n2PSU(n l)xSU(n2) may be real and simulta
neously 3jm factors for Urn I + n2 ):::> U(n) I X U(n2)· 

VI. PERMUTATION SYMMETRY 

The matrix r \23 is invariant under permutation of the 
irreps and thus permuted 3jm symbols may differ only by a 
(unitary) transformation in the product multiplicity, I i.e., 

(~a rb ~e)r = IM
1T
{r\r2r 3l'r' (~\ r 2 ~3)r', 

la ib Ie r' II i2 13 

(15) 

where abc is the permutation 1T of 123. Under normal cir
cumstances a certain amount of choice exists for the permu
tation matrices M 1T' The available choices depend on 
whether the triad (r\r2r 3 ) is of one or another of the follow
ing types.36 

1. r l =lr2=1r3=1r\. There are five fundamental trans
position matrices in terms of which allM1T can be expressed. 
These five matrices are completely arbitrary, cf. Derome.36 

However, the conventional choice2 is for them all to be the 
same diagonal matrix of real phases (and thus Hermitian). 
All eighteen transposition matrices are then the same and all 
eighteen cyclic permutation matrices are the identity.36 

2. r\ = r 2=1r3. There are only three fundamental 
transposition matrices. The transposition matrix 
M(12) {r lr 2r 3 J must be Hermitian and will be a representa
tion matrix of S2' Its diagonal form is therefore fixed by 
whether the rth occurrence of r3 is in the symmetric or anti
symmetric part of r\ Xr\; because the diagonal element 
must be the character (which is + 1 and - 1, respectively) 
of either the identity irrep [2] or the alternating irrep [12] in 
the class whose cycle structure30,34 is (2\). It is convention
al2,36to choose this (fixed) diagonal form for all transposition 
matrices. The cyclic permutation matrices are thus all the 
identity once more. 

3. r l = r2 = r 3• There are only two fundamental 
transposition matrices and they generate the group S3' It is 
conventional to choose the permutation matrices to be diag
onal in the totally symmetric, r l ® {3 J, and totally antisym
metric, r I ® { 13 J , parts of the Kronecker cube. An examina
tion of the characters of the (one-dimensional) irreps [3] and 
[13] in S3 shows that this (fixed) diagonal form is the same as 
the choices made in case 2. If though the identity occurs in 
the mixed symmetry part, r I ® {21 J, of the Kronecker cube 
then the permutation matrices cannot all be chosen com
pletely diagonal because the irrep [21] is two-dimension
al. 2,36 The group is said to be simple phase37 if the mixed 
symmetry case never arises. 

However, if the arguments ofSecs. III-V were followed 
independently for each permuted triad then the permutation 
matrices would-except by fluke-be fixed in other than 
standard form. Obviously though, they would be real. One 
can therefore argue in a straightforward, but nontrivial, 
fashion that the conventional symmetries are consistent with 
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the reality condition. 
More problematic is the simultaneity condition. The 

unitary groups are simple phase for n = 1,2, and 338.39 but 

for n;;;.4 they are not.39.40 Consider the irrep [ 21;21) which 
is equivalent to [432n 

- 4 1) in SU(n) and which exists for 

n;;;.4. The type 3 triad ([ 21;21) [21;21) [21;21)) is not 
simple phase.2.39 Recalling (8) we observe that there are an 
infinite number of distinct triads in U(n) which become equi
valent to this one in SU(n) and none of them are of type 3. 
TakeU(4), for example. Lettingpl = I,P2 = - l,andp3 = 0 

we obtain the type 1 triad ([ 1;32) [ 32; 1) [ 21;21)) and let
ting PI = P2 = 1 and P3 = - 2 we obtain the type 2 triad 
([1;32) [1;32) [ 431;0)); both of which become equivalent in 
SU(4) to the non-simple-phase triad ([ 431) (431) (431)). 
Since the permutation matrices may be expressed as a con
traction of 3jm symbols, by inverting (15) via the orthogona
lity relations,2 we readily see that simultaneity requires the 
permutation matrices for each of these triads to be the same. 
Although demanding that the permutation matrices for a 
type 1 triad be identical to those for a type 2 triad would not 
be inconsistent with convention, demanding the permuta
tion matrices for type 1 and 2 triads to have off-diagonal 
elements is definitely unconventional. Thus-simultaneity of 
Urn) and SU(n) 3jm symbols is inconsistent with convention
al Urn) permutation symmetries for n > 3. 

Derome and Sharp I also discuss symmetries under 
complex conjugation ofirreps in terms of r 123• However, it is 
known that the simplest choice, viz. the identity,2 for the 
conjugation (i.e., 2jm, equivalently I-jm, and A 1.2) matrices, 
although consistent with simultaneity,39 leads to a complex 
algebra.23.27.28 This result is independent of the permutation 
matrices and we will therefore not pursue the matter other 
than to remark that the conjugation matrices in our case will 
be real. 

VII. DUALITY 

The precise relationships between general Urn) and SI 
coefficients have recently been elegantly expressed in a sim
ple unified manner for all coefficients (involving only covar
iant tensor irreps) which are of immediate interest.41 .42 For 
n-independence of the Urn) coefficients it is sufficient that 
the three duality factors42 Dn (Aet2,A3)' Dn•n, (A,JLJIl2)' and 
Dn. + n, (A,JLJIl2)' which relate unitary group and symmetric 
group multiplicity separations, be chosen independently of 
n, nl' and n2. In fact for any set of symmetric group multi
plicity separations it is trivial to show that all may be chosen 
to be the identity. This leads to the results for Urn) discussed 
in the Introduction. However, it is generally very difficult to 
show that the symmetric group multiplicity separations may 
be made so as to exhibit desirable U(n) properties, such as the 
simultaneity which would be, at least partially, necessary for 
the n-independent properties to carryover to SU(n).28 [Of 
course one should be able to establish the existence of n
independent properties for SU(n) independently ofU(n) but 
in the context of both the published literature and the pres
ent paper it is simpler to consider the issue via simultaneity.] 

In a similar vein we observe that in the present scheme, 
and any other like it where Urn) symmetries have already 
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been imposed, the duality factors are no longer completely 
arbitrary.42 This is because there necessarily exist restric
tions on the Urn) multiplicity separations which ensure that 
the imposed symmetries are maintained.24 It is therefore not 
obvious to what extent the current results are compatible 
with n-independent duality factors. We may though make 
some observations. 

One aspect which does emerge from the present investi
gation is that a duality consistent phase convention for SU(n) 
would necessarily be incompatible with the usual simplified 
permutation matrices for SU(n). For example, the triad 

([ 0;431) [0;431) [ 6532;0)) which is legitimate in U(5), and 
equivalent to the type 2 triad ([ 431) (431) (6431)) in SU(5), 
is also legitimate in U(4) and because the product is one of 
fully covariant tensor irreps, coefficients involving it are re
lated by duality.42 However, in SU(4) that triad is equivalent 
to ([ 431) (431) (431)) which, as we have earlier remarked, 
is of type 3 and non-simple-phase.2.39 The detailed argument 
is more involved than that in Sec. VI because the permuta
tional symmetries of isoscalar factors and recoupling coeffi
cients involve more than one permutation matrix as well as 
other transformations, but consideration of a few examples 
quickly reveals that the standard choice of permutation ma
trices for these triads is necessarily incompatible with n-in
dependent properties. [It does not appear to have been noted 
before that the above possibility is in fact realized although it 
has often been remarked that duality requires the resolution 
of multiplicity for many type 1 triads to be made in the same 
manner as for type 2 triads with which they become equiva
lent in some SU(n). Indeed it is sometimes said that this pro
vides "natural" phase choices. 27] 

Using the above as justification one could ignore all 
permutation symmetries, including for the time being the 
(12) transposition symmetry, and enquire whether n-inde
pendent duality factors might then be compatible with si
multaneity. Consider Dn(AIA2,A3) which is associated with 
the inner product [Ad X [A2)::J [A3) in Urn) and the corre
sponding symmetric group outer product arising in the sub
duction of [A 3] to [AI] X [A2] under the restriction of SI, to 
SI XS1 .42 The following argument shows that all such fac-. , 
tors may be chosen unity and thus the recoupling coefficients 
for SU(n) may be chosen n-independently. We start with all 
[A d, [A2), [A3) associated with partitions into one part. 
There are an infinite number of such products in any Urn) 
but in U(I) all are related by (8) and thus there is only one 
independent coupling in SUI I), which we could take as 
(0) X [ 0) ::J [ 0). Consider then the case n = 1. To ensure 
simultaneity the U( 1) phases associated with these couplings 
should all be fixed to that for (0) X (0) ::J (0). We may 
though use the freedom in the symmetric group products, 
those being different in each case, to set D I(A IA2,A3) = + 1. 
For n> 1, the symmetric group phases must remain unal
tered but the unitary group phases (which are no longer re
lated by simultaneity) may now be used to set 
Dn (A IA2,A3) = + I also. Thus these duality factors are inde
pendentofn. Next consider all [Ad, [A 2), [A3), where [A 3) 
is associated with a partition into two parts and [AI) and 
[A 2 ) are associated with partitions into two or less parts. No 
such products exist in UtI). Consider then n = 2. Some pro-
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ducts will be associated in U(2) with those previously consid
ered. For example ! 2 J X ! 11 J :::> ! 31 J is related to 
! 2 J X ! 0 J :::> ! 2 J by pz = P3 = 1 in (8). Others will be associat
ed with products which now arise for the first time. For 
example, {3 J X 121 J :::> ! 42 J is related to {3 J X P J :::> {31 J . 
These couplings are not independent in SU(2) and thus to 
ensure simultaneity no free phase should be connected with 
them. However, the corresponding symmetric group pro
ducts may be used to set Dz(A IAz.A3) = + 1. For the remain
ing products, such as p ] X P ] :::> P I] and 
! 3] X! 1 J :::> ! 31 J, it is possible to use the U(2) freedom to set 
Dz(A IAz.A3) = + 1, regardless of the symmetric group phase 
choice. For n > 2, simultaneity is no longer relevant and the 
unitary group phases alone may be used to set 
D n (A IAz.A3) = + 1. Proceeding in this manner for partitions 
into 3, 4,5 parts etc., we may choose all of the duality factors 
Dn(A IAz.A3) = + I, where I is the identity matrix whose or
der is that of the multiplicity. (Multiplicity, where it occurs, 
is readily seen to be n-independent and in no way compli
cates the line of argument.) Thus we have established the 
claim that all of these duality factors may still be chosen 
independently of n. Because all recoupling coefficients of 
SU(n) can be written in terms of products of covariant tensor 
irreps, which are valid in U(n), n-independence of those coef
ficients results. Notice that, in contrast to Sullivan's work,z8 
the above argument is based on a sufficient condition. 

We should now consider the compatibility of this result 
with both reality and the standard choice of a diagonal form 
for the (12) transposition matrix. In choosing the duality fac
tors we have imposed a restriction which equates unitary 
group and symmetric group multiplicity choices, i.e., we 
may not now change one without an identical change in the 
other, or else the duality factors will be altered from their n
independent values. We have also had to restrict U(n) phases 
amongst themselves so as to preserve SU(n) equivalences. 
Thus restrictions also exist among the symmetric group 
phases. Consequently, one has to consider carefully whether 
sufficient freedom remains to choose all of the symmetric 
group coefficients to be real. Indeed it can be argued that the 
necessary freedom no longer exists. However, it is conceiv
able where a choice of reality may not be made that reality 
will nevertheless result as a consequence of previous choices. 
It is at least encouraging to know that U(n) choices display
ing the property of simultaneity in conjunction with the 
property of reality do exist. 

We can be more definite with regard to the (12) transpo
sition phase. Consider the case A I = Az and let n be the small
est value for which the U(n) product occurs. A simultaneous 
transformation of both the unitary group and symmetric 
group multiplicities will transform the transposition matrix 
to its (fixed) diagonal form36 without affecting the duality 
factor. Invoking simultaneity in U(n) reveals that all trans
position matrices related to this one by SU(n) equivalences 
will be identical. Furthermore, the duality results show that 
the transposition symmetry is independent of n. Next con
sider A I #Az· If two products ! A I] X ! Az J :::> ! A3 ] and 
!Az] X !Ad:::> (A3J are related by equivalence in SU(n) then 
they are also related by equivalence to a product 
! A ; J X (A ; J :::> ! A ; J, where A ; = A ;. Hence such pro-
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ducts have already been considered. Therefore, we are left 
with those cases for which the couplings are independent. 
(There is of course still only one transposition matrix: 
M(1zd A IA0 n = M(1zd A01A r ]-1.) By making simulta
neous transformations in both the symmetric and unitary 
groups M(lz) may be arbitrarily chosen36 without affecting 
the duality factors. Once more we may invoke simultaneity 
and duality to obtain those transposition matrices which 
may not be chosen. Thus duality for SU(n) is compatible with 
the conventional (12) transposition symmetry. 

Finally we note that duality for SU(n) only required 
simultaneity for fully covariant tensor irreps. A similar du
ality exists for fully contravariant tensor irreps but the sym
metric groups which act on the covariant and contravariant 
indices are different and consideration of mixed tensor irreps 
would involve a direct product of these groups and the outer 
product of their irreps. The question arises as to whether 
complete simultaneity, as espoused in the earlier sections, is 
compatible with n-independence. This would be extraordi
narily demanding because it would vastly restrict the unitary 
group freedoms and thence also the symmetric group free
doms via the duality factors (which have only been defined 
for fully covariant or contravariant products). As an exam
ple, the product! I] X ! I] :::> ! II] is related via association in 

U(2) to the contravariant product (IJ X !l]:::> ( TI] so the 
corresponding duality factors could not be chosen without 
using symmetric group freedom. Furthermore, the degree of 
multiplicity where mixed tensor irreps are concerned is 
found to depend on nZ7,39 because of the necessity to apply 
modification rules33

.4
3 for small n. Nevertheless, there are 

some cases where the recoupling coefficients for mixed ten
sor irreps are n-independent.z6,z7 So far the details of this are 
not understood. 

VIII. CONCLUDING REMARKS 

The existence of real coefficients for U(n) and SU(n) has 
now been rigorously established, even for those coefficients 
involving mixed tensor irreps of U(n) which cannot be ad
dressed via current duality arguments. The proof presented 
here utilizes an involutory automorphism (3) with the special 
property described by (2). Consequently,Z9 that automor
phism is also class inverting44 and therefore U(n) and SU(n) 
are quasiambivalent. 44,45 This is in line with recent 
work8.z9.46 indicating that this property is relevant to the 
reality issue. Indeed one can derive, for all quasiambivalent 
groups, a formalism involving some "conjugating" matrices 
which factorize in a suitable subgroup basis and which oth
erwise playa role for both real and complex irreps analogous 
to that of the 2jm matrices for real irreps. Within this formal
ism, which will be reported elsewhere,46 the reality issue may 
be more elegantly addressed; especially for 6j symbols, 3jm 
factors, and the various unsymmetrized coefficients. Indeed 
the criterion (2) for reality can be reduced to a character test. 
However, other issues such as simultaneity are not as trans
parent as in the present treatment. 

Note added in proof The Tannaka-Krein duality 
theorem for compact groups may be used, at least in the case 
of unitary matrix irreps, to show that the sufficient condition 
(2) for reality is also necessary.47 
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Sp(6)::J Sp(2) X (j (3) chain for closed shells 

o. Castanos 
Centro de Estudios Nuc/eares, UNAM, Apartado Postal 70543, Mexico, D.F. 04510 Mexico 

E. Chac6n and M. Moshinskya> 
Instituto de Flsica, UNAM, Apartado Postal 20364, Mexico, D.F. 01000 Mexico 

(Received 27 July 1983; accepted for publication 16 December 1983) 

As was indicated in previous papers, general Hamiltonians for systems of n particles in three
dimensional space can be formulated in the enveloping algebra of the symplectic group Sp(6n). 
This group admits, among others, the subgroup Sp(6)xO(n) and, as has been noticed by many 
authors, collective Hamiltonians can be formulated in the enveloping algebra ofSp(6), so that 
their eigenstates can be characterized by a definite irreducible representation (irrep) of this group. 
The mathematical problem is then to determine the matrix elements of the generators ofSp(6) in a 
basis characterized by irreps of this group as well as of appropriate subgroups. In the present series 
of papers the subgroups chosen where Sp(2) X &(3) as the Casimir operator ofSp(2) when n ---+ 00 

is formally related to the Bohr-Mottelson vibrational Hamiltonian (BMVH), while &(3) gives the 
angular momentum of the state. We give an algorithm for determining these states that closely 
parallels the procedure followed for the BMVH. Programs are being developed to convert our 
algorithm into a computational tool for determining collective excitations in nuclei. 

PACS numbers: 02.20. + b, 03.6S.Fd, 21.60.Ev, 21.60.Fw 

I. INTRODUCTION 

As indicated in the two previous papers ofthis series l
•
2 

(to be referred as I and II and whose equations will be quoted 
by their numbers followed by I or II) our purpose is to deve
lop the mathematical background required for dealing with 
microscopic collective models. We noted I that an n-body 
system in three-dimensional space has as dynamical group 
the 6n-dimensional symplectic group Sp(6n) which admits, 
among others, the subgroup Sp(6)XO(n). Collective effects 
are introduced by the constraint that our states are restricted 
to a given irreducible representation (irrep) (liJ l liJ2liJ3) of the 
orthogonal group in n dimensions O(n), which implies also l 

the irrep 

[n/2 + liJ3, n/2 + liJ2, n/2 + liJ 11 (1.1) 

for Sp(6) as indicated in Eq. (601). Furthermore while a gen
eral n-body Hamiltonian can be defined I in the enveloping 
algebra ofSp(6n), it seemed reasonable I to restrict the collec
tive Hamiltonians to the enveloping algebra ofSp(6). Thus 
our mathematical problem is to determine the matrix ele
ments of the generators ofSp(6) in a basis characterized by 
definite irreps ofSp(6) and appropriate subgroups of this 
group. 

The above program is not new as, from different points 
of view, it has been discussed by Rosensteel and Rowe,3 
Biedenharn et al.,4 Filippov,5 Vanagas,6 and others. What is 
new though is that the subgroup ofSp(6) that we choose for 
our discussion is 

Sp(6):>Sp(2)X &(3), (1.2) 

and the reason that we do this, as indicated in detail in I, is 
because of the relation of this chain, I when n ---+ 00, with the 
Bohr-Mottelson vibrational Hamiltonian. 

a) Member of the Instituto Nacional de Investigaciones Nucleares and EI 
Colegio Nacional. 

It is with respect to the states characterized by the irreps 
of the chain (1.2) that we want to determine the matrix ele
ments of the generators ofSp(6). As we shall indicate in the 
next section, this implies calculating the matrix elements of 
the quadrupole tensor 

n 

qij = I XisXjs , (1.3) 
s=l 

where Xis; i = 1,2,3; s = 1,2, ... , n are the 3n coordinates of 
the n-body system in three dimensions, with respect to eigen
states of a finite system of partial differential equations in six 
variables related to the qij' This set of differential equations 
was explicitly given in Ref. 7, but we managed to solve it only 
when n ---+ 00. To obtain the eigenstates for arbitrary but 
finite n is a hard problem, and in this paper we shall tackle it 
only for the irrep (liJlliJ2liJ3) = (000) of O(n), i.e., the scalar 
representation of this group. In this case we have only one 
partial differential equation in six variables. The problem 
still remains difficult, but we will give an algorithm for find
ing the eigenstates by using group theoretical techniques 
similar to those employed in relation with the exact solu
tions.9 of the Bohr-Mottelson vibrational Hamiltonian. As 
our eigenstates will be in configuration space, the matrix 
elements of qij with respect to them are feasible and thus our 
program can be implemented. 

We note though that the program carried out in this 
paper is restricted to the irrep (000) ofO(n), which implies [as 
was indicated in the considerations following Eq. (601)] that, 
in general, it corresponds to the irrep 

[n/2 + liJ, n/2 + liJ, n/2 + liJ 1 (1.4) 
of Sp(6) in which liJ is an arbitrary integer. The irrep corre
sponds then to a doubly closed shell nucleus,7 in which the 
nucleons fill the levels of an harmonic oscillator potential up 
to and including the level of JV quanta, if we choose 

n = j (JV + I)(JV + 2)(JV + 3), (1.5a) 
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w = !ff(ff + l)(ff + 2)(ff + 3). (l.5b) 

In (1.5a) we denoted by n the total number of nucleons. Had 
we considered the translationally invariant formalism of I in 
which n was related to the number of Jacobi vectors, i.e., 
eliminating the center of mass coordinates, we should have 
written n + 1 instead of n on the left-hand side of (l.5a). 

The analysis in this paper is then only relevant for dou
bly closed shell nuclei though in subsequent papers of this 
series we will extend it to the case of open shells, i.e., when 
the irrep of Sp(6) has the general form (1.1). 

II. THE DIFFERENTIAL EQUATION FOR EIGENSTATES 

We know l that the basis for irreps ofSp(6n), with its 
generators expressed as bilinear forms in the coordinates Xis 

and their canonically conjugate momenta Pis , as in (41), are 
given by the eigenstates of the harmonic oscillator whose 
Hamiltonian is 

1 3 n a 
H=-2 I L (p~ +X~), Pis = -i-a ' (2.1) 

1=ls=1 Xis 

where we took units in which fl, the mass of the particles, and 
the frequency of the oscillator are taken as 1. The oscillator 
states of even (odd) number of quanta correspond to the 
irreps [!3n] ([ !3n - 1 n) of Sp(6n). 

Is it possible to extract from the eigenstates of the Ha
miltonian (2.1) the basis for the chain of groups 
Sp(6):JSp(2)X &(3)? The answer is yes if we note that the 
symmetry group of H is the 3n-dimensional unitary group 
U(3n) and we can further characterize the states by the chain 
of subgroups 

U(3n):J0(3n):J&(3)x O(n) , (2.2) 
N v L (W.W2(U3) 

where under each one of the groups we have given its irrep, 
noting that those ofU(3n), 0(3n), and &(3) are characterized 
by a single quantum number while the one ofO(n) is given, as 
indicated in the previous section, by the partition (W IW 2W 3). 

We note now that the group Sp(6n) has, among other 
chains of subgroups, the following ones: 

Sp(6n):JSp(6)XO(n), 

Sp(6n):JSp(2)XO(3n). 

(2.3a) 

(2.3b) 

It is well known l
•
1O that if the irrep ofSp(6n) is [!3n] or 

[!3n-I~], the irreps ofSp(6) and O(n) are complementary, 
i.e., if we fix the irrep ofO(n), that ofSp(6) is given and vice 
versa. Furthermore this complementary relation also 
ho1ds l

•
1I for Sp(2) and 0(3n). Thus if the eigenstates of H in 

(2.1) are characterized by the irreps of the groups in the chain 
(2.2), we have that (W 1W 2W 3) ofO(n) gives the irrep (1.1) of 
Sp(6), while the irrep ofSp(2) can be denoted by A related to 
the v ofO(3n) through Eq. (281), i.e., 

A = vl2 + 1 n, (2.4) 

where we note that here we use the notation v, A for what 
was I, A in Eq. (281). The irrep N of U(3n) gives the total 
number of quanta which, as indicated in (521), characterize 
also the irrep of the subgroup 0(2) ofSp(2). Finally we denote 
by L, as indicated in (2.2), the irrep of &(3). 

Can we find a coordinate system in the 3n-dimensional 
configuration space of the Xis in which it is possible to write 
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the H of (2.1) so that its eigenfunctions are characterized by 
irreps of the chain of groups (2.2)? Again the answer is yes 
and in fact the coordinate system is the one introduced by 
Zickendrahe 1 and by Dzublik et al. 12 which was discussed in 
Eq. (151). For particles in three-dimensional space we can 
write 

3 

X's = L PkD kJt'lj)D ~ - 3+ k.s(¢'), (2.5) 
k=1 

where the 3 X 3 matrix DI = liD L{t'1j III is the defining repre
sentation (which is the reason for the 1 appearing as an upper 
index) of the & (3) group, in terms of its three Euler angles {}j. 

Then Xn matrix liD ;s(¢' )11 has the same meaning for the 0 (n) 
group and it depends on n(n - 1)12 angular coordinates de
noted by ¢'. As in (2.3) we deal only with the last three rows of 
the matrix, the actual number of angles involved 1 is 

! n(n - 1) -! (n - 3)(n - 4) = 3n - 6, (2.6) 

to which if we add the 3 {}j and 3 Pk we get 3n, i.e., the 
number of Xis' as we should. 

From the orthogonal properties of the matrix liD ;s(¢' III 
we have that 

(2.7) 

where - indicates the transposed matrix. Thus the Pk'S ap
pearing in (2.3) are related through II p;Dij II with the values of 
the quadrupole tensor ( 1.3) in the frame of reference fixed in 
the body, while D 1{t'1j) is the orthogonal matrix that takes us 
from the frame of reference fixed in space to the one fixed in 
the body. 

Furthermore we replace in (2.5) the Pk'S by l3 

p~ = 1p211 + 2b cos[c - (217'/3)k] J, k = 1,2,3, (2.8) 

where O';;,p< 00 while band c are restricted to the values in 
the hatched triangle in the plane X = b cos c, y = b sin c of 
Fig. 1. 

With the help of (2.5) and (2.8) we can rewrite the 
Hamiltonian (2.1), as was shown in Eqs. (3.2) and (3.9)-(3.11) 
of Ref. 7, in terms of P, b, c and their derivatives, the compo
nents of the angular momentum L~, k = 1,2,3 in the frame 
of reference fixed in the body and the generators 
2';, = - 2';s of the O(n) group also in a kind of "body 
fixed" frame. If we restrict ourselves to a definite irrep 
(W 1W 2W 3) ofO(n) we can then substitute these 2';, by their 
matrix representation in a basis characterized by the irreps 
of the chain7 O'(n):JO'(n - I):JO'(n - 2), again in a "body 
fixed" frame, as was done in Sec. IV of Ref. 7. Thus for a 
fixed irrep (W1W2W3) ofO(n) the HamiltonianH of(2.1) can be 
expressed as a finite matrix of partial differential equation 

1T/3 
FIG. I. The values of the varia
bles b, c appearing in Eq. (2.8) are 
restricted to the lined triangle, 
where the coordinates are given 

;%. by x = b cos c, y = b sin c. The 
----:_o±---rt:'£.Ll.LI:LLLL.LLL~"-'---- points marked A, B, and C corre

spond to points with the same 
markings in Fig. 3 when we re
place b, c by other variables. 
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functions of p, b, e and their derivatives as well as of L ", 
k = 1,2,3. 

In the present paper we will be restricted to the scalar 
irrep ofO(n), i.e., (ltJIltJ2ltJ3) = (000) in which case we can re
place all the matrices associated with the .!f;t by zero, so 
that our matrix of partial differential equations becomes 
1 X 1, i.e., a single equation. To obtain it we note that the 
oscillator Hamiltonian (2.1) is the same as H of(3.2) in Ref. 7. 
which is related to the H' of(3.9). also in Ref. 7. by 

H = (PIP1P3) - (n - 3)l2p - 4H 'p4(PIP1P3)(n - 3)/2. (2.9) 

If we now put all .!f;t = 0 in H' we obtain from (3.10) and 
(3.11) of the same reference that 

H I ( 1 a 3n _ I a .!f2 2) =- -----P -+-+P. 
2 p3n - I ap ap p2 

(2.10) 

where 

1 a2 

- .!f2 = - (1 + b cos 3e - 2b 2) --
2 ~2 

- : (1 - ~ b cos 3e - ! b 2) ! 
1 a2 

3 ( --(I-bcos3e)---cot3e 1 
b 2 ae2 b 2 

+ ~ b sin 3e tan 3e - b sec 3e) !.-
3 ae 

1 a2 a 
+ 2bsin 3e---+ 3(n - 3)b-

b abae ab 

~ 1 - bek 2 

+ ~ 2 L", 
k~1 4b s% 

(2.11) 

where we used the shorthand notation 

ek = cos[e - (21T/3)k ], 

Sk = sin[e - (21T/3)k], k = 1,2,3. (2.12) 
As indicated in I, .!f2 is the Casimir operator ofO(3n), 

but now restricted to the scalar representation of its O(n) 
subgroup. and its eigenvalue. corresponding to the irrep v of 
this group is I 

v(v+3n-2). (2.13) 

The eigenstates associated with the irreps of the chain of 
groups (2.2). when (ltJ IltJ2ltJ3) = (000). can then be written as 

In' NvurLM) = p - (3n - 1)I2fv+ (3n/2) - I( p) 
• (N- v)l2 

X L F;!UTL(b. e)DiM{t?j)' (2.14) 
K 

In (2.14) I(p) can be obtained from (2.10) when we replace 
.!f2 by its eigenvalue (2.13). and its explicit form is given in 
terms of Laguerre polynomials in Eq. (201). The D iM{t?j) are 
the standard Wigner functions 14 for the irreps of tJ (3). From 
(2.11) the FK(b. e). K = L. L - 1 •...• - L satisfy a set of 
(2L + 1) partial differential equations in b. e and their de
rivatives. An algorithm for determining the functions 
FK(b. e) is the main objective of this paper. and it will be 
implemented by a procedure entirely parallel to the one pre
sented in Refs. 8 and 9 for the exact determination of the 
eigenstates of the Bohr-Mottelson vibrational Hamiltonian. 

We note that the FK(b. e) have several upper indices 
which thus also appear in the ket (2.14). The number of parti-
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cles is due to the fact that it appears as a parameter in the .!f2 
of (2.11). The v is due to the eigenvalue (2.13) of .!f2. The L. 
as well as the lower index K. is due to the matrix elements8 of 
the L ,,2. k = 1.2.3 in (2.11) with respect to the Wigner func

tions D iM{t?j)' There are two more upper indices of Fdb. e). 
which we denoted by u. r. that are multiplicity indices re
quired when we go from the chain O(3n) to &(3)XO(n). 
keeping within the scalar representation of O( n). The explicit 
appearance of u. T will be seen in the following two sections. 

Because of the complementarity relations discussed 
after (2.3). we note that the states (2.14) will also be the basis 
for irreducible representations of the chain of groups 

[~ ~ ~] A N 

Sp(2) ~ 0(2) 

Sp(6) ~ X 
(2.15) 

&(3) ~ &(2) 

L M 

with the values of the irreps given above or below the groups 
and where A and v are related by (2.4). 

We note that the irrep ofSp(6) in (2.15) is not the one in 
(1.4) which. through (1.5). can be correlated with closed shell 
nuclei. We showed though in Sec. 9 of I. and particularly 
after (601). that we can obtain the basis for the irrep (1.4) of 
Sp(6) by simply replacing 

(2.16) 

in (2.14). 
Once the kets (2.14) are explicitly available. in which we 

replace v by A of(2.4) and n by n + 2m. our problem will be 
to find the matrix elements of q ij of (1.3) with respect to them. 
As indicated in Eq. (301) we can substitute the qij by 

qm = (2/3)1/2p2{ (1IY2 )b sin e[ D ~m (t?j) + D 2_ 2m (t?j)] 

+ b cos eD ~m {t?j II . (2. 17a) 

q =p2. (2. 17b) 

where m = 2.1,0. - 1, - 2. Integrals involving 
p. {}j' j = 1.2.3 are elementary so only the part involving 
the b. e need concern us and we shall indicate a possible 
analogy in their calculation with procedures used in Ref. 9 
for determining the matrix elements of am with respect to 
the eigenstates of the Bohr-Mottelson vibrational Hamil
tonian. 

In the next two sections we outline the procedure for 
obtaining the kets (2.14). 

III. POLYNOMIALS IN THE RAISING GENERATORS OF 
Sp(6) OF DEFINITE ANGULAR MOMENTUM 

In paper I of this series we discussed the generators of 
Sp(6n) and its subgroups in terms of the coordinates Xis and 
momenta Pis' For the analysis we are about to embark upon 
it is more convenient to discuss them using the creation and 
annihilation operators 

17is = (1IY2 )(Xis - iPiS)' 

Sis = (1IY2 )(Xis + ipiS) 

(3.1a) 

(3.1b) 

in terms of which the generators of Sp(6) take the form 7 
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n 

Bij= L l1isl1js' (3.2a) 
s= I 

(3.2b) 

n 

Bij = L 5is5js , (3.2c) 
s= I 

where B ij, C12, C23, C13 are the raising generators; CII' C22' 
C33 are the weight generators; and Cw C32' C31 ' Bij are the 
lowering generators of this group. 

If we denote by 

10) = 1T-(3n/4) exp( _ !p2) (3.3) 

the ground state of the oscillator Hamiltonian H of (2.1), we 
see that it is a state oflowest weight of Sp(6) as from (3.2b) 
and (3.2c) we observe that the lowering generators of this 
group, when applied to 10), give zero. Furthermore the 
weight generators acting on the ground state give the eigen
value n/2, so 10) is the lowest weight state of an irrep ofSp(6) 
characterized by the partition given above this group in 
(2.15). It is clear then that the basis for the irrep [n/2, n/2, 
n/2] ofSp(6) is given by 

PN(Bij)IO), (3.4) 

where P N are all possible homogeneous polynomials of de
gree (N /2) in the B ij where, from now on, N will be restricted 
to even values. Obviously the states (3.4) correspond to N 
quanta and thus to the irrep N of the 0(2) subgroup ofSp(2) 
as was indicated in (2.15). Note that normally one would take 
PN of(3.4) asa polynomial in all the raising generators which 
includes, besides the B ij, the Cij' i <j. Using the commuta
tion relations7 of the generators (3.2) ofSp(6) we can though 
put all C ij' i <j to the right of the B ij, so that when acting on 
10) they vanish leaving only the term (3.4). 

In this section we wish also to characterize the polyno
mial in (3.4) by an angular momentum L and highest value 
M = L for its projection, which implies 

L+PN(Bij)IO) = 0, L 3PN(Bij)10) = LPN(Bij)IO), 
(3.5) 

where L i , i = 1,2,3 are the components of the total angular 
momentum and L ± = LI ± iL2. 

To achieve our purpose we pass form the B &", 
i, i' = 1,2,3 in Cartesian components to B !q' in spherical 
ones where q, q' = 1,0, - 1, and then to the irreducible ten
sorform 

B 1m = L (lq,lq'llm)B !q" 1=0,2, (3.6) 
q.q' 

where, in what follows, we shall use the more compact nota
tion 

B t = - Y3B 60, B ~ = B 1m, m = 2,1,0, - 1, - 2. 
(3.7) 

The polynomial P N(B ij) becomes then P N(B t, B ~) and 
as B t is a scalar with respect to the orthogonal group t' (3) we 
can write the state satisfying (3.5) as 

(Bt)(N-v)/2PvdB~)IO), (3.8) 

where, from now on, v will also be even and PvL will be a 
homogeneous polynomial of degree (v/2) in the B ~. It will 
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only be in the next section, when we replace the boson cre
ation operators l1is of (3.1a) by traceless bosons,s that v will 
acquire the meaning it had in the previous section as the 
quantum number characterizing the irrep of the 0(3n) 
group. 

WenotethattheB~, m = 2,1, ... , - 2 functions only of 
the 11 is' commute among themselves and are the components 
of a Racah tensor of order 2. The procedure of determining a 
state PvL (B ~) satisfying (3.5), is then totally identical to that 
followed for the Bohr-Mottelson vibrational Hamiltonian in 
Sec. 3 of Ref. 8, where one wanted to obtain homogeneous 
polynomials P(l1m), functions of the creation operators 
11m' m = 2,1, ... , - 2, that were also components ofa Racah 
tensor of order 2. Following then the discussion of Ref. 8 we 
introduce some basic homogeneous polynomials denoted by 
(v, L ), that are of degree (v/2) in B ~ and satisfy (3.5), i.e., 

(2,2) = B 1, (3.9a) 
-2 

(4,0) = L (- )mB~Bt_m , (3.9b) 
m =2 

(4,2) = {7 L (2m,2m'122)B~B~. 
mm' 

(3.9c) 

(6,0) = {7 L (- t" (2m,2m'12, - m")B~B~,B~" , 
mm'm H 

(3.9d) 

(6,3) = -.J¥- mm~"mm (2m,2m'12m"') 

(2m"'2m"133)Bt Bt,Bt" , m m m 

=2(B1)2Bt_1 -~B1BtB6 +(Btt (3.ge) 

The polynomial PvL (B ~) can be expressed as a product 
of powers of these basic homogeneous polynomials related to 
what are known as elementary permissible diagrams 15 (epd). 
The (6,3) appears in PvL (B ~) only in the first power as its 
square is a function of the other epd as indicated in Eq. (3.21) 
of Ref. 8. Note incidentally that what is called here (v,L ) 
corresponds in Ref. 8 to (v/2, L ) as it is given there in terms 
of 11 m rather than B ~ . 

From Eq. (3.28) of Ref. 8 we see that the polynomials 
P vL (B ~ ) require two extra indices, which in this paper we 
will denote by a, 7, and thus for even L they take the form 

PvLu7'(B~) 
= (2,2)L - (v/2) + 2u + 37'(4,2t - L 1/2 - 2u - 37'(4,0)U(6,Or, 

(3. lOa) 
while for odd L we have 
PvLU7'(B~) 

= (6,3)(2,2)L - (v/2) + 2u+ 37'(4,2)(v-L - 31/2 - 2u- 37' 

x (4,Ot(6,Or, (3. lOb) 

We now writeBt in an epd notation, i.e., 
3 n 

(2,0) = Bt = L L l1isl1is , (3.11) 
;= 1 s= 1 

and see that a basis for the irrep [n/2, n/2, n/2] ofSp(6) is 
given by the states 
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(20)(N-v)12p (Bt )10) , vLur m , (3.12) 

where N, v, L, u, 'T take all possible integer values (even only 
for N and v) for which the exponents in (3.10) are nonnega
tive. 

We note that the states (3.12) are characterized by the 
irrepsL,M = L, and Nofthe subgroups tT(3), tT(2), and 0(2) 
ofSp( 6) appearing in the chain (2.15). They are not character
ized by the irrepA of the subgroup Sp(2) or, equivalently, by 
the irrep of the 0(3n) subgroup in the chain (2.2). To achieve 
this last objective we proceed, in analogy with what was done 
in Sec. 4 of Ref. 8, to replace the boson creation operators 1] is 
by traceless boson operators a is . 

IV. USE OF TRACELESS BOSON OPERATORS FOR 
DETERMINING STATES WITH GIVEN IRREP OF O(3n) 

The eigenstates of the oscillator Hamiltonian (2.1) of N 
quanta will be homogeneous polynomials of degree N in the 
1]is acting on the ground state as they satisfy 

NP(1]islIO) = NP(1].s)IO), (4.1) 

where 

(4.2) 

is the first-order Casimir operator ofthe U(3n) group. 
Ifwe want theP(1]is) to correspond to a definite irrep of 

the 0(3n) subgroup ofU(3n) they must satisfy the further 
conditionS of being "harmonic" polynomials, i.e., 

3 n 

BP(1]jslIO) = L L SisSisP (1]js)IO) = O. (4.3) 
i= 1 $= 1 

The states (3.12) satisfy (4.1) but not (4.3) and thus they 
do not correspond to a definite irrep ofO(3n). There is, 
though, a method, originated by Vilenkin 16 and further de
veloped by Lohe, 17 by which we can obtain polynomials 
based on the epd (3.9) that are "harmonic," and thus charac
terized by an irrep v ofO(3n), which implies that they also 
correspond to the irrep A of Sp(2) related to v by (2.4). 

This method is based on the introduction of traceless 
boson operators for the group 0(3n) which, from Eq. (4.5) of 
Ref. 8, have in this case the form 

(4.4) 

with (2,0) given by (3.11) and Nby (4.2). 
The traceless form of B ij will now be denoted as 13 ij 

which implies replacing in (3.2a) the 1]is by aT. to get 

f3ij =Bij - (2,0)(2N + 3n)-I(Cij + Cji) 

+ (2,0)2(2N + 3n + 4)-1(2N + 3n + 2)-IBij' 
(4.5) 

where we made use of the definitions (3.2) and the commuta
tion relations 

A A 

(2N + 3n)-I1]is = 1]is(2N + 3n + 2)-1, 

(2N + 3n)-ISiS = Sis(2N + 3n - 2)-1. 

(4.6a) 

(4.6b) 

As in the discussion preceeding (3.6), (3.7) we can re
place f3ij = f3J;, i,j = 1,2,3 by their irreducible tensor form 
_ 3 A A _ 

f3t = L f3h = (2,0)2(2N + 3n + 4)-1(2N + 3n + 2)-IB, 
i= 1 

(4.7a) 
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f3~ =B~ -2(2,0)(2N+3n)-IQm 

+ (2,0)2(2N + 3n + 4)-1(2N + 3n + 2)-IBm , (4.7b) 

where Qm' Bm are related with Qij -! (Cij + Cji ), Bij in the 
same form (3.6), (3.7) that B ~ is related to B ij. It is then 
immediately clear that the states 

(4.8) 

will not only satisfy equations (3.5), as well as (4.1) but now 
with eigenvalue v instead of N, but also Eq. (4.3), i.e., they 
will be "harmonic" states and thus correspond to the irrep v 
of 0(3n). They can then be correlated with the kets (2.14) of 
the form 

In; N = v, vU'TL, M = L ) =In; vU'TL ). (4.9) 

These kets are actually the most general we need to 
discuss as when calculating matrix elements ofq, qm with 
respect to the states (2.14), the part involving the magnetic 
quantum numbers M, m, M I is given, because of the 
Wigner-Eckart theorem, by a standard Clebsch-Gordan co
efficient. On the other hand, the dependence on N of the ket 
(2.14) is given through the function I(p) appearing there, 
whose explicit form was derived in (301). 

In principle the state (4.8) can be determined as function 
ofp, b, c and the Euler angles tJj , j = 1,2,3 in the form (2.14) 
in which M = Land N = v, where, from (301), the depen
dence onp has the simple formpv exp( - p2/2). To obtain it 
explicitly we would need to use the commutation rules 
between B ~, Qm' B rn -that can be derived from those of 
B ij, Cij' Bij of (3.2) given in Eq. (A4) of Ref. 7-to order the 
polynomial (4.8) in thef3~ of(4.7b) so that theB ~ appear to 
the left of the Qm and those in turn to the left of B rn' As B m 

acting on 10) vanishes, while Qm either vanishes or gives a 
constant eigenvalue, we see that the P( 13 ~ )10) becomes 
P(Bt, B ~ )10), where the new polynomial is now a function 
of the B t, B ~ alone. From Dragt's theorem9,ls we have now 
that 

-P (-B t B t ) 10) - - 3n142v12-p (- ) - p'/2 
VLUT , m - 1T VLUT q, qrn e , 

(4.10) 

where q, qrn are given by (2.17) from which we notice that 
(q/p2) = 1 and (qm/p2) is a function of b, c, tJi only, so as the 
polynomial is homogeneous of degree (v/2), the termpv men
tioned above makes its appearance. 

The procedure indicated in the previous paragraph, 
while feasible in principle, is cumbersome in practice. We 
shall proceed here to define our states in a slightly different 
fashion-parallel to the particle hole procedure developed in 
Ref. 9 for the Bohr-Mottelson vibrational Hamiltonian
and then discuss in Sec. V an algorithm for determining the 
states explicitly as functions of b, c when the angular mo
mentum L = 0, while in Sec. VI we extend our analysis to 
arbitrary L. 

For our alternative procedure, we first introduce an epd 
in traceless bosons which we shall denote by the square 
brackets 

[v,L], (4.11) 

which are defined as in (3.9) but withf3~ replacingB~. We 
also introduce an epd in the Cartesian annihilation operators 
Sis' i = 1,2,3; s = 1,2, ... n, by the definition 

Castal'los, Chac6n, and Moshinsky 2819 



                                                                                                                                    

1 n n 

(2,2)=B2 =- L (sis -si.)+i L SlsS2s, (4.12) 
2 s=1 s=1 

which clearly corresponds to L = M = 2 and commutes 
with li appearing in (4.3). 

We will now replace in (3.10) the ordinary boson epd's 
(v L ) by the traceless boson ones [v, L ] with the exception of 

[4,2] which we replace by ( 2,2)of(4.12). The exponents have 
to change of course so that the polynomials acting on 10) still 
give a state of v quanta and angular momentum L. We then 
get for L even that our state (4.9) is 

In; vL(7r) = [2,2] Iv - 4u - 6r + L J/4( 2,2)IL - v + 4u + 6rJ/4 

x [4,0]U[6,OnO), 

while for L odd it becomes 

(4.13a) 

In; vL(7r) = [6,3] [2,2](v- 4a- 6r+ L - 91/4 

X ( 2,2 )(L - v+4a+ 6r+ 31/4 [ 4,O]U[ 6,o]rI0), 
(4.13b) 

where for fixed v, L the (7, r are restricted to values for which 
all exponents are nonnegative integers. 

Note that the quantum numbers v, L, and when they 
later appear N, M, are related with irreps of definite groups, 
so that states with different values of these quantum 
numbers are orthogonal. On the other hand (7, r, restricted 
by inequalities coming from the fact that all exponents in 
(4.13) must be nonnegative integers, are multiplicity indices 
related to the chain 0(3n):>&(3)xO(n) when we have the 
irrep v for 0(3n), L for &(3), and (000) for O(n). Thus our set 
of states (4.13) while complete is not orthonormal with re
spect to the indices (7, r though it can be made so in a variety 
of well-known ways. 

We now proceed to consider the states (4.13) when the 
angular momentum L = O. 

v. STATES OF ZERO ANGULAR MOMENTUM 

From Eq. (4.13a) we see that when L = 0 we have the 
kets 

In; vO(7r) = [4,O]U[6,OnO), 

where 

(5.1) 

4(7 + 6r = v, (5.2) 

with v being the irrep of 0(3n) while (7, r are nonnegative 
integers. Thus from (5.2) we see that for a fixed value of v we 
have a finite number of states with L = O. 

We also observe that from (3. lOa) and (3.12) the kets 
(5.1) can be written as 

In; vO(7r) = LA~(2,0)(VI21-2s-3t(4,0)S(6,0)tI0), (5.3) 
s.t 

as each monomial in the polynomial has L = 0 and the coef
ficients A ';/ can be chosen so that the states correspond to the 
irrep v of 0(3n) which implies that 

li In; vO(7r) = O. (5.4) 

Note that as all exponents in (5.3) must be nonnegative the s,t 
are restricted to nonnegative integers satisfying 

4s + 6t.;;;;v. (5.5) 

From Dragt's theorem9
•
18 we can, as indicated in (4.10), 

write the state (5.3) in configuration space as 
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X L A ~!2,01(vI21-2s- 3t! 4,0IS! 6,01te _p2/2, 
s,t 

(5.6) 
where! v, L I are the epd (v, L ) in (3.9), (3.11) in which we 
replaced B ~, lit by qm' q of (2.17) so that 

P,OI =p2, 

! 4,01 = jp4b 2 = jp4(1- x), 

! 6,0 I = - (4/3Y3' )p6b 3 cos 3c 

= - (2/3Y3' )p6(y - 3x + 2). 

(5.7a) 

(5.7b) 

(5.7c) 

In (5.7) we also wrote! v, L I in terms of the variablesx,y 
defined by 

x = 1 - b 2
, 

Y = 1 - 3b 2 + 2b 3 cos 3c. 

(5.8a) 

(5.8b) 

We can now substitute in the ket (5.6) the (7, rrelated by 
(5.2), by a single multiplicity indexJt to denote the state as 

In; vJt I = 1T- 3n/4r12pve -p2/2PVfL (x, y), (5.9) 

where the polynomial P has the form 

PVfL (x, y) = LA ;;xSyt, (5.10) 
s,t 

in which theA ;; are of course different from A ~ in (5.6), but 
the s,t are still restricted by the inequality (5.5). 

We note that the ket(5.6) [or equivalently (5.9)] is an 
eigenstate of the operator X'2 of (2.11) with eigenvalue 
(2.13). As this ket has L = 0 the matrix elements of the oper
ators L le2 with respect to it vanish so that we can replace X'2 
by X'6 defined by (2.11) but now without the last term that 
depends on L le2• As X'6 is a function of b, c and their deriva
tives it acts only on the P VfL (x, y) appearing in (5.9), so that the 
polynomial must satisfy 

X'6PVfL (x, y) = v(v + 3n - 2)PVfL(X,y), (5.11) 

where from (2.11) and (5.8) we can write 

~ X'6 = (8x2 
- 6x - 2y)~ 

2 ax2 

a2 a2 

+ 18y(y-x)-2 +24y(x-l)--ay axJy 
a 

+ [(6n + 4}x - (6n - 6)]-ax 
a 

+ [(9n + 12lY - 9(n - 2}x] -. (5.12) ay 
Ifwe take the explicit polynomial expression (5.10) for 

PvfL(x, y) we get, from (5.11) and (5.12), the following relation 
between the coefficients: 

A VfL = (4s + 6t - v)(v + 3n - 2 + 4s + 6t) A ;; 
s-l,t+1 18(t+l)(n-2+2t) 

2(s + 1 )(s + 4t + n - 1) A VfL 
- s+ l,t 

3(t + l)(n + 2t - 2) 

2(s + l)(s + 2) A VfL . (5.13) 
9(t + l)(n + 2t - 2) s+2,t-1 

Iffor a fixed v we denote by dv the number ofnonnega
tive integer values of s,t that satisfy the inequalities (5.5), we 
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see that this is the number of coefficients A ;r we have to 
consider and for which from (5.13) we have a homogeneous 
system of dv linear equations. Ifthe determinant of this sys
tem of equations is different from zero, i.e., if its rank, v is 
equal to dv ' then there are no states of L = 0 for the given v. 
If the determinant is zero and of rank 'v, then d ... -' ... will 
give the number of independent solutions for the coefficients 
A ;r, which we can distinguish by giving to p, the values 

p, = 1,2, ... , d v -'v' (5.14) 

We arrive then at the conclusion that to determine the 
states (5.9) of angular momentum L = 0, all we need is to 
solve the system of linear equations (5.13) in which s,t are 
nonnegative integers restricted by (5.5). Furthermore we 
note that the states of L = 0 corresponding to a given v are 
also given by (5.1) in which (T, 7 satisfy (5.2). Thus dv - 'v is 
equal to the number of pairs of nonnegative integers ((T, 7) for 
which 4u + 67 = V so that, for example, if v = 18, 
((T, 7) = (0,3),(3,1) and in this case the number of independent 
solutions of the set of linear equation (5.13) is 2. 

In Fig. 2 we indicate graphically how the coefficients 
A ~tV are related, which may provide ladder procedures for 
computational programs. 

The states In; vp, J are not orthonormal in the indexp" 
so we would have to compute the scalar product 
(n; vp,ln; vp,' J to find linear combinations of In; vp, J with 
that property. If our states with L = 0 had been given in 
terms of the variablesp, b, e as in (2.14), the scalar products 
would require the volume element in those variables which 
has the form 

p3n ~ 1 dp(l _ 3b 2 + 2b 3 cos 3e)(n - 4)12b 4 db sin 3e de. 
(5.15) 

with b, e restricted to the lined triangle in Fig 1. On the other 
hand if we use the variablesp, x, y as in (5.9), then from (5.8) 
the volume element becomes 

p3n - 1 dp in - 4)12 dx dy . (5.16) 

We have to be careful though with the domain of integration 
which is drawn in Fig. 3. The upper line of the triangle in Fig. 
1 corresponds to the line withy = 0 in Fig. 3, while the lines 
with e = 0, 11'/3 in Fig. 1 correspond to the upper and lower 
curved lines in Fig. 3 whose equations are given by 

y=u±. u± =3x-2±2(1-x)3/2. (5.17) 

t 

s 
FIG. 2. The figure shows diagramatically how the coefficients A" of (5.13) 
are connected. Each block has the values (s,t) of the coefficient with which it 
is related and only those associated with the blocks drawn are connected 
with coefficients appearing in (5.13). 
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y 

1 ----------------------------------------- A 

B c 
o 3/4 x 
FIG. 3. The lined triangle of Fig. I, to which allowed values of b, care 
restricted, becomes the lined part of Fig. 3 in which the variables are 
x = 1 - b 2,y = I - 3b 2 + 2b 3 cos 3c. Thecurveslimitingtheregionarethe 
u ± of (5.17), while the points A, B, and C of Fig. 3 are the images of the 
points A, B, and C of Fig. I. 

Thus the relevant integrals for our scalar product take the 
form 

{3/4 {"+ Jo Jo P VI-" (x, yjP VI-' (x, y) yIn - 4)/2 dy dx 

i l i"+ + P vI-" (x, y)P vI-' (x, y) in - 4)/2 dy dx , 
314 "_ 

(5.18) 

and they can be evaluated in an elementary fashion once the 
A ;r of the polynomials PVI-' (x, y) of (5.10) have been deter
mined. 

Having obtained an algorithm for deriving the states 
characterized by irreps in the chain (2.15) when L = 0, we 
now tum our attention to the problem of arbitrary L. 

VI. STATES OF ARBITRARY ANGULAR MOMENTUM 
AND MATRIX ELEMENTS OF THE GENERATORS OF 
Sp(6) 

We start our discussion by considering the states with L 
even given by (4.13a). We replace in them the part of the type 
(5.1) of angular momentum zero, with the type (5.3) but now 
defined along the lines (5.7)-( 5.10). We then have that we can 
write the state of L even as 

In; VLA,u) = [2,2](v-HL)l4( 2,2)(-v+..t+L)l4p;.1-' 10), 
(6.1) 

where 

P = ~ A ;'1-'(2 0)(;'/2) - 2s - 3t (4 0)S(6 O)t 
.AI-' ~ st , " , (6.2) 

s,t 

with the coefficients A :r obtained from theA:r in (5.9) and 
(5.10) when we replace v by A and p2, x, y by 
{2,0 J, {4,0 J, (6,0 J through the relations (5.7). We already 
indicated in Sec. V the system of linear algebraic equations 
(5.13) that theA:r satisfy, from which we get d;. -';. inde
pendent sets of coefficients characterized by 
,u = 1,2, ... , d;. -';" Thus theA;r appearing in (6.2) are well 
defined, with the even A restricted by the condition that for 
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fixed even v, L the exponents in (6.1) should be nonnegative 
integers. 

We now notice that [2,2] = P 1 is given by (4.7b) when 
m = 2. We see from (3.2) thatB!, (2,0) =Bt are quadratic 
expressions in the creation operators TJ is' while B2 is quadrat
ic in the annihilation operators Sis' and N, Q2 are mixed, i.e., 
one annihilation and one creation operator. The traceless 
boson operator [2,2] appears in (6.1) to a certain power and 
so it would be convenient to expand it in normal form so that 
powers of B 1, (2,0), N,92, B2 appear in this order where the 
actual dependence on N is more complicated than that of a 
power. This type of ordering is entirely similar to the one for 
powers of the traceless boson operator a~ that was given in 
Eq. (5.5) of Ref. 9 for the Bohr-Mottelson vibrational Hamil
tonian. Using then the binomial theorem for powers of PI 
and the commutation relations between the generators (3.2) 
ofSp(6) one can write 

u 2u - 2v 

[2,2]U = L L (2,2)"(2,0)W 
v=Ow=u-v 

X R ~w(N)Q~U-2"-W( 2,2)"+w-u, (6.3) 

with v, w restricted by the fact that all exponents have to be 
nonnegative integers. 

We note from (4.7b) that for u = 1 the only terms 
R ~w(N) that we have are 

1 A 1 A A 1 
R 10(N) = 1, R 01 (N) = - 2(2N + 3n)- , 

R b2 = [(2N + 3n + 4)(2N + 3n + 2)] -I. (6.4) 

Furthermore in the Appendix we derive the recursion rela
tion connecting 

R ~,;j I(N) with R ~w(N), (6.5) 

so from (6.4) and (6.5) we have an algorithm to derive all the 
R ~w (N) that we require. 

We note now that in (6.2) we need to apply powers of 

[2,2] and ( 2,2) toP).p.IO). From (6.3) this implies that we 

have first to discuss the effect of ( 2,2) and Q2 on P).p.IO) as 
powers of (2,2), (2,0) have a purely multiplicative action. To 
find this effect it is very convenient to write the epd (v, L ) as 

well as the operators ( 2,2), Q2 in terms of creation and anni
hilation opertors in spherical rather than Cartesian compo
nents, i.e., 

TJ ± Is = += (1Iv1 )(TJIs ± iTJ2s)' TJos = TJ3s , (6.6a) 

ss±l= +=(1Iv1)(5ls+iS2S)' S?=S3S' (6,6b) 

which have the commutation relations [S~, TJq's' ] = 8:,8ss' 

so that S ~ acts as a / aTJ qs' Furthermore, lowering the index q 
implies 

Sqs = ( - )qs s- q , (6.7) 

and we shall use the scalar product notation 
n 

(11q ° 11q') = L TJqs TJq's . (6.8) 
s= I 

We now introduce instead of the round bracket epd 
(v, L) of(3.9), the angular ones (v, L) that will be functions 
ofthem and which will have a simpler form in terms of the 
scalar products (6.8) so as to get 
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(2,2) = (2,2) = (111 °11d, (6.9a) 

(2,0) = (2,0) = - 2(111 °11-1) + (110 °110), (6.9b) 

(4,2) = (1I2v1 )(4,2) + j (2,2)(2,0) 

= (111 °111)(110 °110) - (111 °110)2, (6.9c) 

(4,0) =! (4,0) - j (2,0)2 = 2(111 °11-1)(110 °110) 

+ (111 °111)(11-1 °11-1) - (111 °11_1)2 

- 2(111 °110)(110 °11- d, (6.9d) 

(6,0) = (1I6v1 )(6,0) + t, (2,0)(4,0) - f, (2,0)3 

= L L L €qq'q" (111 ° 11q )(110 ° 11q' )(11-1 ° 11q" ), 
q q' q" 

(6.ge) 

(6,3) = - (11~ )(6,3) 

= (111 °110)[(111 °111)(110 °110) - (111 °110)2] 

- (111 °111)[(111 °111)(11-1 "110) 

(6.9f) 

On the other hand the operators ( 2,2) and Q2 that act 
on the epd (v, L ) have the form 

n a2 
(2.2)=(SloSd=(S-lo S-I)-+ L -2-' (6. lOa) 

s= I aTJ _ Is 

Q2 = (111 ° sd = - (111 ° £;-1) -+ - ± TJIs ~, 
s = I TJ - Is 

(6. lOb) 
with the arrows indicating that when these operators act on a 
state P (TJ qs) 10) we can apply the differential expressions to 
P(TJqs) and then the resulting polynomial to 10). 

We note from (6.10) that the operators Q2 and (2.2) 
commute and furthermore from (6.9a) and (6.9c) that 

[( 2,2),(2,2)] = 0, 

[( 2,2), (4,2)] = 0, 

[Q2,(2,2)] = 0, 

[Q2,(4,2)] = o. 

(6.11a) 

(6.11b) 

(6.11c) 

(6.11d) 

To see then what is the effect oft 2,2) and Q2 on P).p.IO) we 
need to evaluate the action of these operators on products of 
powers of (2,2), (4,0), and (6,0) or, from (6.9), on those of 
(2,0), (4,0), and (6,0). From the analysis given in the Ap
pendix we see that 

( 2,2)(2,0),(4,0)S(6,0)' 

= (2,2) (4r(r - 1)(2,0)r- 2(4,0)S(6,0)' 

+ 2s(n + 2s + 4t - 3)(2,0)r(4,0)s-I(6,0)' J 

+ (4,2) (4s(s - 1)(2,0),+ 1(4,0)s-2(6,0)' 

+ t(2n + 4t - 8)(2,0)r(4,0),(6,0)'-1 

- 8rs(2,0)r-I(4,0)S-I(6,0)' J, 
Q2 (2,0)r( 4,0)S( 6,0)' 

= (2,2) 12r (2,0),-1(4,0)S(6,0)' J 

- (4,2) (2s(2,0>'(4,0)S-I(6,0)' J. 

(6.12a) 

(6.12b) 

Note from (6.11) that the application oft 2,2), Q2 to the 
right-hand side of(6.12) can again be calculated with the help 
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of(6.12). Thus we have an algorithm for applying the opera
tor 

[2,2]IV-A + L )/4( 2,2)1 - V+A + L )/4 (6.13) 

to PAIt 10) as required in (6.1) to get a polynomial P (Ii t, B ~) 
function of the epd (6.9) acting on the ground state. By 
Dragt's theorem wecanreplaceB, B ~ byq, qm' thus obtain
ing a polynomial in the epd { v, L J that has to be multiplied 
byexp( - p2/2) as indicated in (5.9). Thus we have a solution 
of the problem for even L in configuration space that can be 
reduced to the form (2.14) by the same steps followed in Sec. 
3 of Ref. 9. 

For odd L we have, as indicated in (4. 13b), the extra 
traceless boson [6,3]. Its effect can be taken into account by a 
procedure entirely parallel to the one followed in Sec. 8 of 
Ref. 9 in the case ofthe Bohr-Mottelson vibrational Hamil
tonian. 

Thus we have an algorithm for deriving the states (2.14), 
i.e., getting the F K (b, c) that appear there. We intend to make 
available in the near future programs that allow us to obtain 
explicit analytic expressions for the F K (b, c) and with their 
help to calculate the matrix elements of the generators q, qm 
ofSp(6) given by (2.17). The other generators ofSp(6) can be 
obtained, as shown in (81), by taking commutators ofq, qm 
with the H of (2.1), so that their matrix elements are immedi
ately available if those ofq, qm are known. 

We have thus a full algorithm for implementing the 
program outlined in paper I of this series when we consider a 
three-dimensional space but restrict ourselves to double 
closed shells for which, from the discussion at the end of Sec. 
I, we have to replace in our results of all the other sections n 
by n + 2w and give to nand cu the values (1.5). 

VII. CONCLUSION 

We have discussed in detail the problem of determining 
the matrix elements of the generators ofSp(6) with respect to 
states characterized by irreps of the chain of subgroups (2.15) 
of this group, when the irrep ofSp(6) is (1.4), i.e., when it 
corresponds to the problem of doubly closed shell nuclei. 
While this problem is physically interesting, it is related in 
the two-dimensional case2 just to the part discussed in Sec. 3 
ofII. The general case of two dimensions, analyzed in Sees. 4 
and 5 of II is much more complex,2 and we can expect that 
the difficulty of the problem will increase considerably when 
we go to three dimensions. 

Several possibilities seems to exist for the extension of 
our analysis to the general irrep (1.1) ofSp(6), i.e., to the case 
of open shells. One could proceed, as in Sec. 4 of II, by find
ing the epd in the chain V(3np &(3)XO(n) of(2.2) but now 
for a general irrep (CUICU2CU3) ofO(n) for states highest weight 
in this group. This procedure is feasible, particularly as it can 
be systematized by the powerful generating function tech
niques developed by Sharp 19 and his collaborators. The pro
cedure may become very laborious though when we replace 
the epd by traceless ones and try to order powers of the latter 
in the normal form as was done in Secs. V and VI of this 
paper. 

Another approach is to follow Filippov,5 Rowe and Ro
sensteeI,7 and others in considering that collective states for 
open shells can be obtained by first determining the Slater 
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determinant for the ground state and applying to it polyno
mials in the collective creation operators of the type (3.10) or 
(4.8). The Slater determinant can be obtained by filling com
pactly the levels of a harmonic oscillator in such a way that 
the intrinsic state corresponds5

•
7 to one of highest weight for 

an irrep [CUICU2CU3] ofV(3). From this state we can project out5 

ones of definite angular momentum L " and projection M " 
that can be denoted by the ket 

1;1~~3,,), (7.1) 

where n is the multiplicity index20 that distinguishes 
between repeated irrep L " of &(3) in the irrep [CU I CU2CU3] of 
V(3). 

From the way the ket (7.1) was constructed it is clear 
that whenB of(4.3) is applied to this ket it vanishes, as other
wise we would have a state of two quanta less that satisfies 
the Pauli principle. Thus (7.1) is the lowest weight state of an 
irrep ~ (CUI + CU2 + CU3) + (3nI4) ofSp(2) as can be seen from 
the eigenvalue of the weight operator 13 in (141). From (2.4) 
the corresponding irrep ofO(3n) is (CUI + CU2 + cu3)· 

We can now define the ket 

I [; + CU3, ; + CU2, ; + CUI]; Nvu'TLM; nL'L ") 

_ IN-V)/2[p pt ) ICU I CU2CU
3
)] = (2,0) wrrL'( m nL" LM' 

(7.2) 

where the square bracket indicates the coupling of the angu
lar momenta L ' ,L " to L and the polynomial P ( P ~ ) given by 
(4.8) is function of traceless boson operators. It is clear that B 
of(4.3) when applied to the square bracket part in the right
hand side of(7.2) vanishes as, from the discussion of Sec. 4 in 
Ref. 8, B commutes with P and, as indicated above, when 
acting on the state (7.1) it vanishes. Thus the square bracket 
in (7.2) is characterized by the irreps L of &(3), v ofO(3n), 
and (CU 1CU2CU3) ofO(n). The latter comes from the fact that the 
state (7.1) corresponds to the irrep [CU ICU2CU 3] ofV(3) and thus 
to the same one ofV(n), and, as the levels are compactly 
filled,7 to the irrep (CU 1CU2CU3) ofO(n). 

These results imply that the ket (7.2) is characterized by 
the irrep (1.1) ofSp(6) as indicated by the first square bracket 
in it as well as by the L of &(3), M of &(2), and A ofSp(2), 
where A is related to v by (2.4). The irrep N of the subgroup 
0(2) ofSp(2) is achieved with the factor (2,0)IN - v)/2 in (7.2) as 
(2,0) is the raising operator ofSp(2), which is a scalar ofO(3n) 
and thus does not change the irrep v of this group. The 
u, 'T, n, L " L " appearing in the ket are the five multiplicity 
indices required to characterize the state as was indicated in 
the discussion following (291). 

While in principle we have in (7.2) the basis states for the 
general irrep (1.1) ofSp(6) characterized by the irreps of the 
subgroups in the chain (2.15), in practice it is difficult to 
translate this state from traceless bosons to ordinary bosons 
acting on definite kets of type (7.1) and even more so to get 
the states as definite wave functions in configuration space. 
Thus scalar products ofkets ofthe type (7.2) or matrix ele
ments of the generators of Sp( 6) with respect to these kets, 
still present serious problems which we hope to solve in fu
ture publications. 
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APPENDIX: PROOF OF EQS. (6.3) AND (6.12) 

In the first part of this Appendix we shall determine the 
explicit form of R ~w(N) appearing in Eq. (6.3), i.e., 

(Pit = L L (B i)"(2,OtR ~w(N)(Q2fu-2V- W(B2) v + w- u , 
v w 

(AI) 
where 

pi =BI - 2(2,0)(2N + 3n)-IQ2 

+ (2,0)2(2N + 3n + 4)-1(2N + 3n + 2)-IB2 

(A2) 

and the other variables entering in (A 1) were defined in (3.7), 
(3.11), and after (4.7b). Multiplying (AI) by (A2) we obtain 

(Pit+ 1 =SI +S2 +S3' (A3) 

with 

SI = L (BIr+ 1(2,0)WR ~w(N)(Q2)2U-2V-W(B2)v+w-u, 
vw 

(A4) 

VW 

X R ~w(N)(Q2fu-2V- W(B2)v+w- u, (AS) 

S3 = L (2,0)2(2N + 3n + 4)-1(2N + 3n + 2)-1 
vw 

X B2(B i )V(2,Ot R ~w (N )(Q2)2u - 2v - W(B2l" + w - u . 
(A6) 

The sum SI has already all its factors in standard order 
as in the right side of (AI). On the other hand, inS2 andS3 we 
have to do some transpositions to put the factors in the stan
dard order ofEq. (AI). For doing these exchanges of factors 
we need some commutators, given in the following list: 

[Q2' B n = [Q2' N] = 0, 

[Q2,(2,0)W] = 2wB i (2,0)W - 1 , 

[B2,B!] = [B2, Q2] = 0, 
(A7) 

[B2,(2,Ot] = 4w(2,Ot- 1Q2 + 4w(w - 1)B i(2,Ot- 2. 

We use also the relations given in Eq. (4.6). In this way we 
arrive at 

VW 

- L 4w(BI)v+ 1 (2,0)W(2N + 3n + 4v + 4W)-1 
VW 

(AS) 

and 

S3 = L (2,0)w+2(Bi)V(2N + 3n + 4v + 4w + 4)-1(2N + 3n + 4v + 4w + 2)-IR ~w(N + 2)(Q2)2u-2v-W(B2)v+w- u+ I 

VW 

VW 

VW 

X R ~W(N)(Q2)2U -2v- W(B2)" + w- u . (A9) 

Substituting (A4), (AS), and (A9) on the right side of(A3) we obtain, after some changes of dummy indices, 

(Pi)U + 1 = L (B I )V(2,0)WR ~w+ I(N)(Q2)2U - 2v- w+ 2(B2)V + W - U - I, (AW) 

with 

R~w+I(N) 

VW 

A A A A A 

= (2N + 3n + 4v + 4w - 4)-1(2N + 3n + 4v + 4w - 6)-I{R ~.w_2(N + 2) - 2(2N + 3n + 4v + 2w - 4)R ~.w- dN) 
A A A 

+ (2N + 3n + 4v + 2w - 4)(2N + 3n + 4v + 2w - 6)R ~-I.w(N)} . (All) 

The solution to this recurrence relation is found to be 

22u - 2v - W( _ )Wu'(2N + 3n + 4v + 2w - 4)!! 
R U (N)= . 

vw v!(v _ u + w)!(2u - 2v - w)!(2N + 3n + 4v + 4w - 4)!! 
(A12) 

We tum now to the proof ofEqs (6.12a) and (6.l2b). Let 
us start with the second one. In this case all we need to know 
is that - Q2 == C(f 1- 1 and 

[<6'I-I,(4,0)S] =2s(4,0)s-I(4,2), [C(f1-t,(6,0)] =0. 
(A13) 
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I 
Then from the linear character of the operator C(f 1- 1 we ob
tain (6.l2b). 

The operator ( 2,2) ~ l:(a 2/ a",2_ Ik) is not linear, so we 
have 

i + (2,0)r(4,0)s(6,0)t 
k=l a"'_lk 

(A14) 
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where the definition of the T's, and their values obtained by 
direct computation, are 

TI = (4,0)S(6,0)1( 2,2 )(2,0)' 

= 41'(r - 1)(2,0)'- 2(4,0)S(6,0)1 (2,2), 

T2 = (2,0)'(6,0)1( 2,2)(4,0)S 

= 2s(n - 3 + 2s)(2,0)'(4,0),-1(6,0)1 (2,2) 

+ 4s(s - 1)(2,0)'+ 1(4,0)S- 2(6,0)1 (4,2), 

T3 = (2,0)'(4,0)S( 2,2)(6,0)1 

= 2t(2t + n - 4)(2,0)'(4,0)S(6,0)1-1(4,2), 

T4 = 2(6,0)1 L (J(2,O)') (J(4,0)S) 
k J"l _ Ik J"l _ Ik 

= - 8rs(2,0)'-1(4,0)S-I(6,0)1 (4,2), 

T5 = 2(4,0)S L (J(2,0)') (J(6,0)1) = 0, 
k J"l _ Ik J"l - Ik 

T6 = 2(2,0)' L (J(4,0)S) (J(6,0)1) 
k J"l_ Ik J"l - Ik 

= 8st (2,0)'(4,0)s-I(6,0)1 (2,2). 

Adding these results we deduce (6. 12a). 
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Application of double Gel'fand polynomials to the symmetric group and spin
isospin wave functions of cluster systems 
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The theory of double Gel'fand polynomials is applied to irreducible representations of the 
symmetric and SU 4 groups with the aim to treat spin-isospin wave functions of nuclear cluster 
systems. Multiplicity-free recoupling coefficients of the symmetric group are connected with 
special types of Clebsch-Gordan coefficients of the unitary group. The standard phase 
conventions of the Yamanouchi basis and of the multiplicity-free recoupling coefficients are 
proved to be derivable from natural phase conventions of double Gel'fand polynomials and these 
special Clebsch-Gordan coefficients. By extending the concept of double Gel'fand polynomials, 
useful expansion formulas are derived with respect to the determinant associated with a matrix 
tensor product. A simple example of their application is given for normalization kernels of two
body systems composed of s-shell clusters and for SU 4 Clebsch-Gordan coefficients in the spin
isospin representation needed therein. 

PACS numbers: 02.20. + b, 21.60.Gx 

I. INTRODUCTION 

The problem of the explicit construction of an irreduci
ble representation (IR) of the unitary groD pUn has a long 
history in which the boson operator technique, first applied 
to the angular-momentum algebra by Schwinger 1 and Barg
mann2 and further developed by Baird and Biedenharn/ 
Moshinsky,4 and many other authors, was proved to be very 
successful in providing convenient basis states of boson poly
nomials with which many group-theoretical quantities have 
been calculated (see Louck5 and references therein). These 
boson polynomials carry two state labels which may be cho
sen as two Gel'fand-Weyl patterns6.7 sharing the same first 
row. In this paper, we refer to these "double tableaux boson 
polynomials" as double Gel'fand (DG) polynomials in con
formity with the usage of other authors. 8 The structure of 
DG polynomials and their remarkable properties have been 
extensively investigated previously.9-15 Thus we can now 
utilize these fruitful results on DG polynomials in the inves
tigation of nuclear many-body problems. In fact, this tech
nique was successfully applied to eigenvalue problems of 
normalization kernels (NK) of many-cluster systems in Ref. 
16, where the SU 3 classification of the orbital wave functions 
was found to be very efficient under the assumption of equal 
width parameters for the harmonic oscillator wave func
tions. 

On the other hand, because of the intimate relation
ship6.17 between the symmetric group SN and the unitary 
group Un' many attempts have been made to utilize the tech
niques developed for the IR theory of the SN group in order 
to discuss DG polynomials, especially, in the context of the 
double-coset theory.13.l8-22 We feel, however, that the oppo-

-) Present address: Department of Physics, University of Michigan, Ann Ar
bor, Michigan 48109-1090. 

site direction, involving applications of many nice properties 
of DG polynomials to the symmetric-group properties of 
nuclear wave functions, has not been fully developed. It was 
pointed out by Moshinsky23 that Gel'fand states with the 
partition of N and the weights restricted to (11 ... 1), referred 
to by him as special Gel'fand (SG) states, constitute the Ya
manouchi basis24 of the SN group. By using this property, 
Moshinsky showed the way to construct explicit states with 
definite permutation symmetry in configuration and spin
isospin spaces. These states are essentially Un XSN (or 
SUn XSN)DGpolynomialsembeddedin Un XUN DGpoly
nomials if we simply choose the canonical chain to specify 
the internal quantum numbers of Un (or SUn). 

The purpose of this paper is to apply the theory of DG 
polynomials to spin-isospin wave functions of many-cluster 
systems. If spin-isospin wave functions of subunit clusters 
are described by simple DG polynomials with definite SU4 
IR labels, the total spin-isospin wave function is obtained by 
coupling these individual spin-isospin wave functions by 
SU4 Clebsch-Gordan (CG) coefficients. This total wave 
function also has the nature of a DG polynomial, since it is 
the simultaneous basis ofIR (BIR) of the SU4 and SN groups 
(N is the nucleon number of the total system). However, the 
internal quantum numbers of the SN group are no longer 
specified in the standard manner. In this respect, it is indis
pensible to refine the theory of DG polynomials such that 
the internal quantum numbers of the SN group are specified 
by direct-product representations of its subgroups. This 
problem of transforming a BIR of the SN group from the 
standard representation to the representation with reduction 
type SN, X SN

2 
(Nl + N2 = N) was solved by Elliott, Hope, 

and Jahn,25 Kaplan,26 Horie,27 and Kramer19 by introducing 
recoupling coefficients of the SN group. 

The discussion of DG polynomials in this paper is al
ways done in the Bargmann space,2 where we can embed 
entirely the boson operator technique and furthermore uti-
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lize many nice properties of integration with the Bargmann 
measureY We follow the notation used in Ref. 15 for DG 
polynomials, since it is particularly convenient for the pur
pose of this paper. In Sec. II special DG (SDG) polynomials 
are defined and applied to the IR theory of the SN group. 
Although all relationships mentioned there are already well 
known, we demonstrate these in order to fix the notation and 
to prepare necessary relationships which will be used in the 
following sections. In Sec. III it is shown by using SDG poly
nomials that multiplicity-free (MF) recoupling coefficients 
of the S N group can be represented by simple types ofMF U" 
CG coefficents. This relationship gives us a new method to 
obtain explicit expressions of the MF recoupling coeffi
cients. Also, one can use this relationship to discuss the 
phase conventions of the S N and U" groups in a unified man
ner. By using the results in Secs. II and III, two types of 
expansion formulas are presented and proved in Sec. IV with 
respect to the determinant associated with a matrix tensor 
product. Modified DG polynomials whose SN internal quan
tum numbers are specified by direct-product representations 
of the subgroups are first introduced in Sec. III and further 
discussed in Sec. IV in a way tailored specifically to the spin
isospin wave functions of many-cluster systems in the SU4 

representation. In Sec. V a simple example for the applica
tion of the second expansion formula is given with respect to 
NK in the generator coordinate method (GCM) of two-clus
ter systems composed of s-shell clusters. The necessary SU4 

CG coefficients to obtain the kernels in spin-isospin repre
sentation are also calculated. Some concluding remarks are 
made in Sec. VI. 

II. SPECIAL DOUBLE GEL'FAND POLYNOMIALS 

Suppose cp~~~)[fJ(R) with n<,N and [f] = [/1'./"] 
are n X N DG polynomials with n X N argument matrix R 
and D ~~)[ fl( G) are representation matrices ofIR ofGL(N;C ) 
with N xN matrix G. As is well known, D ~~)[fl(G) can also 
be represented by N XN DG polynomials by 

DIN)[fl(G) = 1 mIN,N)[fl(G) (2.1) 
r,s N H [I] "r r,s , 

where N H [I] is the normalization constant of doubly high
est-weight states of DG polynomials. In order to call 
cp~~~)[fJ(R) [and also cp ~~N)[fl(G)] special DG (SDG) poly
nomials, we set the following restriction to the partition [f] 
and to the internal quantum numbers rand s of the UNgroup 
specified by Gel'fand pattems23

; 

(a) 11+ ... +1" =N, 

(b) each of the weights of r or s is 1. 
(2.2) 

Under these conditions, cp~~)[fl(R ) form a basis set of the IR 
of the SN group with the partition [f], and the representation 
matrices are given by D ~~)[ fl(~), where Pis the matrix repre
sentation ofthe permutation PESN • 

The content of the above theorem is clearly understood 
by using the square symbol 11. 13.21.22 for the expansion coeffi
cients of DG polynomials in a power series. We expand an 
n X m DG polynomial as 
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cp ~~:)[fJ(R) = ~ [; ~] ~ , (2.3) 

where the summation over k ==(kij) (i = I-n,j = 1-m) is 
only for non-negative integers satisfying 

" L kij = wj ' j = 1-m, 
;=1 

(2.4) 
m 

L kij =w;, i= I-n, 
j=1 

with (wI"'wm ) and (w; ",w~) being weights of b and a, respec
tively. We use the shorthand notation 

(2.5) 

for the repeated products of matrix variables. For [f] and r 
satisfying the condition (2.2), one can easily prove for s 
uniquely determined by P that 

cp ~~N)[fl(P) = Da.sCP ~~N)[fl(P) 

= Da•s [: ;]. (2.6) 

This means that the left side ofEq. (2.6) is nonzero only when 
each of the weights of a is also one. Thus, if we use the trans
formation formula of DG polynomials [Eq. (2.3.20) of Ref. 

"'-
IS], we get, for an arbitrary PESN and a, 

Pcp ~~~)[fJ(R ) = cp ~~I[fl(RP) 

The irreducibility of the representation ofEq. (2.7) is the 
consequence of the orthonormality l5 of SDG polynomials; 
namely, we have 

(cp ~~N)[fl(R )Icp ~';y)[f'l(R) = D[f],[[' A.rDs.s" (2.8) 

where [f], [f'], r, r',s, ands' all satisfy the condition (2.2). To 
show this, we only need to notice that for SDG polynomials 
the summation matrix k = (kij) in Eq. (2.3) has an exact one
to-one correspondence to the representation matrix P of S N 

because of the weight conditions [Eq. (2.4)]. Therefore, we 
can write 

cp~~N)[fl(R) = ~J~ ;] R P 

=NH[f] 2:D~~)[fl(P)RP, (2.9) 
PESN 

where the last expression is derived from Eq. (2.1) and the 
second equality in Eq. (2.6). One substitutes Eq. (2.9) into Eq. 
(2.8) and performs the Bargmann integral2 over df.L(R ). By 
using P -I = tp and the transposition propertyl5 of DG 
polynomials, Eq. (2.8) is rewritten into 

~ DIN)[fl(p)DW)[f'l(P- I ) 
~ r,S s,T' 
PESN 

(2.10) 

Equation (2.10) is nothing but the first orthogonality rela
tion28 ofIR matrices of the SN group. Thus one can see that 
the representation in Eq. (2.7) is actually irreducible and also 
obtain the following simple relationship21.22,29 between the 
normalization constant N H [ /1··1"] of the doubly highest-
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weight state of DG polynomials and the dimension for
mula28 IfisN of the IR of SN with the partition 
[f]= [fl··ln]: 

2 IflSN 
(N H [ fl··ln ]) = ~ , for fl + .. , + fn = N. (2.11) 

It is well known that the Gel'fand pattern r with each 
weight one has a one-to-one correspondence to the Yaman
ouchi symbol24 I rZ .. ·rN for the standard scheme to specify 
BIR of the S N group, which is based on the canonical chain 

SN :)SN_I :)",:)S2:)SI' (2.12) 

Therefore, we will write hereafter 

(2.13) 

for the internal quantum numbers of DG polynomials with 
the condition (b) in Eq. (2.2). We follow Moshinsky's nota
tion in Ref. 23 for the order of I, rZ, ... ,rN. Furthermore, the 
number rN in Eq. (2.13) is, in fact, superfluous. However, 
we sometimes include it for convenience. Ifwe write r = rip 
for Eq. (2.13) with r' = I r2 .. ·rN_ m, then 
p = rN _ m + I rN _ m + 2 ... rN·26 We also use the shorthand no
tation [rj] (j = 1-N) to specify the Young partition con
structed from 1 rz .. ·rj , so that [rN ] = [fl. The betweenness 
condition of Gel'fand patterns precisely corresponds to the 
condition that [rj ] (j = 1-N) should be all standard. Using 
these notations, BIR of the SN group in Eq. (2.7) has the 
following vector coupling expression by Un CG coefficients: 

f{J ~~)[fl(R ) 

= [,,,[[U[I J(RI)U[I J(R2)hrz]U[1 J(R3)] [r31 (2.14) 

,,·V[I J(RN )] [fla' 

where R = (RI .. ·RN) is an nXNmatrix and V[A JA(R) is the 
monomial basis of an n-dimensional vector R with degree 
A = AI + ... + An [see Eqs. (2.2.4) and (2.2.1) of Ref. 15)]. 

For later discussion, we further introduce the following 
widely used notation. 28 Let (ri.!(ri )) be the row and the col
umn of the box in a Young tableau r occupied by the number 
i (i = I-N). To any two numbers i and}, one can define an 
axial distance 

1'"ij =f(ri) - f(rj ) + rj - ri , 

and a relative phase 

E .. = {+ I, ri<rj , 
fj - I, ri > rj • 

The phase of Young tableau r is defined by 

(-1)'= HEij' 
I<} 

i.jEr 

(2.15) 

(2.16) 

(2.17) 

The associate representation (AR) Lf] of the SN group and its 
internal quantum number r are obtained from [f] and r, re
spectively, by the interchange of rows and columns. For an 
arbitrary Young tableau r with the partition [f] = [fl .. ln ] 
of N, one can easily provel9 

Pf==( - I)'+r Pi = IT (- ly,Jv-f,,(fv+ 1)12. (2.18) 
l=/-L<v 

In the next section, we will show a method to derive the 
following well-known formulaz4 for the matrix elements of 
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the transposition P N _ I,N of the last two particles, using the 
MF recoupling coefficients of the SN group: 

P (nN)[fl (R) 
N - I,Nf{J a,r'rN _ I.TN 

1 (nN)[fl (R) f{J a,rrN _ l,rN 
1'"N,N_1 

+ ,r-1-_-(-:---1 ~)-=-2 f{J ~;Y);,t; _ I (R ), 
-V 1'"N.N_1 

(2.19) 

where r' = I r2· .. rN_ 2. Vsing Eqs. (2.19), (2.7), and (2.15), 
one can directly prove 

D~)[iJ(p ) = _ (_ I)T+sD(N)[fJ(p ) 
rs N-I,N T.S N-I,N' (2.20) 

or more generallyl9 

D~~)[iJ(p) = op( - 1)'+sD~~)[fJ(P), 'tfPESN, (2.21) 

where op is the sign ofthe permutation P. 

III. MULTIPLICITY-FREE RECOUPLING COEFFICIENTS 
OF THE SYMMETRIC GROUP 

In order to define recoupling coefficients of the SN 
group, we modify the SDG polynomials in Eq. (2.14) such 
that the internal quantum number r = I r2 .. ·rN is specified 
by direct-product representation of the subgroup 

SN_m XSm CSN· (3.1) 

We adopt the canonical chain Eq. (2.12) for each ofSN_ m 
and Sm , and take the Yamanouchi symbol r' ofS N _ m so as to 
specify the partition of the first N - m particles of SN at the 
same time; namely, r = r'p with r' = I r2 • .. rN _ m and 
p = r N _ m + I .. ·r N' Then modified DG (MDG) polynomials 
with SN internal quantum numbers specified in Eq. (3.1) are 
defined by the following vector coupling expression with V n 

CG coefficients: 

ip ~~~U(~l (R ) 

= [ [."[V[I J(RtlV[I J(R2)] [rzl 

",V[IJ(RN-m)][rJ 

X [ ... [V[I J(RN _ m + I )V[I J(RN- m + 2)] [uzl 

,,,V[I J(RN )] [u d [fJa;1' , (3.2) 

where u = I u2 .. ·um is the Yamanouchi symbol of Sm and 
[r'] = [r N _ m ]. Here J-l is a multiplicity label to specify the 
Un coupling [r'] X [u]~[f]. We omit this label if we treat MF 
cases, i.e., u = I 1 .. ·1, [u] = [m] or u = 1 2"'m, [u] = [1m]. 
Furthermore, [f] = [fl .. ln] with fl + ... + fn = N. With 
Eq. (2.14), Eq. (3.2) is compactly expressed as 

ip ~~~U(~l(R ) = L ([r']b [u]cl [j]a;.u)n 
h.c 

Xf{J ~-: - m)[rJ(RI .. ·RN _ m) 

Xf{J ~~:)[uJ(RN_ m+ I· .. RN), (3.3) 

where ( .. ·1",) n denotes a V n CG coefficient. The recoupling 
coefficients are defined to be transformation matrices for the 
unitary transformation between two different sets of BIR in 
Eqs. (3.3) and (2.14). Vsing Horie's notation,27 we define 
them by 
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qi~~~~\~I(R) = I (r'plr',u(Il)q?~~~j[f1(R), (3.4) I(r'p'lr',[lmJ) 
p 

and 

q?~~~j[fl(R) = I (r',u(Il)Ir'p)qi~~~\~I(R). (3.5) 
u( p) 

We should note that the r' -dependence in the recoupling co
efficients is in fact only in [r']. Furthermore, if we only treat 
MF recoupling coefficients, we can consider them as real, 
since the Un CG coefficient in Eq. (3.3) becomes real. There
fore, we have 

(r',ulr'p) = (r'plr',u), for u = em] or [1m]. (3.6) 

Using the properties ofSDG polynomials, we can prove 
the following proposition with respect to the MF recoupling 
coefficients. 30 

Proposition: 

/mf II:"=N_m + I ([r"_1 ]H [l]r,. I [r;]H)n 

for l..;rN_ m+ 1 <···<rN";n. 

(b) (r'plr',[m)) 

=0EQ \j-----;! 
([r'}H [m]AI [r]H)n 

(3.7) 

(3.8) 

Here [rN_ m] = [r']=[q] = [q\···qn] and [rN] 
= [r] = [f] = [JI··1n] are both Un partitions and 

A = (AI···A n) (AI + ... +An = m) with Ap =Jp - qp 
(Il = 1-n). Also, H denotes the highest weight of Un. Fur
thermore. r,. is defined by [cf. Eq. (2.2.2) of Ref. 15] 

f,.=(O .. ·OIO ... O) 

-ri 

o .... . 
O· .... . 

o 0 
o 0 

o 

Proof: (a) WecombineEqs. (3.3) and (3.4) and set [uJ = [1m] 
and a =H. We multiply q?~~-m)["'J(Rl· .. RN_m)· on both 
sides and integrate over the Bargmann measure 
dll(Rtl··-a'Il(RN _ m). Then, using Eq. (2.14) and changing p 
into p' = r;'" _ m + I • .. r;"'. we obtain 
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p' 

x I ... I ([r']H[I]u l l[r;"'_m+d.8l)n 
al···am f31··_fJ"., - I 

X <[r;"'_m+ I ].81 [1]u21 [1.:;"'-m+2 ].82)n 

... ( [rN_I ].8m-1 [I]um 1 [r]H)n 

= I ([r']H [lm]cl[r]H)n 
c 

X (nm)[lml(R R ) q? c.1 2···m N - m + I ••• N, (3.10) 

where the p' sum is over r;'" _ m + I .···,r;.., under the condition 
[r;"'] = [r]. From the conservation of the weights, c in Eq. 
(3.10) should have the weights (A I···A n ) and also 

A = {I, for Il = rN _ m + 1,···,rN , 

p 0, otherwise. 
(3.11) 

This means that under the IR label [ 1 m] the weight vector A 
completely specifies the Un internal quantum number c. 
Therefore we can set uniquely c = A in Eq. (3.10). It also 
means that the summation over a I···a m on the left-hand side 
of Eq. (3.10) is just the permutation of rN _ m + 1 .. ·rN and. 
similarly, is the summation over r;'" _ m + I • .. r;.., since 
[r;"'] = [r]. We change RN _ m + I-RI' ...• RN-Rm in Eq. 
(3.10) and use 

I 
= - detlR · .. R J (3 12) r=t 'N-m + ,.1 'N.m ' • 

v m! 

which is easily proved by the back-side vector coupling 

expressionl5 of q? ~:;pml(R). Then, multiplying by 
R ~ I ···R ~ m and integrating over 

N-rn+ I' N' 

dll(R'N_ m+ ,.1 ) ... dll(R'N.m). we obtain 

I(r'p'lr',[ 1m]) 
p' 

X I ([r']H[I]rN_ m + l l[r;"'_m+d.8l)n 
{3,···{3m _ , 

X <[r;"'_ m + 1].81 [1 ]rN _ m +21 [r;"'_ m + 2 ].82)n 

... <[r;"'_1 ].8m -1 [l]rNI [r]H)n 

= (l//mf)([r']H [lm]AI [r]H)n' (3.13) 

Let us consider ([r']H [1}rN _ m+ II [r;"'_m+ I ].8I)n 
on the left-hand side of Eq. (3.13). If we set [r'] = [q], the 
possible form of the Gel'fand pattern .81 is, for some 
j..;rN _ m + l • 
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qj + 1 . . . . . . . . . . .. 

qrN -m+'_ rN _ m + 1 

'. qrN_ m 

from the conservation of the weights and the betweenness 
condition for the coupling [q ]HX [ 1 ] rN _ m + l' However, 
we should have (q!" •• qj + 1 ... ] = [rN-m+1], so that 
j = rN_ m + 1 <,rN_ m + l' Noting that the rN_ m + 1 · .. rN are 
just the permutation of r N _ m + 1 · .. r N and that r N _ m + 1 is the 
smallest value among rN - m + 1 .. ·rN , we can conclude that 
the summation over rN_ m + I in Eq. (3.13) is only for 
rN _ m + I = r N _ m + I and /31 = H. Repeating this process, 
we obtain rN- m+ 2 =rN- m+ 2, 132=H, ... ,rN_\ =rN_\, 
and 13m _ I = H in sequence. This completes the proof ofEq. 
(3.7). 

The proof of (b) is also made in a similar manner as in (a). 
There we need 

pansion 

L C([g2]'" (gm] ;a) [ ... [U[I](RI)U[I](R2)] [8,] 

[8']"'[8m)a 

(3.16) 

(3.14) 

/ 
Then, Eq. (3.15) is calculated as c([2]-.. [m];A). Let us put 
R1 = R2 = ... = Rm = R in Eq. (3.16) and use the formula 

[U [N1)(R)U [N2 )(R)] [8]a 

(3.17) 

Then only [g2J = [2J,· .. , [gm ] = [mJ survive for the sum in 
Eq.(3.16) and we obtain 

R 1'R ~2 ... R:" = Lc([2] ... [m];a)f,nfU[m)a (R). 
a 

Comparing the weights, we know that a = A only and the 
explicit expression 15 ofU [m]A (R) gives us the right-hand side 
ofEq. (3.15) forc([2] ... [m];A). 0 

This proposition has very fruitful contents as will be 
seen in the following applications. 

A. Application to <" pi" ,[m]) 

One can obtain an explicit expression of these MF re
coupling coefficients by using the explicit expression of 
< [q]H [A ]AI [f]H) n' This special Un CG coefficient is 
given in Eq. (2.2.11) of Ref. 15 and is 

q ql ... qn]H [A ]AI [/1 .. in]H)n = { IT (~- Iv + v - Jl)(~ -Iv + v - Jl - 1) .. ·(qlL -Iv + v - Jl) } 112 (3.18) 
V>IL= I (f1L - qv + V - Jl)(f1L - qv + V - Jl- 1)· .. (qlL - qv + V - Jl) 

Using Eqs. (3.18) and (3.8), we first calculate (r'plr',[m])1 
(r'plr',[m - 1]) with P = prN, which can be conveniently 
represented by using 7 ij in Eq. (2.15). From this recursion 
relation, we obtain the well-known resule? 

{
IN ( 1 )} 1/2 

(r'plr',[m]) = --;:;;T i>j=l!m+l 1 + tij , 
(3.19) 

for l<,rN_ m + I <, ... <,rN<,n. In order to remove this restric
tion on rN _ m + I .. ·rN, we first prove Eq. (2.19) by using the 
m = 2 case ofEq. (3.19). This can be done by using the rela
tionships 

A 

(r'rN_IrNIPN_I,Nlr'rN_\rN) = 2(r'rN_ 1rNlr',[2])2 - 1, 
(3.20) 
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I 
and 

(r'rNrN_IIPN_I,Nlr'rN_\rN) 

= 2(r'rNrN_llr',[2])(r'rN_lrN!r',[2]), 

for rN_1=!=rN, (3.21) 

which are derived from the completeness of Ir',[2]) and 
Ir',[11]), and the orthonormality of the recoupling coeffi
cients. If we further use the fact that the quantity on the left 
side of Eq.(3.21) is always positive (see Sec. III C about the 
phase convention), we can prove Eq. (2.19) and that Eq. 
(3.19) for the m = 2 case is true even ifrN _ 1 > rN. The use of 
induction employing Eq. (2.19) makes it possible to prove 
that Eq. (3.19) is true for any arbitrary order of magnitudes 
ofrN _ m + \ ,,·rN • 
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B. Application to (r'plr',[1m]) 

The next relationship between the two types of MF re
couplinl! coefficients is easily proved by operating 
A ",";RA A 

P = P1P2(P1ESN _ m ,P2ESm ) on Eq. (3.5) and using Eq. 
(2.21)19; 

(r',[ 1m] Ir'p) 

= K([r'] [m];[r])( - I)'+r'(r',[m] Ir'p), (3.22) 

where K([r'][m];[r]) is a real phase factor introduced in Ref. 
19 and r = r'p. In order to obtain the explicit expression of 
(r'plr',[ 1m]) from Eqs. (3.22) and (3.19), we determine this 
phase factor by adopting a set of phase conventions which 
will be given in Eq. (3.29) of the next subsection. The discus
sion in Sec. III A and the combined use ofEq. (~.7) with the 
phase convention (iv) of Eq. (3.29) below lead us to the con
clusions 

(r'plr', [m]);;;.O (3.23) 

and 

(r'plr',[1m]);;;.o, for l,rN_ m + I < ... < rN,n. (3.24) 

In the Appendix, we shall prove that the phase rule27 in Eqs. 
(3.23) and (3.24) gives us 

K([q] [m];[f]) = IT (- If"-Q,,lfv (3.25) 
1 =j.t<v 

with [q] = [ql···qn] and [I] = [fl··1n]' so that Eq. (3.22) 
becomes 

(- lY'(r',[l m
] Ir'p) = (r',[m] Ir'p), (3.26) 

where ( - I Y' is defined by Eq. (2.17) with r replaced by p. 
Using Eq. (3.19) with an arbitrary order for rN_ m + 1···rN 
and Tij = rj - rj + f(rj ) - f(rj ) = - 'Tij, one obtains from 
Eq. (3.26) the well-known result27 

(r'p Ir', [ 1m]) 

= IT €ij{ _I IT (I _ ..!..)}1I2 
N-m+l~i<j m! i>j~N-m+l 'Tij 

(3.27) 

Furthermore, if we use Eq. (3.7) again, we obtain the explicit 
expression of the following special Un CG coefficient; 

(3.28) 

where 1 ,rN _ m + I < ... < rN,n are determined from [q] and 
[f] uniquely and the product of rj is over all rN _ m + 1,.··,rN· 

C. Discussion of the phase convention 

It will be useful to summarize in this subsection the 
relationship between phase conventions used in the repre
sentation theory of the unitary group and in that of the sym
metric group. In §2-2 of Ref. 15, it is shown that for the 
unitary group Udl = 1,2, ... ) the phase conventions (i)-(iii) 
10 
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(i) N H [fe·:t; ] ;;;.0, 

(ii) N r~:::~-I ] -I ;;;'0, 

lql ... ql-I 

(iii) ([ql···ql_1 ]H[A ]AI[fl··ft]H);;;.O, 

(iv) ([ql···ql_I]H [IA ]AI [fl··:t; ]H);;;.O, 

AJt =fJt - qJt(f-L = 1-1- I), AI =fr, 
I I-I 

A = IAI = 12 fJt - 12 qJt' 
Jt~1 Jt~1 

(3.29) 

give us two kinds of vector coupling expressions for DG 
polynomials without any phase factor [see Eqs. (4.9) and 
(2.14)]. The conditions (i) and (ii) mean that the normaliza
tion constants of the doubly highest-weight states [Eq. 
(2.11)] and of the lowering operators ofU/, respectively, are 
non-negative and have already been adopted by Nagel and 
Moshinsky.4,9 The condition (iii) is a natural extension of the 
phase convention in the angular momentum theory given by 
Condon and Shortley,31 namely, 

(jljlj2j3 - jllj3j3);;;'O. 

On the other hand, the positiveness of the off-diagonal 
matrix elements in Eq. (2.19), which was first adopted by 
Yamanouchi24 quite arbitrarily, was connected by Mo
shinsky23 with the condition (ii) by calculating directly the 
matrix elements in Eq. (2.19) by SG states. Moshinsky repre
sented P N _ I,N by UN generatoJ:s I C ~ 1 and expressed the 
off-diagonal matrix element of P N _ I,N as a product of two 
matrix elements of C Z - I. Then, if we use the fact proved by 
Nagel and Moshinsky9 that the condition (ii) is equivalent to 
the non-negativeness of the matrix elements of C Z - I, we 
can immediately prove that the nonzero off-diagonal matrix 
elements of P N _ I,N are always positive. In fact, we have 
already used this result in Sec. III A to derive Eq. (2.19). 
However, as far as Eq. (2.19) is concerned, Moshinsky's 
proof3 is much more direct than ours, since we assumed all 
the conditions (i)-(iii) implicitly. 

The advantage of our method shows up if we discuss the 
phase convention of MF recoupling coefficients. The phase 
conventions Eqs. (3.23) and (3.24) for (r'plr',[m]) and 
(r'p I r', [ lin]) were first adopted by Horie.27 However, we 
showed in previous subsections that the non-negativeness of 
(r'plr',[m]) can be derived from the phase conventions 
(i) - (iii) of Eq.(3.29), while Eq. (3.24) can be derived by just 
adding (iv) to (i)-(iii). Using these signs of phase factors, we 
can then obtain the explicit expression of the phase factor 
K([q][m];[f]) in Eq. (3.25). 

With the above discussion, we may say that the phase 
conventions of the two kinds offundamental quantities in IR 
!..,heory of the SN group, namely, the matrix elements of 
PN-1,N and MF recoupling coefficients (r'plr',[m]) and 
(r'plr', [lin]) can be derived from the phase conventions 
(i)-(iv) in IR theory of the unitary group. 

IV. EXPANSION FORMULAS 

In this section, we derive two kinds of expansion formu
las of the determinant associated with a matrix tensor pro-
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duct, using the properties of SDG polynomials and MF re
coupling coefficients derived in Sec. III. 

A. The first expansion formula 

Theorem 1: 

AIIVII AINVIN 

=det{A ® VJ 

= L '( - l)r+sq; ~~N)[fl(A)q; ~~N)[il(V), (4.1) 
I flrs 

where the summation over [j] is only for fl + ". + fN = N 
(/1>"'>fN>O) and each of the weights ofr and s is 1. 

Proof Let us use Eqs. (2.9) (with n = N) and (2.21) for 
the right-hand side of Eq. (4.1). Then using NH [J1 
= N H [f] from Eq. (2.11), we obtain 

I=right-hand side ofEq. (4.1) 

= 2, 2 Dp' L' NH[fl2D~~)[/I(P) 
PESN P 'ESN I II rs 

XD~~)[/I(P')A PVP'. (4.2) 

Here, by using the transposition property and the product 
formula of representation matrices, we find that 

(4.3) 

where Xl II is the character of the S N group with the IR label 
[j]. We further notice from Eq. (2.11) that 

N [ff = Ifk = _1_ ~ DIN)[/I(E) 
H N! N! 7' r,r 

1 =-X1fl(E), (4.4) 
N! 

whereEis theN X Nunit matrix. Thus, if we use the second 
orthogonality relation28 of irreducible characters, Eq. (4.2) 
becomes 

fin 

= L L Dp' .DE,pp,-.A PVP' 

PESN P'ESN 

(4.5) 

which is the determinant on the left-hand side ofEq. (4.1). 0 

B. The second expansion formula 

Suppose the N X N matrix A in Eq. (4.1) takes a reduced 
form 

(4.6a) 

withPp XNv matrices (f.1. = I-n, V= I-m) 

(4.6b) 

corresponding to the decomposition of the weights 
N=N1+,,·+Nm =PI+·,,+Pn • We can redefine an 
n X m matrix A =(Apv )' Then, Eq. (4.1) is transformed into 
the second expansion formula using standard n X m DG 
polynomials q; ~n;;llfl(A ) and a new type ofMDG polynomi
als ip ~~:l)lil(V) defined by the following vector-coupling ex
pressions. 

Definition: Letq; ~~;;Il/I(A) be an nXm DG polynomial 
with the partition [j] = [fl":I;] (l = Mini n,m J) of 
N (/1 + ". + h = N) and the n X m argument matrix 

(A~) A = (AJ'"Am) = 1~ . (4.7) 

Corresponding to the Gel'fand patterns 

1[:1) = fl.n-l • In-I,n-l 
fO} [[oJ) 

[fn:-tl (4.8a) 

fll [fll 
and 

I [{I) ~ g'm· g'm -, gu· g~ - :m·" gm) ~ [~~~]~ J) (4.8b) 

with [fn] = [gm] = [fl, there are two types of vector coupling expressions by Un and Um CG coefficients l5
: 

q;~~;;)[/J(A) = [.,,[ [U[N,](AtlU[N,](A2)] [g,]U[N,J(A3)] [g3],,,U[Nm ](Am)] I/Ja (4.9a) 

= [". [ [U[p,](A~)U [P2](A; II [I,] U[P3 ](A;)] [/,J"'U [p.](A~)] [flb' (4.9b) 

where 
) )-1 

N\ = gil' ~ = L gil - L gi,)-l (j=2-m) (4. lOa) 
;= 1 i= 1 
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and 
P P-I 

PI=lw Pp= 'Lla{J- 'Lla,fJ-1 ({3=2-n) (4. lOb) 
a=1 a=1 

are the weights C!.f vectors Aj and Ap, respectively. Then, a MDG polynomial qJ ~lj,NH fl( V) with specific S N internal quantum 
numbers a and b in the direct-product representation scheme of the subgroups Sp, X .. ·XSP• CSN and SN, X ... X SN

m 
CSN 

(N = PI + ... + Pn = NI + ... + Nm ), respectively,canbedefinedfromEq. (4.9) by converting all the partitions of[f],a, and 
b into the corresponding AR labels and by changing the n X m matrix A into an N X N matrix V; namely, 

qJ~~:Hfl(V)== [ ... [U [IN'j(VI,,,V N,)U [IN2j(V N, + I"'V N, +N,l] [82("U [INm j(Vn- Nm + I"'V N)] [fla (4.11a) 

(4.11b) = [ ... [U[JP'j(V~ ".V~,)U[IP2j(V~, + I"'V~, +p,l] [f2t'U [IP,](V~_P.+ I"'V~)] [f]ij' 

where we have introduced a new notation 

U[IA lc(R]' .. RA)==[ ,,,[U[1 l(R.JU[1 l(R2)] [11 JJ 
",U[ll(RA)][IAlc (4.12) 

for a SDG polynomialr:p ~~1.~.[t 1 (R]' .. RA ). The vector cou
plings in Eqs. (4.11) and (4.12) are all achieved by using UN 
or SN CG coefficients. 

Theorem 2: 

det{A (nm)® VI 
n m 

II P~! II N 1' ! 'L' K([f]ajK([f]b) 
~ = 1 1'= 1 [flab 

Xm(nmHfl(A \;;;~NHfl(V) 
T a.b IV' D,b , (4.13) 

where the summation over [f] = [/1··iL] (/ = Min { n,m I ) is 
only for II + ... + It = N, and a and b are only those in Eq. 
(4.8) satisfying the weight conditions ofEq. (4.10). The phase 
factor K([f]a), for example, is given by 

n 

K([f]a)= II (_I)(far-fa,r-'Vpr. (4.14) 
l=a<P<r 

Proof We first derive a reduction formula ofSDG poly
nomials by using Eq. (3.17). If we set RN _ m + I = RN _ m + 2 

= ... = RN = R in Eqs. (3.5) and (3.3), we find 

m!nNHf] R · .. R R .. ·R ( 
+--m_) 

T a,"p I N-m 

(4.15) 

m 

= II {~N)(Pl"'P1'-l,[N1']lpl"P1')J 
1'=1 
Xm(nmHf](R) 

T a,b , (4.16) 

where P1' = rN, + ... +Nv _, + 1 .. ·rN, + ... + N
v 

(v = 1-m), 
N I + ... + N m = N, and J; + ... + /" = N. Furthermore, b 
in Eq. (4.16) is the Gel'fand pattern 

[PI,,,pm_ll) 
Ib)=) : 

[pd 
(4.17) 
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-Nt -

and N" are the weights of b. In particular, PI = 1 1 .. ·1, 

[PI] = [NI] and (-.[NI] I PI) = 1. Let us now change n-+N, 
a--+UIU2"'(7 " in Eq. (4.16) and adopt a similar discussion for 
the back-side ve<:tor coupling expression. IS By this process, 
one obtains, for A (nm) in Eq. (4.6). 

r:pr:.:/.tl, p, P''''Pm (A (nm)) 

X ft{~N) (PI":.o1'-I,[N"llpl":.o,,)} 
v=1 

Xm(nmHfl(A) 
T a,b , (4.18) 

where [f] = [J; .. iL](I = Min! n,m)}) with J; + ... 
+ J; = N and a, u~, P~ are related in the similar manner as 
in b,p",Nv' 

To prove Eq. (4.13), we substitute Eqs. (4.6) and (4.18) 
into Eq. (4.1), and transform the phase factors and the recou
pling coefficients by the use ofEqs. (3.22) and (3.6). Thus we 
obtain 

det{A (nm) ® V I 
n 

=L'L L II{K([(71· .. u~-d[P~] 
[f] U'''·u.P'''·Pm~= 1 

m 

X II {K([ PI"Pv- d [N" ];[ PI"Pv ])~N) 
v=l 

X (p-;;':.ov I p-;::':.ov- I' [lNv]) J 

Xr:p~~;Hfl(A)r:p(~[fl ___ (V). (4.19) 
UlO"UII'PIO"Pm 

The summation overul,,,un andpI"Pm in Eq. (4.19) is taken 
in two steps; the first step is the summation over a and b with 
the constraints of the weights Eq. (4.10), and the second step 
is over (71'''U" andpl"Pm under the constraints 

[U]'''(7~]=[IJll (p=I-n), (4.20a) 

and 

(4.20b) 

Thus, Eq. (4.19) becomes the right-hand side of Eq. (4.13) 
with, for example, 

" 
K([f]a) = II K([.t;.-d[P~];[.t;.]), (4.21) 

~=I 

and 
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if! ~~t)[ il( V) 

= L' L' IT <u~UJL lu~uJL_l> [l P
,,]) 

Ut"·U., Pt"'Pm ~ = 1 

(4.22) 

where 1:' denotes the summation under the condition ex
pressed by Eq. (4.20). Equation (4.14) is derived by using Eq. 
(3.25). The equivalence between Eqs. (4.22) and (4.11) is ap
parent from the definition of the MF recoupling coeffi
cients. 0 

Theorem 2 is the main result of this investigation. We 
will use it in the next section to calculate the matrix elements 
of double-coset generators between SU4 spin-isospin wave 
functions of simple two-cluster systems. 

V. APPLICATION OF THE SECOND EXPANSION 
FORMULA TO SIMPLE CLUSTER SYSTEMS 

In this section, we give, an example of the application of 
the second expansion formula with regard to GCM NK of 
simple two-cluster systems. Suppose CI and C2 are s-shell 
clusters with mass numbers NI and N2 (NI>N2<4), respec
tively, and N = NI + N2 is the total mass number. Assuming 
(nonorthogonal) single-particle wave functions ({JI' <{J2 (or 
tPI,tP2) for the bra (or the ket) states, we calculate 

G [fI < Nt N2[U ( ) N = ({J I ({J 2 [IN, j XI"'XN, 

XU[IN'j(XN, + I "'XN)] [ileldltP~'tP~2 

X [U[IN'j(XI'''XN,)U[IN2j(XN, + I"'XN)] [il)' (5.1) 

where U [IN le (XI"XN) are 4 XN SOGpolynomials, defined in 
Eq. (4.12), representing spin-isospin wave functions of s

shell clusters, and ({J ~'({J ~2 is the shorthand notation for 
({JI(XI)"'({JI(XN, )({J2(XN, + I )"'({J2(XN) and so on. Furthermore, 

1 A-

d=--2: 0p P, 
NI!N2! PESN 

(5.2) 

and the vector couplings in Eq. (5.1) are achieved by using 
SU4 CG coefficients. The possible SU4 IR labels [I] are the 
AR of [I] = [N - p,p] with p = Max[O, 
N - 4J -Min[NI,N2J; namely, [J] = [2P1N- 2p ]. Using 
the property of antisymmetry within CI and C2 , we can 
transform d in Eq. (5.1) as 

MinIN"N,1 (N) (N) A-

d- L ( - It I 2 Px ' 
x~O X X 

(5.3) 

where 

P = P P "'PN N (5 4) x N, - x + I.N, + I N, - x + 2.N, + 2 ,., + x . 

is the so-called double-coset generator l8 corresponding to 
the number x of exchanged nucleons. Taking the overlaps in 
the spatial part, we obtain 

Min(N,.N2 1 

G}l1 = L cFI A ~'-X(AI:42tlxA ~i-x, (5.5) 
x=o 

where we have defined 

Aij = <({JiltPj) (iJ= 1 or 2), (5.6) 
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(5.7) 

with 

Px (N I N 2;[J]) 

= < [U [tN, j(XI"'XN,)U [IN2j(XN, + I "'XN)] [ile IPx I 

X [U[IN'j(XI"'XN)U[IN2j(XN, + 1'''XN)Lil)' (5.8) 

If we use a relationship such as 

U[IN'j(XI"'XN,) 

= [U[IN,-Xj(XI"'XN,_x) 

XU[lxl(XN,-x+ I "'XN,)] [IN'je' (5.9) 

w,e find that Px (NIN 2;[J]) in Eq. (5.8) is nothing but a spe
Cial type of MF 9-[1] coefficient; namely, 

[ 1 X] 

[ 1 N2 - X] 
[IN, ]] 
[ 1N2] . 

[1 N2] [J] 
(5.10) 

There are many ways to calculate Eq. (5.8). One method 
is to use Eqs. (3.22) and (2.21), and transform Eq. (5.10) into 
the corresponding 9-[1] coefficient [multiplied by ( - 1)-"] 
with all IR labels converted into AR. Since two-row 9-[1] 
coefficients are equivalent to angular-momentum 9-j coeffi
cients,19 we know that Eq. (5.10) is simply a (stretched) 9-j 
coefficient. 18 Here we derive the explicit expression of Eq. 
(5.8) by using the second expansion formula of Sec. IV. To do 
this, we should note that 

[U [IN'j(XI"'XN,)U [IN2j(XN, + I "'XN)] [ile 

=if!~~f)[il(x) (5.11) 

is a one-side MOG polynomial introduced in Eq. (4.11a) 
with the 4 X N matrix variable X = (XI"'XN) and 

(5.12) 

Then, using the completeness and transformation formula of 
SOG polynomials, we can easily prove 

P(NN '[f-])- 1 -cJ\CN)[il(P) 
x l' 2, - - ({J b b x , 

NH[f] . 
(5.13) 

where Px is the matrix representation ofPx ' Let us now set 
n = m = 2, PI = N I , P2 = N 2, V = Px in Eq. (4.13), multiply 
it by ({J ~~)[ fI(A) and integrate over df.l(A). Then, using 

d fAA (22) P JAN, - x ( A A )XA N2 - x d h et l ® x = 11 X - 1zn.21 22 an t e ex-
plicit expression of 2 X 2 OG polynomials 15 

m (22)[N - P.pl(A ) 
r [NtJ.[N,l 

MinIN,-p.N2 -pl (NI - P) (N2 - p) 
=NH[N -p,p]. q~O q q 

XA ~; - p - q(A 1:421)qA ~i - p - q(det A jP, (5.14) 

we obtain 
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[IX] 
[1 N, - X] 

[ IN,] 

Minlx,N, - p,N2 - pi (p ) 
= ) (- 1t- q\x 

q~M..:ro,x-pl -q 

(5.15) 

If we substitute Eq. (5.15) into Eq. (5.5) and change the sum
mation order of x and q, we also find 

G [N - p,pl _ 1 m (22)[N - P,Pl(A ) 
N -NH[N_p,p]T[Nd,[NI) . (5.16) 

Namely, GCM NK oftwo-s-shell-cluster systems are repre
sented by the representation matrices of GL(2;C). 22,32 

For physical applications, we also need to calculate NK 
in spin-isospin representation; namely, 

(GN )~S,T2S2;T;S,T,S, 

=(q:; ~'q:; ~2 [U [IN,] T,S, (XI'''XN,) 

xU [IN,] T2S2 (XN, + I "'XN)] rr,ssz I 

X dl¢~'¢~2 [U [IN,] T,S; (XI'''XN,) 

xU [IN2]T,S,(XN, + I '''XN)] rr,ss) , (5.17) 

in which SU4 internal quantum numbers in 
U[IN]rr,ss.!Xi'''XN) are specified in spin-isospin representa
tion and the vector couplings in Eq. (5.17) contain angular
momentum CG coefficients. By using reduced SU4 CG coef
ficients in spin-isospin representation, Eqs. (5.17) and (5.1) 
are found to be related by the equation 

where we have defined, for fixed NI and N2, 

B [~fJTS "" T,S, T2S2;T ,s, T 2S 2 

=( [IN,] TISI [lN2] TzS211 [I] TS) 

X ([ IN,] T;S; [lN2] T~S~ II [I]TS). (5.19) 

These SU4 CG coefficients can be calculated by extending 
Jahn's idea33 in shell-model calculations. We first apply the 
double-coset expansion of d to Eq. (5.17). Then, following 
almost the same process as in the SU4 -representation case, 
we obtain 

(GN)~S,T2S2;T,S,T,S, 
Min [N,.N2 ) 

I C;S(TISIT2S2;T;S; T~S~) 
x=o 

A N, - X(A ,4 )XA N2 - X X 11 lza.21 22 , 

where 
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(5.20) 

X I ([ 1N,-X] T11S11 [ P] TI2S12 11 [IN,] TISI ) 
Tl1SIIT12SI2 

X ([ IX] T21S21 [l
N2 - X] T22SzzII [lN2] T zS2) 

X ([ IN, -X] T 11S11 [IX] T2IS21 11 [IN,] T;S;) 

X ([ IX] T 12S12 [ 1N2 - X
] T22S2z li [lN2] T~S~) 

A A ...... "'" A A A A 

X TI T2T; T ~SIS2S; S ~ 

r T12 T'}r S12 S'} X T21 Tzz T2 S21 S22 Sz 
T; T~ T S; S~ S 

(5.21) 

with a = ~2a + 1. As can be easily seen from Eqs.(5.20) and 
(5.5), Eq. (5.18) is true for the coefficients of each x-nucleon 
exchange; i.e., 

for x = 0-Min{NI,N21. 

Since C Fl = 1 and 

Crs(TISITzS2;T;S; T~S~) = 0T T'{)S s,or T'{)S S" 
I I 1 I 2 2 2 2 

Eq. (5.22) for x = 0 gives us simply the orthogonality rela
tionship of SU 4 CG coefficients. Using this and x = 1 case of 
Eqs. (5.22), (5.15), and (5.21) we can determine recursively 

the coefficients B Vl~s 'T'S'T'S' for all combinations of NI 
1 I 2 2. 1 I 2 2 

and N2 (NI' N2,,;4)· 
We should note, however, that for many combinations 

ofNI andNz, thesummationover[IJinEq. (5.22) is uniquely 
determined by T and S. In these cases, the coefficients in Eq. 
(5.22) are unity and NK in spin-isospin representation are 
automatically obtained from those in SU4 representation. 

Furthermore, B Vl~ S 'T'S'T'S' satisfies the following sym-
I 1 2 2- I I 2 2 

metry relations: 

B [fiTS "" = B [~l~, , T,S,T2S2;T ,S ,T,S2 T,S ,T2S2;T,S,T2S2 
= B [fiST "" . (5 23) S,T,S2T2;S,T,S2T2 . 

The coefficients B Vsl~s 'T'S'T'S' for nontrivial cases of 
1 I 2 2- I 1 2 2 

N2<NI <4 are given in Table I under the phase convention 

[ ([ 1 H HI H !II [11] 10) 

X ( [ 1 ]! ! [ 1 ]! ! II [ 11 ] 0 1) ] > 0, (5.24) 

which is related to the relative phase of spin-isospin wave 
functions of the deuteron and the quasideuteron. Using these 
coefficients and Eqs. (5.18), (5.16) and (5.14), we can derive 
easily the GCM NK ofEq. (5.17) in spin-isospin representa
tion. 

VI. CONCLUSION 

Special double Gel'fand (SDG) polynomials,23 with a 
partition of Nand each of the weights equal to 1, are shown 
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TABLE I. Nontrivial values of B Vi'; S T'S'T'S" 
I 122. I I 22 

NIN2 TS T1S1T2S2 ; T;S; T;S; [hlB 

[111] [21] 
IOB;10H ! ! 

21 H 
10B;01B -! 

[1111] [22] 
1010;1010 ! ! 

00 
1010; 0101 -~ 

22 
[21l] [22] 

1001;1001 ~ ! 
11 

1001;0110 -! 

[2111] [221] 
BI0;HI0 ! ! 

32 B 
HI0;HOI -! 

to be very useful to discuss some of the fundamental quanti
ties in the irreducible representation (IR) theory of the SN 
group. Using extensively the vector-coupling expressions of 
Un XSN SDG polynomials, we have derived a simple rela
tionship between multiplicity-free (MF) recoupling coeffi
cients of the SN group and special types of MF Clebsch
Gordan (CG) coefficients of the unitary group Un' Since the 
explicit expressions of these MF Un CG coefficients are al
ready well known, we can derive explicit expressions27 of the 
MF recoupling coefficients using this relationship. The Ya
manouchi formula24 for the transposition of the last two par
ticles can also be derived, since it is represented by simple 
MF recoupling coefficients. The standard phase convention 
in this formula and that of the MF recoupling coefficients by 
Horie27 are shown to result as a consequence of natural 
phase conventions of DG polynomials and the positiveness 
of these MF Un CG coefficients. 

For the purpose of applying SDG polynomials to spin
isospin wave functions of many-cluster systems, two kinds of 
expansion formulas of the determinant associated with a ma
trix tensor product have been proved with explicit expres
sions of phase factors. The first expansion formula is ex
pressed in terms of SDG polynomials, while the second one 
is expressed in terms of standard DG polynomials and modi
fied DG (MDG) polynomials with SN internal quantum 
numbers specified by direct-product representations of its 
subgroups. The second expansion formula is then applied in 
Sec. V to calculate normalization kernels (NK) in the gener
ator coordinate method (GCM) for simple two-body systems 
composed of s-shell clusters. Several nontrivial SU 4 CG coef
ficients are calculated in a simple derivation of these GCM 
NK in spin-isospin representation. The usefulness of the sec
ond expansion formula has also been demonstrated in Ref. 
32 for NK problems of more complicated many-cluster sys
tems. There, this formula was used to construct generating 
functions ofspin-isospin wave functions in the SU4 scheme 
and to generate GCM NK from the determinant associated 
with the overlap matrix of single particle wave functions. 
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The idea to apply the concept of DG polynomials to 
NK problems of cluster systems has also been proposed by 
Kramer and others.22 However, it should be noted that there 
is a basic difference between our treatment and theirs. 
Namely, they started from the representation theory of the 
S N group and tried to construct DG polynomials from repre
sentation matrices of double-coset generators by the subduc
tion process. On the other hand, we started from the theory 
ofDG polynomials and have derived some essential proper
ties used in the representation theory of the SN group. One 
advantage of our method is that we can discuss the phase
convention problem of the Un and SN groups in a unified 
manner. For example, the phase factor ofEq. (3.25) is expli
citly given in this paper. The essential point of our approach 
to the NK problems is to use the powerful second expansion 
formula which has been proved entirely within the frame
work of the representation theory of the unitary group. By 
using this formula, we have shown that the treatment ofthe 
conjugate wave functions of spatial and spin-isospin parts 
for the permutation symmetry can be carried out in a very 
efficient manner. 
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APPENDIX: PROOF OF EQS. (3.25) AND (3.26) 

Noting that r' and r = r'p in Eq. (3.22) are both stan
dard Young tableau, we decompose ( - 1)' into 

( - 1)' = ( - l(p = ( - 1(( - I)([r']p]( - I)P, (AI) 

where 

( - I)[[r']p]-_ II II Eij = Eij (A2) 
i<j iE[r'] 

iEr' jEp jE[r'p] - [r'] 

depends only on [r'] and [r'p] since the permutations of 
i = I,2, ... ,N - m orj = N - m + 1, ... , N in the Young tab
leau for each group change only the order of the product of 
IIiEr' IIjEpEij' In Eq. (1), ( - It' is defined by Eq. (2.17) with r 
replaced by p, while [r'p] - [r'] in Eq. (2) denotes the aggre
gate of the boxes formed by p. Setting the numbers 
N - m + I, ... ,NinpsothatO<rN_ m + I <···<rN<n, weeasi
lyobtain 

(_l)[[r']p]= IT (_l)u,,-q,,)qv, (A3) 
1=11-<'V 

where [r'] = [q] = [q1oo·qn] and [r] = [r'p] 
= [f] = [/1"ln]' Next, to calculate (- I)P and (- 1),0, 

we choose O<rN_ m + I < 00. <rN<n. For this specific order, 
we obtain 

(-I)P= IT (_If,,-q,,)(fv-qv), (A4) 
l=Jl<v 

(- 1),0 = 1. 
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Then, applying Eqs. (3.23) and (3.24) to Eq. (3.22), we obtain 
Eq. (3.25). Equation (3.26) is easily proved if we note that 
( - 1) p + P is independent of the order of r N _ m + 1 ···r N from 
Eqs. (1) and (2.18). 
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~ descri~tion of pa~icular elements ("charge conjugation operators") found in any compact 
sImple LIe group K IS presented. Such elements Ri transform a physical state (weight vector of a 
basis ~f a repres~ntation spac.e) into others with opposite "charge" (ith component of the weight), 
sometIme changmg also the sIgn of the state. It is demonstrated that exploitation ofthese elements 
and the finite subgroup N of K generated by them offer new powerful methods for computing with 
representations of the Lie group. Their application to construction of bases in representation 
spaces is considered in detail. It represents a completely new direction to the problem. 

P ACS numbers: 02.20. + b, 11.30.Er 

I. INTRODUCTION 

In this article we study certain elements R of order four, 
i.e., R 4 = 1, in connected compact simple Lie groups in or
der to demonstrate that they provide a new and powerful 
tool for applications. Although their importance has long 
been understood in the theory of Lie groups, 1 these elements 
have so far not been used in physics literature except for 
Refs. 2 and 3 (which are based entirely on this work) and they 
appear here for the first time in what might be called the 
theory of computation with Lie groups. 

Intuitively these elements can be viewed in the follow
ing way: Given a simple Lie group K of rank I, then in a 
description of relevant physical states IA 1A2 .. ·A/), which are 
weight vectors in a representation space V of K, an important 
role is played by "quantum numbers" or "charges" 
Ai> i = 1,2 ... ,/, which are defined as eigenvalues of I suitably 
chosen linearly independent "diagonal" elements of the Lie 
algebra of K. The subject of our article is the elements 
Ri' i = 1,2, ... ,/, of Kwhich permute the weight vectors of the 
same K-multiplet in such a way that Ai- - Ai if Ai #0. For 
lack of any better name we call Ri the charge conjugation 
operators (CCO) although it is only in special situations that 
one of them may coincide with the usual operator reversing 
electric charge.4 It turns out that the action of Ri on 
IA IA2···A/) is quite nontrivial. Besides reversing the charges 
(components of weights) they sometimes reverse the sign of 
the state or permute several states with the same "quantum 
numbers" (weights) when Ai = O. Let us underline the fact 
that there are no charge conjugating elements in K which 
would be of order 2 in all finite-dimensional representations 
ofK. 

The role which Ri may play in applications far exceeds 
the charge conjugation. In that respect Refs. 2 and 3, where 
they provide the main tool of the approach, are only modest 
illustrations of the possibilities. There all nonzero Clebsch
Gordon coefficients arising in a tensor product of two irre
ducible representation spaces of K are given by a small repre
sentative subset of them and any other coefficient is identi-

alOn leave from: Department of Mathematics, University of Saskatchewan, 
Saskatchewan, Canada. 

blOn leave from: Centre de recherches de mathematiques appliquees, Uni
versite de Montreal, Montreal, Quebec, Canada. 

fied with one of the subset using CCO. Fortunately, the 
economy made this way rapidly increases with the rank I of 
K roughly being proportional to the order I W I of the Weyl 
group W of K. Thus for instance, in the case of rank one 
group SU(2), the saving made by using CCO is the smallest 
because I WI = 2. It is equivalent to the well-known fact that 
from each pair of SU(2) Clebsch-Gordon coefficients 
C(II'/21; m2m2m)andC(lllzl; - ml - m2 - m)itsufficesto 
calculate only one of them. However, for SU(n) the economy 
provided by CCO increases as nL 

In particle physics it is conceivable that the usual re
quirements of invariance of a (grand unified) model under 
the action of a reductive Lie subgroup K / of a semisimple 
group K is too strong and that all the conclusions drawn 
from the model would follow requiring only the invariance 
under the action of a finite subgroup F of K generated by Ri 
and possibly some other elements of finite order in K. In 
general, the finite subgroup N of K generated by Ri is of 
importance whenever K appears, even ifits role so far has not 
been fully appreciated. 

So far the possibilities of building N-invariant models 
which are not K / -invariant remain completely unexplored. 
They would closely resemble the K / -invariant ones in that 
the K-multiplets would be formed as direct sums of N-multi
plets, but they would be simpler because N as a finite group 
has only finitely many irreducible representations. 

Questions of this type motivate our undertaking al
though we do not address them directly in the article. 

The first objective of the paper is to bring together what 
is known about CCO in a coherent way. 

The second objective is related to the problem of con
struction of bases in representation spaces. Until now, in 
spite of the obvious importance of the problem, there is no 
satisfactory general method of construction. [Note added in 
proof: Daya-Nand Verma has produced an as yet unproved 
algorithm for constructing bases by the first of the methods 
below. It appears very promising.] Indeed, there are three 
well-known ways how to construct a basis. The first is a 
multiple application of generators to one basis vector. Al
though this is a general method in principle, practically it is 
so unruly that it is of use in spaces of low dimension only. 
Even sophisticated versions5

•
6 developed for purely theoreti-
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cal reasons did not make it any more useful in applications. 
The second way is to use chains of reductive subgroups. In 
special cases 7 this produces perhaps the most explicit and 
desirable form of representation theory. Unfortunately, in 
most cases it offers at best only a simplification of the con
struction. The third method based on subalgebras and their 
centralizers is practically restricted to low rank groups8 or to 
very particular classes of representations.9 Systematic ex
ploitation of CCO and exploitation of the finite group 
N C K generated by them leads to a new approach to the 
problem, where the group N plays the role of the Weyl group 
of K "lifted" into the representation space. 

Let us emphasize that we are concerned here with 
methods which apply to any simple (and by an obvious ex
tension to any reductive) Lie group K and therefore we ig
nore existing vast literature applicable only to groups of par
ticular type(s). 

The most obvious obstacle to construction of basis for 
representation spaces for anything beyond those of very low 
dimension is the sheer enormity of the number of vectors to 
be written down. The natural way out of this is to compute 
only the dominant weight spaces (which in general make 
only a tiny fraction of the entire space) and to use the group N 
to move outside them when necessary for some problem at 
hand. This approach leads to two fundamental problems 

(i) Build a "good" basis for each of the dominant weight 
spaces. 

(ii) Describe how to move about in the rest of the repre
sentation space. 

Consequently, the second objective of our article is to 
describe an approach to basis construction, at least as far as it 
is possible at this time, and to illustrate various aspects of it 
by numerous examples, because in many cases of practical 
interest it offers a considerable help already in its present 
form. 

The problem (i) of building orthonormal bases in domi
nant weight spaces is the truly difficult part of the construc
tion. Our examples in Sec. VI illustrate two approaches to 
solving it. The first uses tensor products of simple spaces 
(practical in many situations), the second one involves the 
representation theory of subgroups of N (eigenspace decom
position of stabilizers of dominant weight vectors). A third 
approach would be exploitation of various subgroups of K. 

Whenever a particular (reductive) subgroup K' C K is 
of importance in an application, it should be reflected in the 
basis construction. That is, the bases in dominant weight 
subspaces [problem (i) above] have to be built using N' of K' 
rather than N of K. Naturally, in the simple situation when 
the corresponding branching rule for K' C K contains each 
K ' - irreducible component at most once, there are the usual 
shortcuts so that one faces the same problem but for smaller 
representations of the smaller group K '. 

Moving between weight spaces of the representation 
[problem (ii)] is accomplished by two processes: (a) moving 
along N-orbits of the space; (b) crossing orbits. The first pro
cess is carried out by the group N whose action is completely 
described in Sec. III. The second process is carried out by 
transforming dominant weight vectors of one space to an
other dominant weight subspace. This involves computing 
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the action of a few generators between a few subspaces once 
for all. The Figs. 3 and 4 illustrate the succinct way in which 
this information can be presented. 

In Sec. II we work out in detail and with only simple 
means the CCO in the SU(2) case. This serves as an introduc
tion to the general situation described in Sees. III and IV, 
followed by some examples (Secs. V and VI). 

II. THE CHARGE CONJUGATION OPERATOR OF SU(2) 

In order to specify an irreducible representation of 
SU(2)ofdimensionL + 1 weuse(L), whereLisrelated to the 
highest weight A = j {3 of the representation by 

L = 2(A, {3 )It {3, {3) = 2 j . (2.1) 

Hence j is the familiar "angular momentum." A convenient 
orthonormal basis consists of the vectors (angular momen
tum states) denoted by It), such that 

M = 2(p, {3 )/( {3, {3), 

wherep = M{3 12isa weight of the weight system!1L of(L). 
Specifically, 

M = 2(A - k{3, {3 )/( {3.f3), k E ! 0, 1, .. ,£ J • (2.2) 
Thus 

ME !L,L - 2, ... , -L]. (2.3) 

Assuming ( {3, {3 ) = 2, the action of the Lie algebra spanned 
by generators e ± and h satisfying the commutation rela
tions 

[e + ,e_] = h, [h,e ± ] = ± 2e ± (2.4) 

on the basis vectors It) of the space V L is given by 

hit) = (p,{3)lt) =Mlt), 
(2.5) 

e± It) = H(L +M)(L ±M + 2)lt±2)' 

There is up to an inversion only one CCO in the rank 
one group SU(2). It is defined by 

R = exp L exp( - e + )exp e_ 

from which it follows that 

R It) = (- l)(L-M)12 lh) . 
Let us illustrate (2.7) by an example: 

R In = exp e_ exp( - e + )(1 + e_ + ~ e2
_ + ... ) In 

= exp e_(l - e + +! e2+ - i e3+ + ... ) 

xm) + 210 +.J310) 

= (1 + e _ + ! e2
_ + i e3

_ + ... ) 

x(.J310 - 10) = - 10 . 

(2.6) 

(2.7) 

(2.8) 

Here and through the rest of the article we write - a as a in 
matrixlike symbols. Repeated application of (2.7) gives 

R 21t) = ( - W It) = ( - I)M It) , 

(2.9) 
which demonstrates that R is an element of order 4. 

Note that CCO of SU(2) could have been defined by 

R = exp e + exp( - e_)exp e + ' (2.10) 

R. V. Moody and J. Patera 2839 



                                                                                                                                    

which would imply the interchange of M and - Min (2.7). 
Indeed one can verify directly that 

R I~) = (- 1)(L+M)l2 Ih) . (2.11) 

Hence, 

R =R -I. (2.12) 

The matrix of R relative to the basis {I t )} for 
L = 0,1,2,3, ... is 

R =(1), R =(~ ~) , 

R~G 
0 

~} R~(~ 
0 0 

~} T 0 1 
T (2.13) 

0 
0 

0 0 
and so on. The trace of any of the matrices R in (2.13) is the 
character of the elementR E SU(2) in the corresponding rep
resentation ofSU(2). Thus tr R takes only three distinct val
ues: 

trR={ ~ 
-1 

for L =0 
for L = 1 or 3 

for L = 2 

(mod 4) 

(mod4). 

(mod 4) 

(2.14) 

It was shown in Ref. 10 that in SU(2) there is only one conju
gacy class of elements of order 4 whose character values on 
irreducible representations are restricted to 0, ± 1,-Kos
tant's principal element-and, in notations ofKac (cf. Refs. 
10, 11, and 12), its conjugacy class is given as R ~ [11]. 

Subsequently we need the transformation of generators 
e ± and h by R. For that consider the equalities 

ID=hll>= -RID 
=Rh It> =RhR -IR It> = -RhR -liD, 

II> =e+ It> = -R It> = -Re_ID 
= - RLR -IR ID = - Re_R -lit> , (2.15) 

It> =LIl> =R Il> =Re+ It> 
= Re + R -I R It> = - Re + R -Ill> , 

from which it follows immediately that 

RhR- I = -h, Re±R-I = -e=F (2.16) 

Finally, let us also point out that 

R I~) = R -II~) = (- I)LI21~) . (2.17) 

III. CHARGE CONJUGATION OPERATORS OF 
ARBITRARY SIMPLE COMPACT LIE GROUP 

All ideas of this section extend naturally to arbitrary 
simply connected compact Lie groups, but for simplicity we 
consider here only simple simply connected compact Lie 
groups. The purpose of this section is to bring together 
known facts relevant to CCO. 

Let k be the Lie algebra of a simple simply connected 
compact Lie group K, g its complexification kc, and G the 
simply connected complex group with Lie algebra g and with 
maximal compact subgroup K. We let Tbe a maximal torus 
of G and b be the corresponding Cartan subalgebra of g. 
Thus b = tc , where t is the subalgebra of g corresponding to 
T, and hR : = ..r=-r t is a real Euclidean space (under the 
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Killing form) of dimension I = rank(G). Here the symbol : = 
indicates that the left side is defined by the right one. 

Relative to h we have the root space decomposition 

g=h ED ED g" 
ae4 

(3.1) 

of g, where..1 C h: (the dual space to hR ) is the root system 
of g relative to h, and for each a E..1, 

g"= IXEgl[h,x] =a(h)x forallhEh). (3.2) 

Choosing an ordering of h: leads to an ordering on ..1. 
Let..1 + denote the corresponding set of positive roots in .J 
and let II = {al,. .. ,a/) be the corresponding set of simple 
roots. 

For each (JE..1, sIP(2) = gP + g-P + [gP,g-P] is a 
subalgebra of g isomorphic to sl(2), and we chose ep EgP, 
e _p E g-P, and hp E h such that 

[hp,e±p] = ±2e±P' [ep,e_ p ] =hp . (3.3) 

These hp are uniquely determined by (3.3) and satisfy 

A (hp ) = 2(A, (J)I( (J, (J) (3.4) 

for all A E 11 *. The choice of ep E'if, ep #0, is arbitrary, 
whereupon e _ p is uniquely determined by [ep,e _ p] = hp. 
At this time we leave this choice free. 

Let GP C G be the connected subgroup whose Lie al
gebra is s¥'(2), and let SUP(2) = GP nK = (exp(sIP(2) n k) 
be the corresponding compact subgroup. Thus GP~SLc!2) 
and K{3 ~SU(2). 

A specific isomorphism of (JIl and SLc (2) is established 
by identifying sIP (2) and sl(2): 

e{3 = (~ ~), e _p = (~ ~), hp = (~ ~) .(3.5) 

Consequently, 

exp( - ep ) = (~ i), exp e -(3 = G ~), (3.6) 

and 

Rp: = exp e _p exp( - ep)exp e -(3 = G ~) E SU(2) 

(3.7) 

as in (2.13). 
Now letp :K-~GL(V) be a finite-dimensional (unitary) 

representation of K on a complex space V and let 
dp:k---+End( V) be its differential, i.e., a representation ofk on 
V. Both p and dp have complexifications, 

Pc :G---+GL(V), 

dpc: g---+End(V). 

Relative to T, V decomposes into weight spaces 

V= ED VIA), 
..ten 

where n C h: is the weight system and for all A E n 
(3.8) 

V(A) = Iv E Vldpc!h) v =A (h)v for allh Ebj .(3.9) 

For each (J E..1 we have, by restriction, representations 

pP: SUP(2)---+GL(V), 
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~: GP-GL(V), 

d~: slp(2)-End(V). 

If we partition IJ into ,8-weight strings, (A + Z,8 'fJIJ, i.e., 

A + q ,8, A + (q - 1) ,8, ... ,)., ... ,). - p ,8, (3.10) 

then the sums of the corresponding weight spaces 
q 

~ V(A+j,8) (3.11) 
j= -p 

are SU p (2)-submodules. They can further be decomposed 
into SU P(2)-irreducible submodules. Each such submodule 
is a sum 

s 

Ell Cv(A - k/3), (3.12) 
k=O 

whereA = A + r,8 for some rand vIA - k/3) E VIA - k,8). 
The identification (3.5) ofsIP(2) and sl(2) leads to representa
tions of sl(2) and SLd2) on V such that 

(00 1) o -dpdep ), 

(~ !)-eXP(dPd - ep)) =pdexp( - ep)), (3.13) 

Rp-fJdexp e _p exp( - ep)exp e _pi, etc. 

An appropriate choice of viA - k,8) allows us to identify 
them with It) of Sec. II, namely, 

(3.14) 

Then also e ±P and hp act on (3.14) according to (2.5). 
Although Rp is defined in terms of nonunitary opera

tors, it lies in SU(2) C K and hence appears as a unitary 
operator on V. From now on we write Rp for pdRp). Ac
cording to (2.7), one has 

RIA(hp) )_( l)kI A (hp) ) 
P (A - kfJ)(hpJ - - (A - kfJ)(- hpj ' (3.15) 

which demonstrates the "charge conjugating role" of the 
operators Rp. Thus the general effect of Rp on V is the per
mutation of weight subspaces: 

V(A) ++ VIA - A (hp ),8). (3.16) 

The Weyl reftection rp:h:_h: is defined by 

rpA =A -A (hpl,8 =A - (2(A,,8)1(,8,,8),8). (3.17) 

Therefore, 

(3.18) 

The Weyl group is by definition the group W generated by 
thera,aE.d.Foralla, ,8E.d,";' = l,andrarpra = rraP' It 
follows that W is generated by the ri : = r ai' i = 1,2, ... ,1. 

Whereas, ~ = 1, it is obvious from (2.9) that we only 
have 

R~ = 1. 

From (2.9) and (3.15) one has 

R ~ IV (A ) = ( - 1 r-t (hpJ. 

Following Tits l3 we write 

R~ = (_l)hp. 

(3.19) 

(3.20) 

(3.21) 

Corresponding to the generators ep, e _p, hp of sIP(2), we 
have 
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e _p, ep, h _p = - hp (3.22) 

as a set of generators of siP (2). The operator R _ p is then 

(0 1) -I R _ p = exp ep exp( - e _ p )exp ep ++ I 0 ++ R p . 

Thus 

IV. THE FINITE GROUP GENERATED BY CHARGE 
CONJUGATION OPERATORS 

(3.23) 

Our primary interest here is the group N generated by 
Rp,,8 E.d. AsitstandsN depends on the choice ofep (hence, 
Rp 1,,8 E.d. The most convenient form of N arises by the use 
of a Chevalley basis5

•
6 of g. According to Ref. 14, there is a 

choice of the ep ,,8 E.d, such that the following occurs: For 
a, P E.d, where a and ,8 are linearly independent with root 
string P - pa, .... , p, ... ,,8 + qa, 

(ea,ep ] = ±(p+l)ea + p ifa+,8=.d. (4.1) 

The matter of sign is not essential to us here. With such a 
choice of basis, 

(4.2) 

is a Lie ring. Most importantly, for all P E.d and for all 
nEN, 

(4.3) 

More generally, Kostant has shown6
•
15 that for every repre

sentation (p, V) of g there is a basis VI""'Vm of V consisting of 
weight vectors such that if we set 

Vz = Ell Zvj , 

) 

then for allp E .d 

~ (dp(ep))":Vz-Vz . 
n! 

(4.4) 

(4.5) 

Here ( ep 1 are assumed to be a Chevalley basis. Thus in parti
cular, 

(4.6) 

Since R _ p = R p- 1 we see that Rp is a bijective mapping of 
Vz · 

From the Chevalley basis the operators Ra and R a- 1 

map gz into itself (in the adjoint representation) and are auto
morphisms of ~ as a Lie ring. It is easy to check [cf. (2.16)] 
that Raha = - ha and Ra acts trivially on the orthogonal 
complement of ha in hR' Thus 

Rahp = hraP ' (4.7) 

Also since for each r E.d, the generators ± ey are the only 
ones for ~ = Zey (as Z-modules), 

(4.8) 

FromRa(hp)=Ra(ep,e_p] = [Raep,Rae_p] it follows 
that 

Rae _p = ± e _ raP' (4.9) 

where the sign is the same as in (4.8). From this we have 
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RaRpR;; 1 = Ra exp( - ep)exp e -13 exp( - ep)R;; 1 

= exp( =FeraP) exp( ± e -rap)exp(=Ferap} 

= R /:/. (4.10) 

It follows that the group N is generated by 

Ri:=Rai, ;=1,2, ... ,1. (4.11) 

A direct consequence of the well-known defining identities 
(rirj)k = 1 of the Weyl group are the identities 

RjRjRiRj ... = RjRiRjR j .... (4.12) 
k factors k factors 

Next consider the group 

A: = (R L ... ,R;) (4.13) 

generated by R t. According to (3.21), R: commute and the 
general element 

R 2EI R 2E[ ,.i 0 . 
1 ... /, e = or 1, I = 1,2, ... ,1, 

of A acts as ( _ l(lhl + ... + EII[. 

The abelian group A can thus be identified as 

hz,: = (Zh1 + ... + Zh/)/(2Zhl + ... + 2Zh/) 

~(Z/2Z)X"'X(Z/2Z) (!factors) (4.14) 

and with a E A corresponding to a E hz, and acting as 

(- l)a: (-I)al v(,<) = (- It(a). (4.15) 

It is c~nvenient to write A (a) for A (a) mod 2 so that 
( - W(a) = ( - 1)'< (a). In viewof(3. 18) there is a natural map
ping 

1T:N-+W 

with Ra ~ ra and 

R V(A ) = V(wA ) 

(4.16) 

(4.17) 

for all weight spaces V (A ) when 1T(R ) = w. Clearly A is in the 
kernel of 1T. In fact A is the kernel of 1T and we have the exact 
sequence 

(4.18) 

We can see as follows that (4.18) holds. Suppose that 
R E Nand 1T(R ) = 1. Then R stabilizes each weight space in 
every irreducible representation of K. In particular, 
Ad (R lea = ± ea for each a E A so that (AdR )2 = 1 and R 2 

is in the center of K. Thus R 2 acts as a scalar on each irreduci
ble representation (p, V). However, R stabilizes the top 
weight space (one dimensional) and using Kostant basis6 we 
againseeR 2 = 1. NowR = exp 21Tih,forh E hR andR 2 = 1, 
implies that h = !(€I,h1, + ... + €/h/), €i = 0,1. Thus 
R = (- 1)"ii EA, where a is €lh1 + ... + €/h/ taken in hz,. 

From (4.18) we have for the order IN 1 of N: 

IN 1 = 2/1 WI . (4.19) 

Since A is a abelian and A <I N, the action a ~ nan - 1 of 
N on A determines an action of W on hR' This is easy to 
specify. Recall that N acts on hR by (4.7). Since R ~hR = 1 
for all /3 E A, A acts trivially on hR and we have a representa
tion of Won hR' Precisely, 

(4.20) 
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This is no more than the action of Won hR induced by trans
posing the action of Won hR. : For all wEhR. , h E hR, 

wcp(h)=cp(w-1h). (4.21) 

Since W stabilizes hz = 1: Zh j , it thus produces a modulo 2 
action on hz,. Let a E hz, and ( - 1)"ii be the corresponding 
element of A. Then 

w.( - 1)"ii = ( _ 1)ui< . (4.22) 

If (p,V) is any unitary representation of K and 
V = e,< E n V (A) is the weight space decomposition of V, 
then we have seen 

R V(A ) = V(1T(R )A. ) 

and ( -W'lv(,<) =( - WIliJ [cf. (4.18) and (4.15)]. Important 
subgroups of N are those which stabilize a given weight space 

N,<= {RENIRV(A)= VIA)}. (4.23) 

As suggested by the notation, N,< does in fact only depend on 
A (not on the representation). An explicit description of N,< is 
given by the following considerations. Each W-orbit, 
WA (A En), contains unique dominant element A +: defined 
by 

A +(hj);;'O for all i = 1, ... ,1. (4.24) 

For A + dominant, let 

J:= fiE {l, ... ,/}1,1. +(h;}=O}. (4.25) 

Then N,< + is the group generated by A and by the Ro i E J. 
Alternatively, if we define 

WJ: = (rjliEJ), (4.26) 

thenN,< + is the full preimageNJ : = 1T- 1(WJ) of WJ inN, 

I-+A-+NJ-+WJ-+1. (4.27) 

ThecardinalityofthesetWA + = {wA +IWE W}ispre
cisely the index 

(4.28) 

of WJ in W. This is trivial to compute since WJ is the Weyl 
group of the subroot system of A based on {aj I j E J} . For A 
not dominant, choose WE Wsuch that A + = W-1A is domi
nant, and define N,< + as above. Then 

N,< = wN,< + w- 1 (4.29) 

Note that (4.29) makes sense since the choice of representa
tion R of w in N for computing (4.29) is immaterial. 

V.EXAMPLES 

In order to illustrate the content of Sec. III and IV, we 
consider here some particular cases. 

A. The group SU(3) 

Consider the lowest faithful representation with the 
highest weight A = (1,0) ofthe group SU(3). Its representa
tion space VA is spanned by the weight vectors 

I:g), Itn, and I~n . (5.1) 

For simplicity we omit the highest weight in symbols like 
(5.1) whenever there can be no ambiguity. According to 
(3.15). 
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R lllO) = 111), R IIIl) = - 110), Rll0I) = 101), 
(5.2) 

R211O) = 110), R2IIl) = 1°I), R 210I) = -111), 

and therefore we have in the SU(3)-representation (1,0) 

R·~G 
I 

D· R,~G 
° 

D· ° ° 

° 

R.R'~G ° 

~) ° (5.3) 

R:~G ° 

D· R:~G 
° 

D·ere I I 
° ° 

By a direct computation one is led to the conclusion 
that the subgroup N C SU(3) generated by RI and R2 is iso
morphic to the octahedral group 0 of order 24 and that the 
above representation is the three-dimensional irreducible 
representation with determinant of all elements equal one. 
Adopting notations of Ref. 16, it is the representation r 4 • 

Since N C SU(3), every SU(3) representation (p,q) re
duces with respect to N. That is 

5 

(p,q):::J Ell m;r;, (5.4) 
;=1 

where m; is the multiplicity of r; in the reduction. The mul
tiplicities are easily found for any (p,q) from the generating 
function (4.6)-(4.10) of Ref. 17. 

The elements RI and R2 of N lie in the same SU(3)
conjugacy class of regular elements of order 4 in SU(3), 
namely the one denoted by [2 1 1] in Table I of Ref. 10. Their 
character values on irreducible SU(3)-representations are re
stricted to 0, ± 1. 

B. The group SU(n) 

As in the previous case one finds a faithful matrix repre
sentation of N C SU(n) by considering the action of 
RiO i = 1,2, ... ,n - 1, in the lowest faithful representation 
(1,0, ... ,0) ofSU(n) according to (3.15): 

R;=I;_I Ell (~ ~) Ell In_;_I' i=I,2, ... ,n-l, 

(5.5) 

where Ik is the k X k identity matrix. From (4.19) we find 
that the order of N is IN I = 2n 

- In! 
It is obvious in (5.5) that all R; belong to the same SU(n)

conjugacy class of rational elements of order 4, which is 
identified as [210 ... 01] in Table 6 of Ref. 12. Except for SU(2) 
and SU(3), the R; are not regular in SU(n) and consequently 
the set of their character values over all irreducible SU(n) 
representations is an unbounded set of integers. The ele
ments R; satisfy the following identities 

R:= 1, 

R;Rj = RjR;, if Ii - jl > 1. 

R;RjR; = RjR;Rj if Ii - jl = 1. 

The exact sequence (4.18) can be written as 
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(5.6) 

I-+Z2X XZ2-+N-+Sn-+l. (5.7) 
n -1 times 

Here the Weyl group SU(n) is isomorphic to the symmetric 
group Sn of n letters. 

c. The groups USp(4) and 0(5) 

In the symplectic four-dimensional representation (1,0) 
of these groups, we have 

relative to the basis of weight vectors. Therefore, also 

Ri =Ri = 1, 
RIR2RIR2 = R2R IR2R I · 

(5.9) 

Similarly in the five-dimensional orthogonal representation 
(0,1), one has 

1 ° I 
° ° 1 ° 
° I ° andR2 = 

° 0 0 I 
° 

(5.10) 

which also satisfy the identities (5.9). The exact sequence 
(4.18) is in this case 

1-+Z2X Z2-+N-+D4-+1, (5.11) 

where D4 is the dihedral group. The order of N is 32. The 
elements RI and R2 are not conjugate to each other because 
they correspond to simple roots of different length. Their 
conjugacy classes are identified in Table 6 of Ref. 12 as [201] 
and [210], respectively, for RI and R 2• Both elements are 
rational, which implies that their characters take only in
teger values in any representation of the Lie group, but they 
are not regular which means that their character values are 
unlimited. For any given representation (a,b ) the characters 
R I and R2 are easily found from the generating function of 
Table V of Ref. 10. 

D. The group G2 

In the lowest representation (0,1) of dim = 7 of G2 , one 
has RI and R2 as 

R I = 1 Ell (~ ~) Ell 1 Ell (~ ~) Ell 1, 

o 
I 
o 

~) , 

(5.12) 

relative to the weight vector basis. The group N generated by 
(5.12) is of order 48. One has the exact sequence 

1-+~X~-+N-+D6-+1, (5.13) 

where D6 is the dihedral group, and the identities 
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Ri =R~ = 1, 
(5.14) 

RIR2RIR~IR2 = R2RIR2RlR2R 1 • 

The elements Rl and R2 are rational and nonregular in G2• 

Their G2-conjugacy classes are, respectively [201] and [110]. 
Their characters in any representation of G2 are found from 
the generating functions of Table VI of Ref. 10. 

VI. CONSTRUCTING BASES IN REPRESENTATION 
SPACES 

In this section we demonstrate and illustrate the reduc
tion of the problem of constructing a basis and computing 
the matrix elements of generators to similar problems of 
much smaller size involving only the dominant weight vec
tors. 

Given the general decomposition (3.8) of a space V in 
which a compact simple Lie group K acts irreducibly as a 
representation p, it is natural to consider the present prob
lem as a construction of bases in every weight subspace 
V(A) C V, where A En. Let us point out that in almost every 
application, and certainly in all of them in elementary parti
cle physics, one chooses a basis of weight vectors relative to 
some Cartan subalgebra of g whenever an explicit use of a 
basis is made. Otherwise one could not associate quantum 
numbers with the basis vectors-physical states. The dimen
sion of V (A ) is the multiplicity of A in n so that the basis 
construction in V(A) is a nontrivial problem only when 
dim VIA» 1. 

Using notations of Sec. III, let us recalp4 the following. 
For every weight A En there exists a unique dominant 
weight A + E n such that A E WA +. If A = WA + then also 
A = W Stabw(A +)(A +). There exists a unique canonical W 
such that 

(6.1) 

in which the number k of reflections ri is minimal. We define 

(6.2) 

Although W is unique, its expression as a word in the reflec
tions r1, ... ,r[ is not. Thus w depends on the choice of the 
writing W in (6.1). If rh ···rjm is any other expression for W 

(minimal or not), then Wi = Rjl ••. Rjm is some other preimage 
ofwinNands: = w-1w'stabilizestheweightspace VIA +). 
Hence it is unavoidable to consider the effect of such ele
ments sEN on the weight spaces they stabilize. 

Let us assume that for each dominant weight A + E n 
we have an orthogonal basis [problem (i) ofIntroduction] 

IA +)I, ... ,IA +)m of VIA +), dim VIA +) = m. 

Then for A as in (6.1) we define 

wlA +)1' wlA +)2,···,wIA +)m 

(6.3) 

(6.4) 

as our basis for VIA ). which solves part (a) of problem Iii) of 
the Introduction. In the following five examples we illustrate 
our approach to that problem. 

Example 1 [SU(2))" All V(A) are one dimensional. A 

Ih) = (- 1)IL-M)l2R It) , (6.5) 

where we have used the phase factor in order to keep the 
convention in complete agreement with Sec. II. 

Example 2 [SU(3) representation (1,0))" There is only 
one dominant weight A + = (1,0) in n of multiplicity 1. The 
basis is given in (5.2). 

Example 3 [the adjoint representation (2,0) ofSp(4)): By 
assumption we know the basis vectors 

120), 101), 100) I' 100)2' 
Then the rest is given by 

R 1120) = 122), 
R 2R 1120) = 122), 
R 1R2R 1120) = 120), 

R 2 101) = 121), 
R IR 2 10 l) = 121), 
R2R I R2101) = 101) . 

(6.6) 

Example 4 [SU(3) representation (3,2) of dim =42): 
Properties of dominant weights are shown on Fig. 1. Assum
ing that we have pairwise orthogonal dominant weight vec
tors 

IIO)j, j= 1,2,3, 

the basis is given by 

132), RJ31) = R2R 1132) = 121), 
R 1132) = 131), R 1152) =R IR2132) = 153), 
R2132) = 152), R2153) = R2R IR2132) = 123), 
113), R2114) = R2R 1113) = 134), 
R2113) = 123). R 1134) =R IR2R I I13) = 131), 

140), 

R I I40) = 144). 
102);> i = 1,2, 

R2102)i = 122)/ 

(6.7) 

basis of VIA +) consists of It), M>O. As a basis vector in FIG. 1. Dominant weights of the weight system of the SU(3)-representati on 
V ( - A +) we take (3,2), their multiplicities, and the positive roots by which they differ. 
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IIO)j,j = 1,2,3, 
Rd lO)j = IIl)j' 
121)i' i= 1,2, 
Rd21)i = 123);0 

R 2123)i = R~1121)i = 113)i' 
R 1131)i = R IR 2121)i = 132);0 

(6.8) 

R2121)i = 131)i' R 1113)i =R IR 2Rd21)j =R2132)i 
=R~IR2121)i = 112);. 

The last example, although it still refers only to a group 
of rank 2, makes it obvious that it is impractical to explicitly 
write all basis vectors in larger spaces. Instead one should 
construct the basis for dominant weight subspaces and any 
other ones only when needed for a particular task at hand. 

Example 5 [0(16)-representation (OOOOOOO~) of 
dim = 11 440}: The dominant weights and their mUltiplic
ities are found in Ref. 18; they are shown on Fig. 2. Assum
ing that an orthogonal basis in each of the three dominant 
weight subs paces of dim> 1 has been constructed, the rest of 
the construction is a mechanical application of CCO similar 
to (6.8). Thus from 1000000:) one gets 27·8!17! = 1024 other 
basis vectors, from each of the three 1000000: )J, j = 1,2,3, 
one gets 27·81/5!·4! = 1792 others, from each of 
100100g)k, k = 1, ... ,10, one gets 26·81/3!·24·5! = 448 new 
ones, and from each 1100000g) n' n = 1, ... ,35, one gets 27.81/ 
26·7! = 16 new basis vectors. Here the numbers are calculat
ed using (4.28) and the orders of Weyl groups given for in
stance in Refs. 15 or 18. 

Suppose now that we need the basis in a particular 
weight subspace, say V(A) = V(OIIoIot). ApplyingR j with 
subscripts corresponding to negative entries in the corre
sponding weight for as long as possible one finds 

V(OOOOlOg) = R5R3R7R~4R5V(01IoIot). (6.9) 

Then applyingR j- I in the inverse order to that in (6.9) to the 
basis vectors 10000 1 og ) i' i = 1,2,3, one gets the desired ba
sis. Arrived at in this way the element w of N is bound to be of 
minimal type. 

Let us now exemplify the truly difficult part of our 
problem: construction of bases in dominant weight sub
spaces. Also here CCO operators provide a valuable tool. 

Example 6 [the adjoint representation (1,1) of SU(3)]: 
The dominant weight subspace V (00) is of dim = 2. Its basis 
can be constructed as follows: Consider the highest irreduci
ble component in the tensor product (1,0) ® (0,1) which is 
the adjoint representation. Its dominant weight vectors 111), 
1(0),., and 1(0) B can be chosen as 

111) = 110)101), 

1(0),. = (lI~)(II1)ll1) + 110)110»), (6.10) 

100B = (lI~)(II1)ll1) + 1°1)1°1»). 

Here the linearly independent but nonorthogonal vectors 
1(0) A and 1(0) B span V(OO). Instead of(6.1O) one could ob
servel9 that N acts irreducibly on V(OO). Its two-dimensional 
representation is generated by matrices 

m l =(1 . ° (6.11) 

(cf. Table IX, Ref. 16) and, by definition of N, also by R I and 
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(10 times) 

(35 times) 

FIG. 2. Dominant weights of the representation (000000:) of 0(16) of di
mension 11440, their multiplicities, and the positive roots by which they 
differ. 

R 2.On V(OO) one can identifym l withR I. Then the eigenvec
torsR I 

R11(0) ± = ± 1(0) ± (6.12) 

provide an orthogonal basis of V(OO). Using (6.10) one has 
explicitly 

1(0)- =(lI~)(II1)I11) + 110)110»), 
(6.13) 

1(0) + = (lIv'6)(II1) 111) - 110) 110) + 2101) 1°1»). 
Example 7: As our next example let us construct the 

dominant weight basis vectors (6.7). For that consider the 
representation (3,2) as the highest irreducible component in 
(3,0) ® (0,2). Since (3,0) and (0,2) have only one-dimensional 
weight spaces, their weight vectors 11°) and 1~2) provide a 
basis for our problem. For A + of multiplicity one in {} of 
(3,2), one has 

m) = l~g)lg~), m) = m)lg~), I~) = l~g)I~~)· (6.14) 

The two-dimensional subspace V(02) is stabilized by R I' 

R I V(02) = V(02). (6.15) 

Hence, its basis can be taken as eigenvectors of R I. In order 
to identify the eigenvalues, it suffices to notice that there are 
two aI-strings passing through V(02) of V corresponding to 
SUa1(2) representations of dimensions 5 and 3. Since accord
ing to (2.17), R 16) = 16) but R I~) = -I~), the RI-eigen
values are ± 1. Consequently, we can choose 
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R I16DI = 16~)1 andRI16~)2 = -16D2 

as the basis V(02), or explicitly 

16~) I = (lI~)(lt~) I?~) + I~?> I~i», 

16~)2 = (lIv'6)(lf~) I?~) - I~?> I~i> + 21~) IgD) . 

Then it is natural to also choose 

Iii) I = (1 J6) e 116~ ) I = ~ (,[3 I~?) I?~) + I ~g ) I ~i ) ), 

lii>2 = (1I~) eI16~)2 = (1/f2)(I~?> I?~) 

(6.16) 

(6.17) 

(6.18) 

- ,[31~g) I~i> + 2~1~~) IgD) . 

The coefficients above (other than the overall normalization) 
are a result of the application ofSUP(2) generators along the 
corresponding p-string [cf. (3.14)] according to (2.5). The 
three-dimensional subspace V(lO) is stabilized by the sub
group (R 2,R i) of N generated by R z and R i. There are 
three az-strings passing through it oflengths 5, 2, and 1. Due 
to (2.17), one can thus require that 

Rzl~~) I = I~~) I and e~ I~~) I - m) = It~) Ig~) = R lin), 
Rzl~~)2 = - 1~~)2 and e21i6 )z-(1 - R z) e_216~ )z, (6.19) 

Rzi i6 ) 3 = I ~~ ) 3 and e ± 21 ~~ ) 3 = 0, 

where - indicates that both sides differ only by a constant 
nonzero factor. 

Explicitly (6.19) is 

I~~) I = (lIv'6)(I~n Ig~) + It~) I~~) + 21~) I?~»), 

I~~)z = (lIv'6)(lfn Ig~) - Itn I~P - ~Iin I~i> 

- ~I~?) Igj »), 

1~~)3 = (1I,f30)(31~?>lgD - 31~n I~i> + ~It~) I~P 

+~m)lg~) -~I~)I?~) +v'6I~g)I~~»)· 

(6.20) 

Let us point out that using the product form (6.20) for each 
I i2), the conditions (6.19) do not guarantee that I ~~ ) 3 lies in V 
because the product space is reducible and contains other 
SU(3) irreducible representations than (3,2). (In fact there are 
six linearly independent vectors 110) in the product space 
corresponding to several highest weights A.) In order to as
sure that I f~ ) 3 C V, one can proceed for instance as follows. 
A third vector of V(lO) which is linearly independent from 
If~)1 and 1~~)2' is (1 +Rz)e2_zltnlg~)· Then If~)3 is the 

FIG. 3. Essentials of the basis for the adjoint representation of SU(3). The 
I X 2 matrix in the light rounded box gives the matrix elements of the gener
ators e ± , ± 2 between the orthonormal dominant weight vectors; upper 
(lower) signs refer to matrix elements of e _, _ 2 (e, + 2)' 
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3 

20 

FIG. 4. Essentials of the basis for the SU(3) representation (3,2): dominant 
weights, their multiplicities and matrix elements of generators between or
thonormal basis vectors of dominant weight subspaces. Upper (lower) signs 
correspond to lowering (raising) generators. 

linear combination of the three which is normalized and or
thogonal to I i~ ) I and I i~ ) 2' 

Finally, let us illustrate how all the relevant informa
tion concerning a basis and corresponding matrix elements 
can be presented and used [problem (ii)(b) of the Introduc
tion]. 

Example 8: Let us continue Example 6. In Fig. 3 one 
finds the dominant weights of the adjoint representation of 
SU(3) and two matrices representing the action of the gener
ator e l +2 = ejeZ - eZe j on the chosen basis (6.13) of V(OO) 
ande_ I _ 2 =e_ Ie_ 2 -e_ 2e_ 1 on V(II).Namely, 

e_ I_ 2111) =MIOO)_ -$72100)+, (6.21) 

e l + 2100)_ =Mlll), el + 2100 )+ =$72111). 
(6.22) 

Using Fig. 3 many other matrix elements can readily be 
found, for instance, 

e_2112) =e_ 2 R II1l) =RjR2-le_2Rllll) 

-R ILI_2111) 

- RI(~112100) _ - $72100) +). (6.23) 

Similarly, using (6.12) and (6.23), one has 

e _ 2112) = MIOO) _ + ~3/2100) + . (6.24) 

Example 9: Consider again Example 7. On Fig. 4 we 
have summarized the relevant information, i.e., the basis 
vectors (6.14), (6.17), and (6.18) together with the matrix ele
ments of generators relating them. Thus for instance, the 
nonzero matrix elements of e _ I _ 2 = e _ Ie _ 2 - e _ 2 e - I 
are read off Fig. 4 as 

e _ I _ 2132) = (1I~)121) I - (3/v12)121 )2' 
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and 
e_ I _ 2121)1 = -110)1 +~5/211O)3' 

e _1_2121)2 = -110)1 - 2110)2 - ~5/211O)3' 
and 

e_ I _ 2113) = 102)1 =vi2102)2' 

while for el + 2 = ele2 - e2el , one has 

e1+211O)1 = 121)1 + 121)2' 

e l + 2110)2 = 2121)2' 

e l +2110)3 = - ~5/2121)1 + MI21)2' 

e l +2121)1 = - (1Ivi2)132), 

e l +2121)1 = (3/vi2) 121)2' 

e1+2102)1 = -113), el+2102)2=~I13). 
Proceeding as in the previous example one finds any other 
matrix elements of ep , /3 E.::1, in terms ofthose of Fig. 4. 
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Enveloping algebra annihilators and projection techniques for finite
dimensional cyclic modules of a semisimple Lie algebra 
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Some results on the structure of finite-dimensional cyclic modules for a semisimple Lie algebra 
are presented. Cyclic modules arise naturally in constructing symmetry adapted states of a system 
using projection. Projecting out states with definite symmetry from an arbitrary state 1/1 is related 
to the properties of the cyclic module generated by 1/1. An important example of a cyclic module is 
the tensor product of two irreducible modules VIA ) ® Vip) which is cyclically generated by the 
vectorrf_ ® if+ ,whererf_ (resp., if+ lis the minimal (resp., maximal) weight vector of V(A )[resp., 
Vip)]. For this particular case we determine the explicit form ofthe annihilator, in the universal 
enveloping algebra, of the cyclic vector rf_ ® if+ . It is hoped that this result may add new insight 
into the Clebsch-Gordan mUltiplicity problem. As an application of this result projection 
operators are constructed which project, from an arbitrary vector of weight A, a maximal weight 
vector of weight A. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

The theory of Lie groups has now been established as an 
invaluable tool in physical applications where they usually 
appear as the symmetry group of the system. The states of a 
physical system are then to comprise irreducible representa
tions ofthe symmetry group. Lie groups afford not only con
venient analytic methods but in practice are essential for 
determining selection rules and for the numerical solution of 
the equations of motion of the system by allowing the Hamil
tonian to be broken into a convenient block form. Lie groups 
also provide suitable labels (i.e., quantum numbers) for phys
ical states even though such Lie groups need not be symme
try groups. 

An important problem in the analysis of quantum me
chanical systems is the construction of wave functions with 
definite symmetry properties under a (semisimple) Lie group 
(which may be the symmetry group of the system or any 
group used to provide suitable quantum numbers for the 
physical states). Such wave functions can be obtained most 
naturally by means of projection operators. The method of 
projection has proved in the past to be a powerful tool for 
handling the various state labeling problems of physical in
terest. Projection operator techniques were successfully em
ployed by Elliot l

•
2 to the U(3PO(3) state labeling problem. 

Asherova and collaborators3 have extensively developed the 
infinitesimal projection technique introduced by L6wdin4 

and Shapiro.5 The methods of projection have also been ap
plied to the Clebsch-Gordan multiplicity problem for a 
semisimple Lie group G (See Ref. 6) (i.e., the G X G-:::> G state 
labeling problem). More recently these methods were ap
plied7 to give a solution to the symplectic group state label
ing problem. A more detailed account of the various meth-

01 Present address: School of Chemistry, The University of Western Austra
lia, Nedlands, Western Australia 6009, Australia. 

blSchool of Earth Sciences, Macquarie University, North Ryde, 2113, New 
South Wales, Australia. 

ods of projection can be found in Moshinsky et al.,8 

Asherova and Smirnov/ MacDonald,9 and Edwards and 
Gould. 6 

In this paper we consider the problem of constructing 
projection operators for a semisimple Lie algebra which pro
ject out, from a weight vector of given weight 
A = (AI, A2 , ... ,Atl, a maximal weight vector of weight A. A 
solution to this problem, for the simple Lie algebras, has 
been proposed by Asherova et al.,3 who represent their pro
jection operators as a certain series in powers of the infinite
simal generators. We present here an alternative approach, 
applicable to any semisimple Lie algebra, which employs 
central projection using only the universal Casimir invariant 
of the associated Lie algebra. The emphasis in our work is on 
the structure of finite-dimensional cyclic modules for a semi
simple Lie algebra. Cyclic modules arise naturally in con
structing symmetry adapted states of a system using projec
tion. Projecting out states with definite symmetry from an 
arbitrary state 1/1, which is known to belong to a finite-dimen
sional Hilbert space, essentially reduces to analyzing the 
properties of the cyclic module generated by 1/1. 

To this end we consider in this paper some elementary 
properties of finite-dimensional cyclic modules for a semi
simple Lie algebra. The structure of a finite-dimensional cy
clic module is uniquely determined by the annihilator of the 
cyclic vector in the universal enveloping algebra of the Lie 
algebra. An important example of a cyclic module is the 
tensor product oftwo irreducible modules V(A) ® VIp)which 
is cyclically generated by the vector rf_ ® if+ ' where 
rf_ (resp., if+ ) is the minimal (resp., maximal) weight vector 
of VIA ) [resp., Vip)]. By adapting a result of Parthasarathy, 
Ranga Rao, and Varadarajan lO we determine the explicit 
form of the annihilator of the cyclic vector rf_ ® v"+ . This 
opens up the interesting possibility of treating the tensor pro
duct of two irreducible modules infinitesimally using an in
duced module construction analogous to that applied by 
Verma II and Gel'fand et al. 12 to the theory of Verma mo
dules (see also Humphreys13 and DixmierI4).1t is hoped that 
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this may add new insight into the Clebsch-Gordan multi
plicity problem (cf. Ref. 6). 

It shall be shown that all finite-dimensional cyclic mo
dules, generated by a weight vector, may be imbedded, in a 
natural way, in the tensor product of two irreducible mo
dules. This result yields, in particular, a method for con
structing projection operators which project from a weight 
vector if of weight A a maximal weight vector of weight A. 
Projection operators of this form have found considerable 
application in atomic and nuclear physics3

•
9 and in particu

lar are useful for the construction of raising and lowering 
operators for a semisimple Lie algebra (cf. Refs. 15 and 16). It 
is interesting to note that, since all finite-dimensional cyclic 
modules may be naturally imbedded in the tensor product of 
two irreducible modules, the approach of Ref. 6 to the 
Clebsch-Gordan multiplicity problem may be extended, in 
principle, to any finite-dimensional cyclic module. We re
mark, in this connection, that cyclic modules in fact appear 
naturally in several state labeling problems of physical inter
est (see Ref. 6). 

The paper is organized as follows. In Sec. III we consid
er some elementary properties of finite-dimensional cyclic 
modules and some preliminary results on projection from a 
weight vector. In Sec. IV we determine the explicit form of 
the universal enveloping algebra annihilator of the cyclic 
vector if_ ® if+ of the tensor product of two irreducible mo
dules VIA ) ® V{JL). In Sec. V we demonstrate that a finite
dimensional cyclic module may be naturally imbedded in the 
tensor product of two irreducible modules. This result is ap
plied to the construction of projection operators which pro
ject, from a weight vector of weight A, a maximal weight 
vector of weight A. It is demonstrated that our projection 
operator construction, in a sense, is the simplest possible. We 
conclude with some remarks concerning cyclic modules and 
the application of our methods to the various state labeling 
problems of physical interest. 

II. NOTATION AND FUNDAMENTALS 

Our notation follows that of Humphreys. 13 We let L 
denote a complex semisimple Lie algebra of rank 1 and let U 
denote the universal enveloping algebra of L. Throughout 
we shall assume that a fixed choice of Cartan subalgebra 
Hr;;;L has been made, as well as a choice of base 
.J = {al, ... ,a/} r;;;H*. We denote the set of roots by if> and 
the corresponding set of positive roots by if> +. The funda
mental dominant weights are denoted {Al, ... ,A/}; they are 
defined from.J via 

(A j , aj ) = 2(Aj, aj)/(aj , aj ) = ~jj' 

where ( , ) denotes the inner product induced on H * by the 
Killing form. The set of all integral linear combinations of 
the fundamental dominant weights is denoted A r;;;H *, and 
the sublattice of all dominant integral weights is denoted 
A + CA (i.e., those weights A E A such that (A, a j ) >0, i 
= 1, ... ,/). 

It is convenient to fix a standard set of generators for L. 
For each positive root a, let ha be the element of H satisfying 
K(ha , h ) = a(h I, for all h E H, where 
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K(x,y)=tr[adxady], x,YEL 

denotes the Killing form. Fix Xa and Ya by the requirements 

[h, xa] = a(h }xa, 

[h, Ya ] = - a(h lYa' 

[xa,Ya] = ha' 
for all h E H. For a = a j E.J we write h j , etc., for ha . The 
standard generating set is then {xj,Yi> hj; i = 1, ... ,/ i. We 
can decompose L as 

L=BffiHffiN, 

where B (resp.,N) is the nilpotent subalgebra generated by 
the {Xj j(resp., {yj j). According to the P.B.W. theorem l3 the 
universal enveloping algebra U may be factorized as 
U = U (B)U (H)U (N), whereU(B )[resp., U(H), U(N )]isthe 
universal enveloping algebra of B (resp., H, N). 

If V is a U-module we denote by VA the subspace 
spanned by vectors of weight A; viz. 
VA = {v E V Ihv = A (h lv, V h E H ). If V is finite dimen
sional it can be shown 13 that Vis the direct sum of its weight 
spaces. We note that the elements of U (B ) and U (N) may be 
classified according to their weights under the adjoint action 
of H in U. We have in fact the following easy result (cf. Ref. 
13). 

Lemma 1: Let if> + = {13j, ... ,/3m }. Then we have the fol
lowing. 

(a) U(B) [resp., U(N)] is spanned by basis monomials 

it ;171 ( i l im) . '7+ xp, ,,,xp,,, resp, Yp, '''YP",' Ir E L . 

In particular U (B ) [resp., U (N )] is the direct sum ofits weight 
spaces. 

(b) The weight spaces of U (B ) and U (N) are finite dimen
sional. 

Proof Part (a) is an immediate consequence of the 
P.B.W. theorem and the fact that Xj,· .. ,xm (resp., Yl, ... ,Ym) 
form a basis for B (resp., N). 

As to part (b) we note that the basis monomial 

( 1) 

has weight l:;." = 1 ir13r· Rewriting each 13r as a positive Z-lin
ear combination of simple roots we see that the basis mono
mial (1) has weight of the form 

I 

I,kjaj , k j EZ+. (2) 
i= 1 

Clearly there is only a finite number of basis monomials (1) 
for which l:r ir13r equals a prescribed weight (2). An analo
gous statement holds for the basis monomials of U (N). 

Q.E.D. 
If V is a U-module and v E V then Uv is a submodule of 

V. We call Va cyclic U-module if there exists v E V such that 
V = Uv. Welet/(v)r;;; U denote the left idealin Uwhichanni
hilates the vector v; i.e., 

I(v) = {u E Uluv = OJ. (3) 

From the isomorphism theorem (cf. Ref. 17) we obtain the 
following isomorphism of U-modules: 

Uvst,U/I(v), (4) 

where the rhs denotes the set ofleft cosets of U modulo I (v). 
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Let VIA. ) be a finite-dimensional irreducible U-module 
with highest weight A. E A + and let zT'+ denote the highest 
weight vector of V (A. ). By definition of maximal weight vec
tor and the P.B. W. theorem we have 

V(A.) = UzT'+ = U(N)U(H)U(n )zT'+ = U(N)zT'+. (5) 

The left annihilator of zT'+ , denoted / + (A. ) = / (zT'+ ), is 
knownll

•
13 to be given explicitly by 

I I I 

/+(A.) = IUx; + IUy;,,+.5·a,> + I U[h; -A. (h;)], (6) 
;= 1 ;=1 ;= 1 

where 0 denotes the half-sum of the positive roots (recall 13 

that (o,a;) = 1 for i = 1, ... ,/). As well as a highest weight 
vector the module V (A. ) possesses a unique (up to scalar mul
tiples) lowest weight vector, denoted v-:'" ,of weight - A. *, 
whereA. * denotes the highest weight of the irreducible mod
ule V(A.)* contragredient to VIA. ). In analogy with Eq. (5) we 
obtain 

V(A.) = UzT'_ = U(n )U(H)U(N)zT'_ = U(n )zT'_. (7) 

Similarly in analogy with Eq. (6) the left annihilator of v"_ , 
denoted / _(A. ) = / (zT'_ ), is given explicitly by 

I I I 

L(A.) = I Uy; + I Ux;"*+.5·a,> + I U[h; +A. *(h;)]. 
;=1 i= 1 ;=1 

(8) 

We let> denote the usual ordering induced on the 
weights by the positive roots; i.e., A. > f-l if and only if A. - f-l is 
a positive Z-linear combination of positive roots. If V(A.) is 
finite dimensional and irreducible with highest (resp., low
est) weight A. (resp., - A. *) then the weights f-l #A. (resp., 
f-l # - A. *) occurring in VIA. ) necessarily satisfy f-l <A. (resp., 
f-l> - A. *). 

Finally we let CL denote the universal Casimir invar
iant of L. If V (A. ) is irreducible with highest weight A. E A +, 
Schur's lemma implies C L takes a constant value on V (A. ). 
This eigenvalue is given by the well-known formula 13 

X" (CL ) = (A., A. + 20). 

III. FINITE-DIMENSIONAL CYCLIC MODULES 

We consider here certain elementary properties of fin
ite-dimensional cyclic modules. Unless otherwise stated 
V = UIf' denotes a finite-dimensional cyclic module gener
ated by a weight vector If' ofweightf-l EA. Set V(O) = U (n )If' 
and let n(O) denote the set of distinct weights in V(O). For 
A. E n(O), let motA. ) denote the multiplicity of the weight A. in 
V(O); i.e., mo(A.) is the dimension of the weight space V~). 

Since Vis finite dimensional, Weyl's theorem guaran
tees that Vis a direct sum of irreducible submodules. Some of 
the properties of this decomposition are given in the follow
ing (notation as above). 

Theorem 1: Let V = UIf' be a finite-dimensional cyclic 
module and let 

V= e V(A.) 

" 
be the decomposition of V into irreducible submodules. 
Then the following hold. 

(9) 

(a) The highest weights occurring in the decomposition 
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(9) are of the form A. En (0) n A +. In particular A. = f-l or 

A. > f-l. 
(b) The irreducible module V (A. ) occurs in V with multi

plicity m v (A. )~mo(A. ). In particular m v( f-l)~ 1. 
(c) m v( f-l) = 1 if and only if If' ~~: = I Ux; If' . 
Proof Let V (A. ) ~ V be irreducible with highest weight 

vector zT'+ . Since If' cyclically generates V it follows that If' 
cannot be orthogonal to VIA. ), i.e., 

(If' W(A. ) #0, 

because 

0# (If' I VIA. )q(1f' I U(N)zT'+ ) #0 

q( U(n)1f' 1zT'+ ) #0 

q( V(O)IPozT'+ ) #0. 

Now let Po be the orthogonal projector onto V(O). Then we 
have [see Eq. (5)] 

0# (If' W(A. )q(1f' IU(N)zT'+ )#0 

q( U(n)1f' Iv"+ ) #0 

q( V(O)IPov"+ ) #0. 

Thus it follows that 

Pov"+ #0. (10) 

If W(+)~ V denotes the subspace spanned by maximal 
weight vectors, Eq. (10) implies that Po is I-Ion W(+); i.e., 

PoW(+)~ V(O), with dim W(+) = dim poW(+). 

If W~ +)~ W(+) denotes the subspace of maximal weight 
vectors of weight A. then Po W~ + ) ~ V~), and the irreducible 
module V(A.) occurs in Vwith multiplicity 

m(A. ) = dim W~ +) = dim PoW~ + J~dim V~J = motA. ). 

In particular, since mol f-l) = dim V~J = 1, we see that the 
module V( f-l) occurs with at most multiplicity 1. By defini
tion, in order for V (A. ) to occur, we must have A. E A +. This 
proves parts (a) and (b). 

As to part (c), set 
I 

Y= IUx;lf'. 
i= 1 

By part (a) of the theorem we note that UX; If' is a cyclic 
module and the irreducible representations occurring in 
UX; If' have highest weights A. > f-l. Thus Y is a direct sum of 
irreducible submodules with highest weights A. > f-l and it fol
lows that V ( f-l) cannot occur in Y. 

Thus if V( f-l) occurs in V [i.e., mv( f-l) = 1] then Y # V 
whence If' Et Y. Conversely if If' Et Y let V' denote the orthogo
nal complement of Yin Vand let P 'be the projection onto V'. 
Then If'+ = P'1f' is a maximal weight vector ofweightf-l 
sincex;lf'+ = P' x; If' = 0 (because x; If' E Y, i= 1, ... ,1). 
Thus V( f-l) must occur as a submodule of V. Note that be
cause If'+ = P'1f' cyclically generates V' it follows that 
V' = V ( f-l) is irreducible with highest weightf-l and we have a 
decomposition V = V( f-l) e Y. This completes the proof of 
the theorem. 

Q.E.D. 
The above result gives some information concerning the 

decomposition (9) of a cyclic module V into irreducible sub-
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modules. However we have not yet determined the multi
plicity with which the irreducible module V(,1 ) occurs in the 
decomposition (9). As noted in Theorem 1 it suffices to deter
mine the highest weight vectors which occur in V. Alternati
vely the decomposition (9) may be uniquely characterized by 
the ring of U-module homomorphisms (or intertwining op
erators) on the space V. 

If Vand Ware U-modules, a U-module homomor
phism (or intertwining operator) is defined as a vector space 
mapping T: V_Wwhich intertwines the action of Land 
hence U; viz. Tuv = uTv for all u E U, V E V. It is customary 
to denote the space of intertwining operators from Vonto W 
by HomL(V, W). We set 

(V:W) = dim HomL(V, W). 

In view of Weyl's theorem of complete reducibility one may 
establish that 

(V:W) = (W:V). 

If V is a finite dimensional U-module then clearly the 
irreducible module V (A ) occurs in Vif and only ifthere exists 
a (nontrivial) intertwining operator from V(,1 ) into V [or 
equivalently an intertwining operator from Vonto V(,1 )]. 
The irreducible module occurs in V with multiplicity 
(V (A ): V). Moreover, if V = U1f' is cyclic then an intertwining 
operator T: V-V(,1 ) is uniquely determined by its action on 
the cyclic vector 1f' ; Tu1f' = u T1f' for all u E U. We have the 
following result (notation as in Sec. II). 

Lemma 2: Let V = U1f' be a finite-dimensional cyclic 
module and let I (if ) ~ U denote the left annihilator of if in 
U. Suppose V (A ) is finite-dimensional and irreducible and set 

S(,1)= IVE VI'(,1)II(1f')v=Ol· 

Then the irreducible module V (A ) occurs in V with multiplic
ity dim S (A ). 

Proof Let S (A ) be as in the statement of the lemma. In 
view of our previous remarks it suffices to show that 
dimS(,1) = dim HomdV, V(,1)). We set up a vector space 
homomorphism tp:HomL(V, V(,1 ))_S(,1), T-T1f'. Since 
Tis an intertwining operator andI(if)if = 0, we must have 
I(1f')Tif =0 (and in particular T1f' has weight Jl); i.e., 
T1f' E S (A ). This establishes that tp is well defined. We show 
that tp is a vector space isomorphism. The cyclic nature of 
the vector if guarantees that tp is 1-1 (Tif = 0 implies u Tif 
= Tu1f' = 0 for all u E U; i.e., T = 0). It remains to show tp 

is onto. Choose v E S (A ); we set up an intertwining operator 
T: V-V (A) defined by Tuif = uif for all u E U. Since 
I (1f')1f' = 0, it is clear that T is a well-defined element of 
HomL(V, V(,1)) and tp(T) = if. This shows that tp is onto 
whence tp is an isomorphism of vector spaces. 

Q.E.D. 
The above result on multiplicities looks formally prom

ising but its applicability is determined by the ease with 
which the left annihilator of the cyclic vector 1f' may be 
obtained. The results of Theorem (1) nevertheless indicate 
that certain properties of the cyclic module V may be ob
tained simply from a knowledge of the weights in the space 
U(B)if . With regard to part (c) of Theorem 1, we note that in 
order for Vip) to occur in the cyclic module V we must have 
Jl E A + (this condition is necessary but not sufficient). In 
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such a case we may construct a maximal weight state of 
weight Jlby projection from the cyclic vector 1f' . We have in 
fact the following result. 

Lemma 3: Suppose Jl E A + and let V = U1f' be a finite
dimensional cyclic module. Set V(O) = U(B)1f' and let II(O) 
denote the set of distinct weights In V(O). Put 
r=A + nII(O)-IJll and set 

II ( CL - X,dCL) ) 
P = ;"EF XI'(CL) - X;.. (CL) . 

Then 1f'+ = W is a maximal weight vector ofweightJl. The 
module V ( Jl) occurs in V if and only if W =1= o. 

Proof In order to prove the result it clearly suffices to 
show that the universal Casimir element C L separates the 
weight Jl from the weights in r. We have 

b(CL) - XI'(CL) = (A, ,1+ 28) - (Jl,Jl + 28) 

= (A - Jl, ,1+ Jl + 28). (11) 

For a E tP + we have (8, a) > 0 and for A, Jl E A + we have 
(A + Jl, a);;;'O whence (A + Jl + 28, a) > O. If A E r we have 
A > Jl whence A - Jl is a sum of positive roots and in such a 
case the rhs ofEq. (11) cannot vanish. This proves the result. 

Q.E.D. 
This result shows that one may construct projection 

operators which project from a weight vector 1f' of weight 
Jl E A + a maximal weight vectorofweightJl. Note that since 
only one copy of V ( Jl) can occur in the cyclic module 
V = U1f' ,1f'+ = W is the unique (up to scalar multiples) 
maximal weight vector ofweightJl E A + which can occur in 
Vand hence any maximal weight state of weight Jl E A + 

constructed from if by projection necessarily yields the vec
tor 1f'+ = W. 

The drawback in this method however is that one re
quires a knowledge of the weights occurring in the (finite
dimensional) space U (B )if . In Sec. V we shall consider an 
alternative construction of such projection operators which 
requires far less information. We note also that the projec
tion operator P in Lemma 3 may be represented by the for
mal infinite product 

P= II ( CL - b(CL) ) 
;"EA+ XI'(CL)-X;..(CL) . 

An important example of a cyclic module is afforded by 
the tensor product of two irreducible modules 
V (A ) ® V ( Jl); A, Jl E A +. We have the following result (nota
tion as in Sec. II). 

Lemma 4: V(,1 ) ® V( Jl) is cyclically generated by the 
vector Vo = v". ® 1f'+ . 

Proof From the definition of maximal weight vector we 
have Xi 1f'+ = 0, which implies U (B )1f'+ = C1f'+ . Equation 
(7) then implies 

U(B )vo = [U(B )~~ ] ® 1f'+ = V(,1) ® 1f'+ . (12) 

Now set Vo = Uvoand consider the subspace of V(Jl) defined 
by V = I v E V(Jl)W(,1) ® v~ Vol. Clearly Vis a U-submo
dule of V( Jl) since for v E V, X E L, 

li./®xv=x(li./®v)-(Xli./)®VE Vo, forallli./E V(,1), 

which implies xv E V for all x E L. However V is nontrivial 
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since, by Eq. (12), v"+ E V whence irreducibility of V(,u) 
forces V = V ( ,u). Thus we must have 
Vo = UVo = V (A. ) ® V ( ,u) and the result is proved 

Q.E.D. 
Note that the cyclic vector Vo = zf_ ® v"+ has weight 

,u - A. * (cf. Sec. II). The subspace VIOl = U(B )voin this case is 
given by [cf. Eq. (12)] VIOl = VIA. ) ® v"+ . Hence, asa particu
lar case of Theorem 1, we obtain the following well-known 
result. t3 

Lemma 5: The irreducible representations occurring in 
V (A. ) ® V ( ,u) have highest weights of the form,u + v E A +, 

where v is a weight in VIA. ). Moreover the multiplicity 
m(,u + V:A. ®,u) of V(,u + v) in VIA. ) ® V(,u) is less than or 
equal to the multiplicity of the weight v in VIA. ); i.e., 
m(,u + v: A. ®,u)<dim Vv(A.). 

o 
In the case of the tensor product of two irreducible mo

dules the methods used in the proof of Theorem 1 may be 
extended to yield the following result originally due to 
Parthasarathy, Ranga Rao, and Varadarajan 10 (see also Ref. 
6). We follow the argument presented in Ref. 6 [notation as 
in Lemma 5]. 

Theorem 2: Set Vo = zf_ ® v"+ ' VIOl = VIA. ) ® v"+ and 
let Vv, I' (A. ) ~ Vv (A. ) be the subspace defined by 

VV,I' (A. ) = {v E Vv(A. )ly:1' + v + Ii, a,>v = 0; i = I, ... ,lj. 
(13) 

Put (A.: v, ,u) = dim VV,I' (A. ). Then the multiplicity of the ir
reducible module V (,u + v) in V (A. ) ® V ( ,u) is given by 
m(,u + v: A. ®,u) = (A.: v, ,u). 

Proof Let Po be the orthogonal projection of 
V (A. ) ® V ( ,u) onto VIOl and let W1 ~) v denote the subspace of 
maximal weight vectors of weight,u + v E A +, From the 
results of Theorem 1 Po is I-Ion W1~) v hence to prove the 
theorem it suffices to show that Po W1 ~ v = VV'I' (A. ) ® v"+ . 

Now PoW1~) v ~ V~)+ v = Vv(A. ) ® v"+ . We show that 
PoW1~)v~Vv,I'(A.)®v"+. Now since V (0) is stable under 
U (B) it follows that the orthogonal complement of VIOl is 
stable under U(N): viz., 

Ponti - Po) = 0, for all n E U(N). (14) 

We note also that ifn E U(N) thenPon(v ® v"+ ) = (nv) ® v"+ , 
for all v E V (A. ). Suppose now that v"+ + v E W1~) v and set 
v ® v"+ = Pov"++ v, V E Vv(A.). From Eq. (6) we have 

<I' + v + Ii. a,> ,.# + v _ 0 . - 1 I Yi II' + - , I - , ... , 

which implies in view ofEq. (14) above that 

0= Poy:1' + v+ Ii, a,)v"++ v = Poy:1' + v+ Ii. a,) Po v"++ v 

_ P (I' + v+ Ii. a,) "" . .# _ (y(1' + v+ Ii, a,)v) "" . .# 
- OYi v""u+ - i ",,11'+. 

Thus y:1' + v + Ii, a,) V = 0; i.e., v E VV,I' (A. ). This shows that 

PoW1 ~ v ~ VV,I' (A. ) ® v"+ . 

To prove the reverse inclusion we need to exhibit 
v ® v"+ E VV,I' (A. ) ® v"+ as the image under Po of an element 
ofW1 ++) v' To this end we construct an intertwining operator 

Tu:V(,u + v)-+V(A.)® V(,u) 

satisfying 
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PoTuv"++ v = v ® v"+ . 

We define Tu to be the operator with matrix elements6 

(nt(v'®v"+ )1 Tu n2v"++V) = (n tv'ln2v), 

for all nt, n2 E U(N). The consistency of this definition fol
lows because v E VV'I' (A. ) and because nt(v' ® v"+ ) = 0 im
plies ntv' = 0; nt(v' ® v"+ ) = <>=>0 = Pontlv' ® v"+ ) 
= (ntv') ® v"+ ~ntv' = O. The definition is complete since 
V(,u + v) = U(N)v"++v and 
V(A.)®V(,u)=U(N)U(B)zf_ ®v"+ =U(N)V(A.)®v"+; 
i.e., any (i) E VIA. ) ® V(,u) can be written 

(i) = n(v' ® v"+), for some n E U(N), v' E V(A.). 

The intertwining property of Tu is easily checked.6 

Hence v E VV,I' (A. ) implies 
Tu E HomdV(,u + v), V(A.) ® V(,u)) and 
PoTuv"++v= v®v"+ (cf.Ref. 6). But Tuv"++vE W1~v" 
whence VV'I'(A.) ® v"+ ~PoW1 ~)v. 

We have thus proved PoW1 ~ v = VV,I' (A. ) ® v"+ and 
since Po is I-Ion W1~) v we must have 

m(,u + V' A. ®,u) = dim W( +) = dim P W( + ) . I'+V 0 I'+V 

= dim VV'I'(A.) = (A.: v,,u). 
This proves the theorem. 

Corollary: 

m(,u + v: A. ®,u) = m(,u:,u + V®A. *) 

= m(A.:,u + v®,u*). 
In particular, 

m(,u + v: A. ®,u) = (,u + v:,u - A. *, A. *) 

= dim VI'-"t""t.(,u + v). 

Q.E.D. 

Proof To prove the above result we note that if Vand W 
are finite-dimensional U-modules then we have a natural U
module isomorphism 

V® W~Hom (V*, W). 

Now recall (see remarks preceding Lemma 2) 

m(,u + v: A. ®,u) = dim HomL(V(A.) ® V(,u), V(,u + v)), 

which equals the multiplicity of the trivial representation in 
the triple tensor product V * (A. ) ® V *( ,u) ® V (,u + v). Rear
ranging the terms in this tensor product the required symme
try properties are seen to hold. In particular we have 

m(,u + v: A. ®,u) = dim HomL(V(,u), V*(A.) ® V(,u + v)) 

= m(,u:,u + V®A. *). 

In view of Theorem 2 we have 

m(,u:,u + V®A. *) = (,u + v:,u -A. *,A. *) 

= dim VI' _ "t ", "t " (,u + v), 

which establishes the result. 
Q.E.D. 

Since the tensor product module V(A.) ® V( ,u) is cy
clically generated by the vector zf_ ® v"+ one may, in princi
ple, obtain the detailed structure of this space provided one 
can obtain the annihilator I (zf_ ® v"+ ) of the cyclic vector 
zf_ ® v"+ [cf. Eq. (4)]. It is our aim, in the following section to 
determine the explicit form ofthe annihilator I (zf_ ® v"+ ). 
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IV. ANNIHILATORS IN THE UNIVERSAL ENVELOPING 
ALGEBRA 

We begin with some comments concerning the idea of 
degrees of vectors introduced in Ref. 6. Let VIA ) be a finite
dimensional irreducible U-module and suppose v E V (A ). 
Following the notation of Ref. 6 we call the collection of 
integersm = (m 1,m2, ... ,mIl(1 = rankL = dimH)thedegree 
of the vector v, where m i is the smallest non-negative integer 
such that 

mi+ 1 0 
Xi V=. (15) 

By analogy one may also consider the set of positive integers 
Oi = (ml,,,.,ml) (herein called the codegree of v), where mi is 
the smallest positive integer such that 

17;,+1 0 Yi V = . (16) 

The degree m and codegree Oi uniquely determine each other 
and are related via 

mi=mi+(v,ai ). (17) 

This occurs due to the known result (see, e.g., Humphreys13) 
that the arstring through the weight v is oflength (v, a i ). 

We note that if V is any finite-dimensional U-module and 
v E Vv then we may still define the degree (resp., codegree) m 
(resp., Oi) as in Eqs. (15) and (16) above. Due to Weyl's 
theorem of complete reducibility the degree and codegree of 
the vector v are still related via Eq. (17) (regardless of 
whether V is irreducible or not). It is interesting to note that 
if Vis any finite-dimensional U-module and v E Vv then Eqs. 
(15H17) above imply the result 

X'!'+ IV = 0 if and only if Y~+ (v. a,) + IV = O. (18) 

It is our aim in this section to prove the following result 
(notation as in Sec. II and III). 

Theorem 3: 

I 

+ L U [hi - (IL -A *)(h i )]· 0 
i=1 

(19) 

We denote the left ideal on the rhs ofEq. (19) by I (A,IL). 
In view ofEqs. (6) and (8) it is clear that! (A, IL) r;;;,1 (ll"_ ® 11'+ ). 
The proof of the opposite inclusion is not so obvious and 
requires some work. We set V(A,IL) = U II(A,IL). We begin 
by showing that V (A, IL) is finite dimensional. We require 
first the following elementary result lO (notation as in Sec. II). 

Lemma 6: 
(a)/(A,IL)n UrN) =/(ll"_ ®if+)n UrN) =1+(IL)n UrN) 

I 
= L U(N)y:1' +.5. a). 

i=1 

(b)I(A,IL) n U(B) =I(ll"_ ®if+)n U(B) = L(A) n U(B) 
I 

= L U(B)x?·°+<5. a i>. 
;= I 

Proof It is clear that 
/ (ll"_ ® 11'+ ) n U (N) = 1+( IL) n U (N )since,for n E U (N), we 
have 
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n E I (ll"_ ® vP+ )¢}n(ll"_ ® 11'+ ) = 0 

¢}ll"_ ® (nif+ ) = 0 

¢}n EI+(IL). 

It also follows, by definition of 1+( p) and I (A, p), that 

I(A,IL)n UrN) =1+(IL)n UrN). 

The result 
I 

I+(IL) n UrN) = L U(N)Y:I' + 6. a i> 

;=1 

was proved as Lemma (2.1) of Ref. 10 and will not be repro
duced here. An analogous argument holds for part (b). 

Q.E.D. 
Lemma 7: (a) The space VIA, IL) is finite dimensional. (b) 

VIA ) ® V( IL) is a submodule of VIA, IL). 
Proof (a) Consider the left coset 

1= 1 + I(A, IL) E VI' -A. (A, IL), and put VolA, IL) = U(B)1. 
We set up the following U (B I-intertwining operator: 

T: VolA, pI-VIA ) ® 11'+ ; 

Tl = ll"_ ® vP+, Tbl = b (ll"_ ® 11'+ ), 

forallb E U(B). Since/(A,IL) n U(B) = I(ll"_ ® 11'+ ) n U(B)it 
follows that Tis a well-defined intertwining operator [in fact 
T determines an isomorphism of U(B I-modules]. We note 
also that T intertwines the action of U (H). Thus, in particu
lar, VolA, IL) is finite dimensional and the weights occurring 
in VolA, IL) are bounded above (with respect to partial order
ing > induced on the weights by the positive roots) by the 
weightlL + A. Moreover from the P.B.W. theorem we have 

V(A,IL) = U(N)U(B )U(H)l 

= U(N)U(B)l = U(N)Vo(A,IL), (20) 

which shows that all weights in V (A,p) are bounded above by 
the weight IL + A. In an analogous way we have 

V(A,IL) = U(B)U(N)l, 

and we may establish that U(N)l is finite dimensional and 
that the weights in V(A,IL) are bounded below by the weight 
- (IL * + A *). Clearly there can be only a finite number of 

weights v E A satisfying the inequalities 
IL + A > v> - (IL * + A *). This shows that only a finite 
number of distinct weights can occurin V (A, IL). It remains to 
show that the weights occur with finite multiplicity. 

Choose a weight basis VI,,,,,Vd [d = dim VIA )] for 
VolA, IL) = U(B)1. In view ofEq. (20) we have 
V(A,IL) ="iL I U(N)vi' However Lemma (1) asserts that the 
weight spaces of U (N) are finite dimensional which implies 
that the weight spaces of each U (N )Vi are finite dimensional 
Ii = 1, ... ,d). Thus the weight spaces in VIA, IL) are all finite 
dimensional whence the finite dimensionality of VIA, IL) fol
lows. 

(b) We set up an intertwining operator 

T: V(A,IL)-V(A) ® V(IL), (21) 

defined by Tl = ll"_ ® 11'+ ' ru = u(ll"_ ® 11'+ ) for all U E U. 
Since/lA, 1L}r;;;,1(ll"_ ® 11'+ ) it is easily checked that Tis a well
defined intertwining operator. The cyclicity of the vector 
ll"_ ® 11'+ shows moreover that T is onto. This implies a U
module isomorphism 
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V(A)® V(,u)~ V(A,,u)/ker T. 

However part (a) shows that V (A,,u) is finite dimensional and 
hence completely reducible which implies that V (A ) ® V (f-l) 
must occur as a submodule of V (A,,u). 

Q.E.D. 
We note that the proof of Lemma 7(a) implies that the 

weights in the spaces Vo(A,,u) = U (B ) I and 
V(A) ® if+ = U(B )(0_ ® if+ ) are the same. 

We are now in a position to set up the last step in the 
proof of Theorem 3. It clearly suffices to show, since 
V(A) ® V( ,u)k VIA, ,u), that the irreducible modules in these 
spaces occur with the same multiplicities. We recall from Eq. 
( 13) the definition of the spaces 

Vv,,..(A) = {VE Vv(A)ly;,..+v+.5,a j )v=O; i= 1,00.,/J. 

FromEq. (18) we see that v E Vv,,..(A ) ifand only if V E Vv(A) 
satisfies 

(,.. + .5, a,) 0 . 1 1 
Xj V = , I = ,00',. 

In view of the definition of the ideals I (A,,u) [see Eq. (19)] we 
thus have the following equivalent definition: 

Vv,,..(A) = {v E V(A )II(f-l*,,u + v)v = OJ. (22) 

Since U (B ) I ~ V (A ) ® if+ [U (B )-isomorphism] Theo
rem (1) guarantees that the highest weights in V(A,,u) and 
V(A ) ® V( ,u)are oftheform,u + v, wherevisa weight in V(A ) 
(cf. remark following Lemma 7). Since V(A,,u) is cyclically 
generated by the vector T ofweight,u - A *, Lemma 2 implies 
thatthe irreducible module V(p),p EA +, occurs in V(A,,u) 
with multiplicity 

m(p: V(A,,u)) = dim{v E V,.._A.(p)II(A,,u)v = OJ 

= dim V,.._A •. A.(P ) = (p :f-l-A *, .,1,*). 

On the other hand the corollary to Theorem 2 implies 
thatthe irreducible module V(p) occurs in V(A) ® V(,u)with 
multiplicitym(p: A ®f-l) = (p:,u - A *, .,1,*). This establishes 
that the irreducible modules occurring in V (A ) ® V ( f-l) and 
V(A,,u) occur with the same multiplicities whence we neces
sarily have V(A,,u)~ V(A) ® V(,u). 

This shows that the intertwining operator of Eq. (21) 
determines a U-module isomorphism whence we must have 
I (A,,u) = 1(0_ ® if+ ) and Theorem 3 is proved. 

We therefore have the U-module isomorphism 

V(A)® V(,u)~V/I(A,,u), 

where I (A,,u) = I(vA_ ® if+ ) is the left ideal defined in 
Theorem 3. This result has important consequences with 
regard to the Clebsch-Gordan multiplicity problem (i.e., the 
L $ L -::JL state labeling problem). However we shall not pur
sue this problem any further here. For a more detailed dis
cussion of these points, we refer to Ref. 6. 

v. CONSTRUCTION OF PROJECTION OPERATORS 

We consider here an alternative construction of the pro
jection operators P introduced in Lemma 3. Following our 
previous notation let Vif be a finite-dimensional cyclic 
module where if is a weight vector of weight,u EA. We shall 
show that the required projection operators may be con
structed provided one knows the degree of the vector if [see 
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Eq. (15)]. To this end we suppose that the vector if has de
gree m = (m1,00.,m[). From Eq. (16) we see that if has code-

'" ('" '" '" greem = ml>.oo,mdwherem j = mj + (p" a j ). We have the 
following result (notation as in Sec. II). 

Theorem 4: Let V = Uif be a finite-dimensional cyclic 
module and suppose if has degree !p. Set 

I 

V= ImjA j EA +. 
i~ 1 

Then ,u + v E A + and V is identifiable as a submodule of 
V(v*) ® V(,u + v). 

Proof Let v E A + be as in the statement of the theorem. 
Since if has degree mj = (v, a j ) and codegree mi. 
= mj + (,u, a j ) we have 

(,u + v, a i ) = (v, a i ) + (f-l, a j ) = mi + (,u, a j ) = mj ;;;.0; 

i.e.,,u + VEA +. 

We now note (see Lemma 4) that V(v*) ® V( f-l + v) is 
cyclically generated by the vector v v: ® if+ + v. Also, from 

Theorem 3, the vector vV: ® if++ v has annihilator 
I(v*,f-l + V)k U [where I(A,f-l) is the ideal defined in Eq. 
(19)]. In view of the definition of the weight v we see that 

vV: ® if+ + v is a weight vector ofweight,u and degree m. Since 
the cyclic vector if also has degree m we necessarily have 
[see Eq. (3)] 

I(v*,,u+v)kI(if); i.e., I(v*,f-l+v)if =0. 

We now set up an intertwining operator 

T: V(v*) ® V( f-l + v)-V, T(vV: ® if++Y) = if 

Tu(vV~ ® if-++ V) = uif, for all u E U. 

Since I (v*,,u + v) k I (if ) it is easily verified that T is a well
defined U-module intertwining operator. Moreover the cy
clicity of the vector if E V implies that T is onto. Thus we 
have a U-module isomorphism 
V~V(v*)®V(,u+v)lkerT. Since V(v*)®V(,u+v) is 
completely reducible V must occur as a submodule of 
V(v*) ® V(,u + v). This proves the result. 

Q.E.D. 
The above result shows that we may naturally imbed 

any finite-dimensional cyclic module V = Uif in the tensor 
product of two irreducible modules. In particular if we know 
the degree m of the cyclic vector if one may gain useful 
information with regard to the possible irreducible modules 
which may occur in the space V. This then enables projection 
operators, which project from a weight vector if of weight 
,u E A + a maximal weight vector of weight ,u E A +, to be 
constructed as follows (notation as in Theorem 4). 

Lemma 8: Suppose ,u E A + and if has degree 
m = (ml>oo.,md. Set v = ~I~ 1 mjAj and put 
A (v) = (f-l + v - A 1.,1, E il(v)J, whereil (v) denotes the set of 
distinct weights in V(v). Finallysetr (v) = A (v) n A + ~ {f-l J 

and 

P= IT ( CL - XA(CL ) ) (23) 
XET(V) X,..(CL ) - XA(CL ) • 

Then if+ = W is a maximal weight vector of weight 
,u E A +. The module V ( ,u) occurs in Uif if and only if 
W#O. 

Proof We note first that the weights occurring in the 
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irreducible module V (v*) are the negative of those occurring 
in the module V(v)(see, e.g., Ref. 13). Thus the set of weights 
A (v), as defined in the statement of the lemma, may be alter
natively written 

A (v) = I,u + v + A 1,.1, E /l (v*)}, (24) 

where /l(v*) denotes the set of distinct weights in V(v*). 

As shown in Theorem (4) the cyclic module V = UII' 
occurs as a submodule of V(v*) ® V(J-l + v). In view ofEq. 
(24) and the argument used in Lemma 3 it follows that the 
projection operator of Eq. (23) projects the tensor product 
module V (v*) ® V (J-l + v) onto the irreducible module V ( J-l) 
(which, from Theorem 1, occurs with at most unit multiplic
ity). Thus P projects V = UII' onto the irreducible submo
dule V (J-l), whence 11'+ = W is necessarily a maximal 
weight state of weight J-l E A +. Clearly V ( J-l) occurs in V if 
and only if W #0. This proves the result. 

D 
The above result illustrates that the required projection 

operators may be constructed solely from a knowledge of the 
weight J-l and degree m of the vector II' and the weight spec
trum of the irreducible module V(v), where 
v = m·A = ~:= lmjA i • For this latter problem we just need 
all A E A + such that A < v together with their Weyl-group 
conjugates (cf. Humphreys13). We need consider only those 
weightsp in V(v) such thatp#v andJ-l + v - pEA +. 

We remark that the integers m i in Theorem 4 and 
Lemma 8 may be replaced by any set of integers (m; 1 such 
that 

m; + l . .u _ 0 
Xi (f - • 

However it is clear that the set of integers which yields the 
degree m of the vector II' will afford the most economical 
construction of the desired projection operators. This is be
cause the greater the m; the greater the dimension of the 
space V(v), v = ~: = 1 m;A i , and hence the greater the num
ber of factors occurring in the expression for the projection 
operator P. 

It is interesting to note that in order for the projection 
operator P of Eq. (23) to project any given weight vector of 
weight J-l E A + and degree m onto a maximal weight vector 
of weight J-l it is necessary to keep all the factors occurring in 
the product of Eq. (23). This is because the cyclic vector 

vV: ® 11'++ v of the tensor product module V(v*) ® V( J-l + v) 
(notation as in Theorem 4) has degree m and weight J-l and all 
factors in the expression for P are required to project 

vV: ® 11'++ v onto a maximal weight vector ofweightJ-l. Thus, 
in this sense, the projection operators ofEq. (23) are the sim
plest possible choice. In any specific application however 
there may exist special properties of the vector II' which 
allows certain factors in the expression for P to be removed. 

VI. CONCLUSIONS 

The results of Sec. V (in particular Theorem 4) demon
strate that any finite-dimensional cyclic module may be nat
urally imbedded in the tensor product of two irreducible 
modules. This result therefore uniquely characterizes cyclic 
modules as direct summands of the tensor product of two 
irreducible modules. Since the multiplicity problem may be 
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solved for the tensor product oftwo irreducible modules (see 
Ref. 6) this implies that the multiplicity problem may also be 
solved, in principle, for any finite-dimensional cyclic mod
ule. 

The general state labeling problem may be stated as 
follows: let G be a semisimple Lie group and He G a semi
simple subgroup. The finite-dimensional irreducible repre
sentations of the group G constitute completely reducible 
representations of the subgroup H and the irreducible repre
sentations of H usually occur with multiplicities. The prob
lem of distinguishing the equivalent irreducible representa
tions of H occurring in an irreducible representation of G is 
called the He G state labeling problem. 

Our methods apply to irreducible representations of the 
group G which constitute cyclic representations of the sub
group H. This situation in fact occurs for several state label
ing problems of physical interest, examples being given by 
the subgroup imbeddings U(npO(n), U(npSp(n), 
G X G::J G (G semisimple), etc. (see Refs. 6 and 7). It is inter

esting to note, in connection with the subgroup imbeddings 
U(n)::J O(n) and U(n)::J Sp(n), that if the imbeddings are cho
sen correctly the cyclic vector under the subgroups O(n) or 
SpIn) may be taken to be the U(n) maximal weight vector (cf. 
Ref. 6). 

The results of Sec. IV have important consequences 
with regard to the Clebsch-Gordan multiplicity problem 
(i.e., the G X G::J G state labeling problem). The explicit de
termination of the annihilator I (A, J-l) ~ U ofthe cyclic vector 
1I~ ® 11'+ of V (A ) ® V ( J-l) yields a great deal of information 
concerning the tensor product module V (A ) ® V ( J-l). The re
sults of Ref. 6 may in fact be attributed to the simple struc
ture of the left ideal I (A, J-l). It is hoped that further informa
tion may now be obtained. As mentioned above, these 
methods apply not only to the Clebsch-Gordan problem but 
are likely to be applicable to other state labeling problems of 
physical interest. 

Further work along these lines is now in progress. 
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A procedure which associates Poisson bracket realizations of a Lie algebra L to 
subrepresentations of the extension (ad" k)s of the adjoint action to the algebra of polynomials 
defined on the dual space L * is pointed out. The procedure is applied, for k = 2, to the real forms 
of the semisimple Lie algebras oftypesD3 and B2 ~ C2, in particular to the algebras so(4,2), so(4, 1), 
and so(3,2)~sp(4,R ). The results obtained for the algebra sp(4,R ) have led to an algebraic 
foundation for the constraints satisfied by the dynamical variables for the classical limit of the 
generalized helium problem. 

PACS numbers: 02.20.Qs, 02.20.Sv 

I. INTRODUCTION 

Let M be a symplectic manifold and let 

(1.1) 

be the Poisson bracket associated with the symplectic form OJ 
on M and defined for two functions J, gEC 00 (M ); Xf is the 
Hamiltonian field associated to/and defined by d/ = Xf~OJ. 
The product (1.1) organizes C 00 (M) as a Lie algebra. I 

A Poisson bracket (PB) realization2 of a Lie algebra Lis, 
by definition, a Lie algebra homomorphismp: L-C oo(M). 

PB realizations have received attention in the last fif
teen years. The approaches to this subject were either "heu
ristical," i.e., constructions of specific PB realizations for 
various Lie algebras or "abstract"-e.g., proof of the exis
tence on each coadjoint orbit of a Lie group of a PB realiza
tion generated by coordinate functions of the points belong
ing to the orbit.3 

In several "heuristical" approaches,4-7 the presence of a 
number of polynomial identities satisfied by the generators 
of the PB realization have been pointed out. References 4 
and 5 consider PB realizations of the algebras so(4, 1) and 
so(4,2) related to the Kepler problem; in Ref. 7 the presence 
of a set of polynomial relations between the generators of the 
so(n + 2) algebra is proved to be responsible for the possibil
ity to define a set of n canonically conjugated pairs of coordi
nates and momenta as functions of the generators of this 
algebra. 

In a previous works concerned with PB realizations of 
the so(4,2) algebra, we have pointed out that the polynomial 
relations satisfied by the generators of the PB realization of 
so(4,2), obtained by Gyorgyi in Ref. 5, define a coordinate
independent PB realization of so(4,2), which contains, as 
particular cases, a number of "heuristic" PB realizations of 
this algebra. The polynomial relations satisfied by the gener
ators characterize thus a whole class of PB realizations of 
so(4,2), which are related by a symplectomorphism. 

We consider that the most interesting remark of Ref. 8 
is that Gyorgyi's relations define at the same time a linear 
representation of so(4,2) on the space of polynomials (of de
gree 2) on the dual space so(4,2)* of so(4,2) and a coadjoint 
orbit of the corresponding Lie group SO(4,2). 

The aim of the present paper is to generalize this remark 
and to give a procedure by which polynomial relations defin
ing coadjoint orbits (and defining thus also the correspond
ing PB realizations of the Lie algebra) can be obtained from 
the symmetric part (ad" k ls = (ad ® ad ® ... ® ad)s (k factors) 
of the direct power of the adjoint representation ofthe Lie 
algebra (Sec. 11).9-11 This procedure is applied subsequently 
(Sec. III) to all real forms of the semisimple Lie algebras of 
types D3 ~ A 3 and B2 ~ C2 and to their orbits defined by the 
zeroes of second-degree homogeneous polynomials. 

Particular emphasis is given to the algebra so(4,2). For 
this Lie algebra, the explicit equations of the coadjoint orbits 
associated to subrepresentations of (ad ® ad)s have been de
duced. Apart from the six-dimensional coadjoint orbit of 
SO(4,2), which has been studied in Ref. 8, two eight-dimen
sional families of orbits of SO(4,2) have been obtained (Sec. 
III). For one of these families, the explicit expression of the 
Kirillov-Kostant-Souriau (KKS) symplectic form has been 
deduced. 

Special attention has also been paid to the algebras 
so(4, 1) and so(3,2) ~sp(4,R ), in order to stress the fact that 
PB realizations of different real forms of the same complex 
semisimple Lie algebra are sometimes very different. 

The polynomial identities satisfied by the six-dimen
sional PB realization of the sp(4,R) algebra are particularly 
interesting; indeed, these identities have recently been ob
tained as a classical limit for the quantum constraints in a 
quasiclassic treatment of the helium atom, in which the large 
quantum number is the dimension of the space. 12 The identi
ties which appear in the classical limit, and which have been 
obtained in Ref. 12 using a heuristic procedure, are obtained 
in the present work from Lie algebraic considerations. 

II. POISSON BRACKET REALIZATIONS OF A LIE 
ALGEBRA ASSOCIATED TO SUBREPRESENTATIONS 
OFTHE PRODUCT (ad",,)s 

Let L be a Lie algebra and L * be the dual space of L. Let 
n 

[x;,xj] = I C~Xk (i,j = 1, ... ,n = dimL) (2.1) 
k~l 

be the Lie product of the generators x;,Xj of L. Let us intro
duce in L * a basis I u \>""Un J, dual with respect to the basis 
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!X1, ... ,xn) of L, i.e., defined by the condition 

(u i Ixj ) = Dij (i,j = 1, ... ,n) . (2.2) 

An element uEL * has the expression 
n 

U = L Si(U)Ui , (2.3) 
i~l 

where SitU) are coordinate functions of the point u: 

SitU) = (ulxi ) . (2.4) 

The expression of the generator of the coadjoint action 
Ad*(exp txi)u: L *---+L * is 

(2.5) 

It is interesting to observe that the realizationxj---+Xx, of 
L is an example of a quantum realization13

,14 or of a Jordan 
mapl5,l6 corresponding to the adjoint representation of L. 

The generators XX" i = 1, ... ,n are linearly dependent for 
any uEL *. Indeed, the rank of the n X n matrix 

ML(U) = II L C~Sk(U) II (i,j = 1, ... ,n) (2.6) 

is less than n for any uEL *. The generators Xx, (i = 1, ... ,n) of 
the coadjoint action generate, in each point uEL *, a linear 
representation of the Lie algebra L, as 

The orbits of the coadjoint action of a Lie group have been 
organized as symplectic manifolds by Kirillov, Kostant, and 
Souriau,17 the KKS symplectic form being defined, in each 
point ue& r' by its value on pairs of vectors Xx,,xxjeTu & r' 

(2.8) 

The symplectic form w (2.8) associates to any function 
jeC "'(& r) a Hamiltonian field Xf , defined by dj = Xf-.Jw. 
The Poisson bracket of two functionsj,geC "'(& r) is defined 
by (1.1); it has the following expression in terms of the coor
dinate functions SitU) of a point uEL *: 

k aj ag 
! j,g) = r CijSk af:. af: . 

I",k ~,~' 

(2.9) 

In particular, ifjand g are coordinate functions of a point 
ue& r' we obtain 

n 

!Lsj ) = L C~Sk(U), (2.10) 
k~1 

i.e., the coordinate functions Sj (u) of the point ue& r generate 
a PB realization of the Lie algebra L. 

The extension ad of the adjoint representation ad of L to 
a representation of L on the linear space P (L *) of all polyno
mials on L is given by 

- n k ap 
ad(xdp =Xx,P = L CijSk-

j.k~ I aSj 

= !Sop) (peP(L *)). (2.ll) 

This representation is equivalent to the unique extension of 
the adjoint representation to the symmetric algebra S (L ) of 
L. 18 Indeed, it is well known thatS (L ) and P (L *) are isomor
phic as linear spaces and it is easy to see that this isomor-
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phism intertwines the two representations of L defined 
above. From this remark or from the properties of the Jor
dan map xj---+Xx, it follows that there exists a natural number 
k for each irreducible subrepresentation of ad such that it is 
equivalent with a subrepresentationof (ad" k)s; in other 
words, boson spaces are symmetric. 

Let 1T be a sub representation of'id. Let! PI'"'' Pm) be a 
basis of a subspace invariant under 1T of P (L *), i.e., such that 

m 

(Xx,Pj)(u) = (1T(X j )Pj)(u) = L 1Tjk (xj)Pk (u) . (2.12) 
k~1 

We define, for any such subrepresentation 1T, an algebraic 
submanifold of L * by 

&1T-!uEL*IPI(U)=···=Pm(u)=O). (2.13) 

From Whitney's theorem, 19 it follows that the regular part of 
& 1T' denoted &:, is a regular analytic submanifold of L *. the 
dimension of which is equal to dim L * - s, where s is the 
maximum value attained on & ff by the dimension of the 
linear space generated by (dpdu, ... ,(dPm)u, ue& 1T' From the 
definition of & 1T and from the property (2.12) it follows that 
the vectors XXI (u) .... ,xx.lu) generate a linear subspace of the 
tangent space Tu &: for any ue&:. The dimension of this 
subspace is given by r(u) = rankp: cgk(ulil. It is obvious 
that dim Tu &: = dim L * - s;;;.r(u). Thus, in order to have 
r(u) = dim L * - s. it is sufficient to prove that r(u);;;.dim L * 
- s, for any ue&:. 

Hence. if it is possible to prove that on &: we have 

(2.14) 

then it results that Tu &: is generated by the vectors 
XXI (u), .. :,xx" (u) and that it is possible thus to define on &: a 
KKS symplectic structure w in a unique way by (2.8) and 
hence to define a Poisson bracket (2.9) associated to w. for 
any j,geC '" (&:). A preliminary analysis of the nondegener
acy ofthe manifold & 1T defined by (2.13). i.e., a proof that 

dim & 1T >0 (2.15) 

is required. The two conditions (2.14) and (2.15) are sufficient 
for the existence of a PB realization of the Lie algebra L 
associated to the linear representation 1T of this algebra. 

Remark: If the representation (2.12) contains a one-di
mensional subrepresentation of L, the basis of which is thus 
an invariant I (u) of the algebra L, then the relation which 
corresponds to this invariant in the definition (2.13) of the 
submanifold & 1T is I (u) = k, where k is an arbitrary, fixed 
real number. 

III. INVARIANT SUBMANIFOLDS ASSOCIATED TO 
SUBREPRESENTATIONS OF (ad ® ad)s FOR 
SEMISIMPLE LIE ALGEBRAS OF TYPES D3-A3 AND 
8 2-C2 

The construction described in Sec. II will be applied in 
this section to the semisimple Lie algebras of types D3-A3 
and B2 - C2. For these algebras, Ad-invariant submanifolds 
associated to subrepresentations of (ad ® ad)s will be deter
mined. The D 3-type algebras will be exemplified by so(4,2), 
and B2 algebras will be exemplified by two real forms so(4, 1) 
and so(3,2), in order to stress the fact that PB realizations of 
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TABLE I. Lie multiplication table of the algebra so(4, 2). The multiplication law is x y 
IX, Y I' 

L, L z L3 A, Az A3 B, 

L, 0 L3 -L2 0 A3 -A2 0 
L2 -L3 0 L, -A3 0 A, -B3 
L3 L2 -L, 0 A2 -A, 0 B2 
A, 0 A, -A2 0 L, -L2 B4 
A2 -A3 0 A, -L3 0 L, 0 
A3 A2 -A, 0 L2 -L, 0 0 
B, 0 B3 -B2 -B4 0 0 0 
B2 -B3 0 B, 0 -B4 0 L3 
B3 B2 -B, 0 0 0 -B4 -L2 
B. 0 0 0 B, B2 B3 A, 
C, 0 C3 -C2 -C4 0 0 M 
C2 - C3 0 C, 0 -C4 0 0 
C3 C2 -C, 0 0 0 -C. 0 
C4 0 0 0 C, C2 C3 0 
M 0 0 0 0 0 0 C, 

different real forms of semisimple Lie algebras of the same 
type may be different. Denoting representations by Dynkin 
indices (upper lines) and by dimensions (lower lines) the 

((1,0,1) 181 (1,0,1 ))s (2,0,2) 
125 = (15181 15)s = 84 

and for B2-type algebras, 
((0,2)181 (0,2))s (0,4) a1 

55 = (10181 lO)s 35 a1 

Using the Clebsch-Gordan coefficients for so(6) (Ref. 20) 
and SO(5),21 the bases for the subrepresentations in (3.1) and 
(3.2) have been determined. The generators for all real forms 
of types D3 and B2 have been determined from these bases, 
using Cartan involutions and the Weyl unitary trick. In par
ticular, denoting the generators of so(6) by Mij 
(Mij = - Mji ), with Lie products 

TABLE II, Basis vectors of the irreducible subrepresentation (1,0, I) of 
(adxad), for the algebra so(4, 2). They are obtained by the application of 
Weyl's unitary trick to the basis vectors of the corresponding representation 
(I, 0, I) of the algebra so(6). The generators of so(6) can be characterized as 
spherical tensors with respect to two commuting so(3) subalgebras; hence 
the labeling (SMs)(TMT) used in Ref. 20 and adopted also in our tables, 
Table II uses notations (3,19), 

S,Ms T,MT Basis vector IIi. 'kt!IIT, Mil 

1,-1 0, 0 - (1Iv3)(.Y 2 + i.Yd 
I, 0 0, 0 .j2l3.Y 3 

I, I 0, 0 (1Iv3)(.Y 2 -i.Yd 
0, 0 I, - I (1Iv3)('G' 4 + i&iJ 4) 
0, 0 I, 0 ~(2/3) JI 
0, 0 I, I (1Iv3)('G' 4 - i&iJ 4) 
1,-1 1,-1 - (1Iv'6)[ 'G', + &iJ 2 - i('G' 2 - &iJ dl 
I, 0 1,-1 (II v3)( &iJ 3 - i'G' 3) 

I, I I, - I - (1Iv'6)[ 'G' , - &iJ 2 + i('G' 2 + &iJ dl 
1,-1 I, 0 (I/v3)(d2 + id,) 
I, 0 I, 0 - .j2l3d3 

I, I, 0 - (1Iv3)(d2 - idd 
1,-1 I, I ( II v'6)[ 'G' , - &iJ 2 - i( 'G' 2 + &iJ II 1 
I, 0 I, I (II v3)( &iJ 3 + i'G' 3) 

I, I I, I (I/v'6)['G', + &iJ, + i('G' 2 - &iJ III 
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B2 B3 B. C, C2 C3 C. M 

B3 -B2 0 0 C, -C2 0 0 
0 B, 0 - C3 0 C, 0 0 

-B, 0 0 C2 -C, 0 0 0 
0 0 -B, C. 0 0 -C, 0 
B. 0 -B2 0 C. 0 -C2 0 
0 B4 -B3 0 0 C. -C, 0 

-L3 L2 -A, -M 0 0 0 -C, 

a1 

a1 

0 -L, -A2 0 -M 0 0 -C2 
L, 0 -A3 0 0 -M 0 -C3 
A2 A3 0 0 0 0 -M - C4 

0 0 0 0 -L3 L2 -A, B, 
M 0 0 L3 0 -L, -A2 B2 
0 M 0 -L2 L, 0 -A3 B3 
0 0 M A, A2 AJ 0 B. 
C2 CJ C. -B, -B2 -B3 -B4 0 

Clebsch-Gordan series for (ad 181 ad)s are for D3-type alge
bras, 

(0,2,0) a1 (1,0,1) a1 (0,0,0), 
20 a1 15 a1 1· , 

(2,0) a1 (0,1) a1 (0,0), 
14 a1 5 a1 1. 

withgij = 8ij' the transformations so(6)~so(4,2) are 

Mjk~Mjk (j,k = 1,2,3,4), M56~M56' 

Mj5~iMj5' Mj6~i~6 (j = 1,2,3,4), 

The transformations so(5)~so(4,1) are 

~k~~k (j,k = 1,2,3) , 

(3.1) 

(3.2) 

(3.4) 

Mj5~iMj5 (j = 1,2,3), M45~iM45' (3.5) 

In order to obtain a basis for the so(4,2) algebra, such that the 
so(4,2) Lie product has the expression (3.3) with 

gil = g22 = g33 = g44 = - g55 = - g66 = 1 , 

(3.6) 

we have to perform the supplementary transformation 
M56~ - M56. The following vectorial notations have been 
used for the generators of the so(4,2) and so(4, 1) algebras: 

L = (M23,M31,Mnl, A = (MwM24,M34) , 

B = (MI5,M25,M35)' B4 = M45 , 

C = (MI6,M26,M36) , C4 = M46 , M = - M56 . (3.7) 

In terms of these notations, the bases for the representations 
(0,2,0) and (1,0,1) ofso(4,2) are those given in Tables II and 
III. For all semisimple Lie algebras we may identify the dual 
space L * with the algebra L using the nondegeneracy of the 
Killing-Cartan bilinear form on L. 

Let us apply now to the subrepresentations of (ad 181 ad)s 
in (3.1) and (3.2) the results of the previous section. 
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A. The algebra sO(4,2} 

We first select the subrepresentations in (3.1) which sa
tisfy condition (2.15). The following statements are true (for 
proofs cf. Ref. 10). 

(i) Any representation of the algebra so(4,2), contained 
in the representation (ad ® ad)s of this algebra and contain
ing, as a subrepresentation, the representation (2,0,2) does 
not satisfy condition (2.15), i.e., leads to a submanifold (2.13) 
of dimension zero. 

(ii) If the basis vectors of the representation 
(1,0,1) EB (0,2,0) vanish, then the quadratic invariant of so(4,2) 

12=L2+A2+M2-B2-B~ -C2_C~ (3.8) 

vanishes. 
These two statements lead to the following proposition. 
Proposition 3.1: The only subrepresentations of the re

presentation (ad ® ad)s of the algebra so(4,2) to which it is 
possible to associate PB realizations of this algebra are 

(1,0,1) EB (0,2,0); (1,0,1) EB (0,0,0) ; 

(0,2,0) EB (0,0,0) . (3.9) 

Let us now examine, one by one, the invariant submani
folds of so(4,2) which can be associated to these three repre
sentations of so(4,2). 

1. Representation (t,o, 1)$ (0,2,0) 

The properties of the submanifold (2.13) ofso(4,2) asso
ciated to this representation have been analyzed in Ref. 8 (cf. 
also Ref. 10). This submanifold, denoted & 6' is six dimen
sional. Condition (2.14) is satisfied on &6 (see Ref. 8). The 
KKS symplectic form tU has, on &6 and only on &'6' the 
following expressions: 

(3.10) 

2. Representation (1,0, 1) $ {O, 0, 0) 

Proposition 3.2: The manifold determined by (i) the 
equalities obtained equating to zero the basis vectors of re
presentation (1,0,1) of so(4,2) and (ii) the equality [associated 
to representation (0,0,0) of so(4,2)] 

(3.11) 

is, for any k ~o, an eight-dimensional submanifold of the 
dual space so(4,2). 

Proof It has been proved in Ref. 8 that the six relations 

CXB-ML=O, B4C-C4B-MA=0 (3.12) 

obtained by equating to zero six basis vectors of the represen
tation (1,0,1) ofso(4,2) (cf. Table II) lead to the vanishing of 
the other basis vectors of this representation. These six rela
tions are functionally independent; they define, together 
with (3.11), for any fixed k, an eight-dimensional submani
fold of the IS-dimensional linear space so(4,2). 

Let us denote by &~ the manifold defined by Proposi
tion 3.2. Denoting with M SO(4.2) (u) the matrix ML (u) (2.6) in 
which the cz are structure constants of the algebra so(4,2), we 
have the following proposition. 
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Proposition 3.3: rank M SO(4.2) (u»8 for any UE&~. 
The proof, which is straightforward but tedious, will 
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not be given here. (cf. Ref. 10). It consists in showing that, if a 
number of conveniently chosen eight-dimensional subma
trices of M

SO
(4.2)(U) along its principal diagonal have vanish

ing determinants and if relations (3.12) are satisfied, then 
either u = ° or UE& 6' 

Thus, properties (2.14) and (2.15) are verified for the 
subrepresentation (1,0,1) EB (0,0,0) and hence, for any k ~ 0, 
the KKS symplectic form is nondegenerate on the manifold 
&~ associated to this representation. 

Let us determine the explicit expression of this symplec
tic form. To do that, a result of Mukunda is of help. Mukun
da's result,7 adapted to noncompact algebras, in particular 
to the algebra so(4,2), is as follows: "If the generators Mij of 
the algebra sol 4,2) satisfy the set of identities 

MijMkl +M,kMIj + Mj/Mjk =0, (3.13) 

then there exist four pairs of canonically conjugated varia
bles which are defined as functions of the generators My by 
the expressions 

qr = (C 2 - M2)1/2B,/M, Pr = (C 2 - M2)-1/2Cr , 
(3.14) 

where C 2 = C2 + C~." 
The relations (3.13) reduce to the relations obtained by 

equating to zero the basis vectors of the representation 
(1,0,1). Hence, as the conditions (2.14) and (2.15) are satisfied 
for representation (1,0,1) EB (0,0,0) the coordinate functions 
of a point of &; generate a PB realization of the algebra 
so(4,2) with respect to the Poisson bracket associated to the 
KKS symplectic form on &~. It is possible thus to define on 
& ~ a set of canonically conjugated coordinates q " P, 
(i = 1,2,3,4); with respect to these coordinates, the KKS 
symplectic form on &~ takes the Darboux canonical expres
sion 

4 

tUs = L dq, /\dp, . (3.15) 
,~ 1 

Replacing q, and P, by their expressions (3.14) we get the 
following proposition. 

Proposition 3.4: (i) The expression of the Kirillov-Kos
tant-Souriau symplectic form on &~ is 

1 4 1 4 

tUs = - L dBj /\dCj - -2 L BjdM /\dCj 
Mj~1 M j~1 

1 d(C 2 _M2) /\ d(BC) 
+'2 C 2 _M2 ~' (3.16) 

with (BC) = B· C + B4C4. 
(ii) Denoting with tU the generic KKS symplectic form, 

defined by (2.8), we have 

tUu = (tUs)u if and only if UE&~. 

The proof of (ii) is straightforward. It consists in estab
lishing that the expressions (tU - tUs) (Xx,xx) vanish if and 

, J 

only ifthe polynomials X', = B4C, - C4B, - MA, and 
.xff, = (CXB - ML); (i = 1,2,3) vanish. The XXi arethegen
erators (2.5) of the coadjoint action; their expressions for the 
so(4,2) algebra are given in Ref. 8. The functions (tU - tUs) 
(Xx,xx) may be expressed as functions of X' I and .xff I' which 

, J 

are such that if X', = .xff I = ° then (tU - tUs) (Xx,xx) = 0. 
, J 

But, on &~, wehaveX', =.xff j = O(i= 1,2,3) and the direct 
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assertion follows. The converse statement results from 

(w -WS)(XL,xL) = (l/M)2" k, , ) 

[where (i,j,k) are cyclic permutations of(I,2,3)]. Thus 
2"; = d; = 0 (i = 1,2,3). To describe an SO(4,2)-invariant 
eight-dimensional submanifold of so(4,2)*, the points of 
which satisfy 2" = d = 0, a supplementary equation is nec
essary which, in addition has to be invariant under the group 
action, i.e., an equation obtained by equating to a constant 
one of the polynomial invariants of the algebra so(4,2). As 
the cubic and quartic invariants, which have the expressions 

13 = L 0 2" + A 0 ..({' + MJI - B 0 f!I) 

- B4 f!iJ 4 - C 0 C(j - C4 CC; 4' (3.17) 

14 = 2"2 +..({'2 + Jl2 _ f!l)2 - f!iJ~ 

(3.18) 

where 

2"=B4C - C4B - M A, ..({'=CXB - ML , 

JI_ - LoA, f!I)=CXA + C4L, 

f!iJ 4=-LoC, CC;=AXB-B4L, CC;4=LoB, 
(3.19) 

vanish if 2" = ..({' = 0 (cf. the statement beginning the proof 
of Proposition 3.2), the only equation providing supplemen
tary information is 12 = k, which proves the converse state
ment. 

3. Representation (0,2,0) (B (0,0,0) 

Proposition 3.5: The SO(4,2)-invariant submanifold of 
so(4,2)* associated to representation (0,2,0) ES (0,0,0) and de
fined by the relations obtained equating to zero the basis 
vectors of representation (0,2,0) and by relation 12 = k 2 is, 
for any k =I- 0, eight dimensional. 

Proof Equating to zero the basis vectors of representa
tion (0,2,0), given in Table III, we obtain that the invariant 12 
has the expression 

12 = 3(M2 - B 2) = k 2 = 3K, (3.20) 

and we get the following expressions for the generators L, A, 
andM: 

L = + $ (B4C - C4B) -.!!..- (BXC) (3.21) 
- B2 B 2 ' 

M -$ 
A = Ji2 (B4C - C4B) +Ji2 (BXC), (3.22) 

M2 =K +B2 (3.23) 

(where B 2 = B2 + B ~), which prove the proposition. 
Relations (3.21)-(3.23) can be given the following re

markable form: 

B4C - C4B -M A ±~12/3L = 0, 

CXB -ML ± ~12/3A = 0, 

(3.24) 

(3.25) 

in which we have remembered that 12 = 3K. We get similar
ly 

AXC - C4L+~12/3B = 0, 

AXB - B4L ± ~12/3C = 0, 

L 0 A+~12/3M = 0, 

LoB ± ~12/3C4 = 0, 

LoC+~12/3B4 = O. 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

Thus, if we abandon the condition to use only representa
tions having as basis vectors polynomials, then the eight
dimensional manifold obtained in this section can be asso
ciated to a IS-dimensional representation, the basis vectors 
of which are the left-hand sides of (3.24)-(3.30). 

This relation between the basic polynomials of the 20-

TABLE III. Basis vectors of the subrepresentation (0, 2, 0) of (ad X ad)" for the algebra so(4, 2). 

S,Ms 

0, 0 
2, -2 
2,-1 
2, 0 
2, I 
2, 2 
0, 0 
0, 0 
0, 0 
0, 0 
0, 0 

1,-1 

I, 0 
I, I 
I, -I 
I, 0 
I, I 
1,-1 
I, 0 
I, I 
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T,Mr 

0, 0 
0, 0 
0, 0 
0, 0 
0, 0 
0, 0 
2, -2 
2, -I 
2, 0 
2, 
2, 2 

1,-1 

I, -I 
1,-1 
I, 0 
I, 0 
I, 0 
I, I 
I, I 
I, I 

Basis vector 1:1 ~"~:I T. M,J 
(1!.,'6)( - L2 - B; - C; + M2) 

W -L~ +Li +A ~ -A i - B~ +Bi - C~ + Ci) + U(LIL2 -AIA2 + BIB2 + CIC2)] 
H( - L2L3 + A,A3 - B2B3 - C2C3) + i( - LIL3 + AIA3 - BIB3 - CIC3)] 

(1/2.,'6)[ -(L~ +L~ -2Li)+(A~ +A~ -2A;)-(B~ +B~ -2B;)-(C~ +C~ -2C;)] 
- m - L2L 3 + A,A3 - B,B3 - C2C3) - i( - LIL 3 + A IA3 - BIB3 - CIC3 )l 

W-L~ +L~ +A~ -A~ -B~ +B~ -C~ +C~)-2i(LIL2-AIA2+BIB2+CIC2)] 
- WB2 + B; - C2 - C;) - 2i(B 0 C + B4C4 )] 

HrAoB + C4M) - i(Ao C- B4M)l 
- (I/2.,'6)[B2 - B; + C2 - C; - 2M2 + 2A2] 

HfAoB + C4M) + i(AoC-B4M)] 
- HlB2 + B; - C2 - C;) + 2i(B 0 C +B4C4)] 

1/ {[(BXL+B4A-MClt+(CXL+C4A+MBh] } 
( 2.,fi) + i[(BXL + B4A - MCh + (CXL + C4A + MB)d 

- HfCXL+ C4A+MBh + i(BXL+B4A-MChl 
- (1!2.,fi){ [(BXL + B4A - MClt + (CXL + C4A + MBh] + i[(BXL + B4A - MC)2 - (CXL + C4A + MB)I]] 

WAXL + B4B + C4Clt - i(AxL + B4B + C4C)2l 
(i/.,fi)(AXL + B4B + C4C)3 

![(AXL + B4B + C4Clt + i(AxL + B4B + C4Chl 
- (1/2.,fi){[(BXL+B4A-MClt + (CXL+ C4A +MB),] +11- (BXL+B4A -MC)2 + (CXL+ C4A+MBhl) 

H(CXL + C4A + MBh - i(BxL + B4A - MChl 
- (1/2.,fi){[(BXL +B4A -MClt - (CXL + C4A +MBh] + 11(BXL + B4A -MC)2 + (CXL + C.A + MB).]] 
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dimensional representation and the polynomials which are 
the bases of the IS-dimensional and one-dimensional repre
sentations is an intriguing phenomenon, which seems to be 
more general. For instance, it occurs also for the su(3) alge
bra22 in the case of the ten-dimensional representation which 
appears in the subspace of polynomials of degree 3. 

Using the relations (3.24)-(3.30) we can calculate the 
expressions of the cubic and quartic invariants (3.17) and 
(3.18) of the algebra sol 4,2) on the family of eight -dimension
al manifolds pointed out by Proposition 3.5. We obtain 

13 = + (/2/3f/2, 14 = n/3 . (3.31) 

The consideration of these invariants gives thus no addi
tional information. 

B. The algebras 80(4,1) and 80(3.2) 

From the basic polynomials for the irreducible repre
sentation (3.2) of sotS) we obtain the basis vectors of the non
compact real forms so(4,1) and so(3,2) (Tables IV and V). 

For the Lie algebra so(4, 1) the following statements are 
true (cf. Ref. 11). 

(i) The relations obtained equating to zero the basis vec
tors of the 14-dimensional representation (2,0) have as their 
only common solution the origin of so(4, 1)*. A similar state
ment is true for the 3S-dimensional representation (0,4). 

(ii) The relations obtained equating to zero the basis 
vectors of the five-dimensional representation (0,1) define a 
seven-dimensional submanifold of so(4, 1)*. 

These statements lead to the following proposition. 
Proposition 3.6: The only subrepresentation of the re

presentation (ad ® ad). of the algebra so(4,1) to which corre
spond nondegenerate SO(4, I)-invariant submanifolds is 
(0,1) Ell (0,0). To this representation, a family of six-dimen
sional submanifolds denoted tJ~, defined by the equations 

AXB- B4L =0, L2+A2_B2_B~ =k 2 (3.32) 

(k = real constant) can be associated. 
The quartic invariant C(j2 + C(j~ - Jl2 vanishes on any 

tJ~. 
The following proposition, similar to 3.3, is true. 

TABLE IV. Basis vectors of the subrepresentation (0, I) of (ad X ad), for the 
algebra so(4, I). The labeling adopted in Ref. 21 for the so(6) basis functions 
has been conserved for the corresponding so(4, I) basis functions obtained 
using Weyl's unitary trick. 

S,Ms 

0, 0 

!, ! 
!, -! 
!, ! 
!, -! 

T,Mr 

0, 0 

!, ! 
!, ! 
!, -! 
!, -! 

Basis vector f:~. ~sllr. M,J 

~L'A 

(1!2J3)[ - (AXB - B4Lb + i(AXB - B4L),l 
- (1!2J3)[L'B + i(AXB - B4Lhl 
- (1!2J3)[L' B - i(AXB - B4Lhl 

(1!2J3)[IAXB - B4Lb + i(AXB - B4L),l 

Proposition 3.7: For any UEtJ~, rank MS~4.ldu);;;'6. 
The complete proof of proposition 3.7, which is 

straightforward, is given in Ref. 11. 
The manifolds tJ~ can be thus ascribed a nondegenerate 

KKS symplectic form; its explicit expression, obtainable 
from an adaptation of Mukunka's result 7 to the noncompact 
algebra so(4,1), is given by the following proposition. 

Proposition 3.8: (1) The Kirillov-Kostant-Souriau sym
plectic form on tJ~ has the expression 

1 3 3 BB. 
UJ6 =- L dA;AdB; - L ~dA;AdBj 

B4 ;~ I ;.1~ 1 B4B 

3 B 3 AB. _ L _I dAAdB4+ L _I _1 dB.AdB 
j~IB2 1 j,j~IB4B2 1 1 

1 3 --- L (BX(AXB))jdB4AdBj (3.33) 
B~B2 j~ I 

and can be brought to a Darboux canonical form 
UJ = ~dqj Adp; by means of the transformation 

q; = (B 2)1/2(B4)-IA;, p; = (B 2)-1/2B;. (3.34) 

(2) Denoting with UJ the generic KKS symplectic form 
defined by (2.8), we have UJu = (UJ6 )u if and only if UEtJ~. 

An analog of statement (i) is no more true for the algebra 
so(3,2), for which it becomes the following. 

(il) The relations obtained by equating to zero the basis 
vectors of the 14-dimensional representation (2,0) define a 

TABLE V. Basis vectors of the 14-dimensional subrepresentation (2, 0) of (ad X ad)" for the algebra so(4, I). The corresponding so(3, 2) basis function are 
obtained from the so(4, I) basis functions by the transformation L-.L, A_iA, B-+B, B4_iB4 • 

S,Ms 

0, 0 

!, ! 
!, -! 
!, ! 
!, -! 
I, I 
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I, 0 
I, -I 
I, I 
1, 0 
1,-1 
I, I 
I, 0 
I, -1 

T,Mr 

0, 0 

!, ! 
!, ! 
!, -! 
!, -! 
I, 1 
I, 
1, 

I, 0 
I, 0 
I, 0 
I, -1 
I, - 1 
I, -I 

f:~~sllr.M,J 

(1!4VTI)(L; +Li +Li +A i +A i +Ai) 
(1!2J3)[(BXL + B.Ah - i(BXL + B,A),) 

- (1!2J3)[A' B - i(BXL + B_Ahl 
- (1!2J3)[A' B + i(BXL + B,Ahl 

- (1!2J3)[(BXL + B_Ab + i(BXL + B_A),l 
(1!4{3)[Li -Li -A; +Ai +Bi -Bi + 2i(L,L2-A,A2+B,B2)] 

(1!2v16)[ - (AXL + B_Bb - L,L3 +A,A3 - B,B3 + i((AXL + B_B), - L2L3 +A~3 - B2B3)] 
11/4{3)[(-L; -Li +A; +Ai +Bi -B~)-2i(AXL+B,Bh] 

(1!2v16)[ - (AXL + B,Bb +L,L3 -A,A3 +B,B3 + i((AXL + B4 B), + L2L3 -A~3 +B2B3)] 
(1!4{3l1-2L; +2Ai +Bi +Bi -Bi -B;) 

(1!2v16)[(AxL+ B,Bh -L,L3 +A,A3 - B,B3 + i((AXL + B,B), +L2L3 -A~3 +B2B3)] 
(1!4{3)[(-Li -Li +A; +Ai +B; -B~)+2i(AXL+B,Bh] 

(1!2v16)[(AXL + B_Bb + L,L3 - A,A3 + B,B3 + i((AXL + B,B), - L2L3 + A~3 - B2B3)] 
(1!4{3)[(Li -Li -Ai +Ai +Bi -Bi)-2i(L,L2-A,A2+B,B2)] 
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four-dimensional submanifold of so(3,2)*. The 35-dimen
sional representation ofso(3,2), contained in (3.2) leads to the 
trivial solution u = O. 

The four-dimensional manifold associated to the repre
sentation (2,0) is defined by the following six equations 

A 2 = B2 = B ~, A· B = 0, A X B - B4L = 0 . 
(3.35) 

The quadratic and quartic invariants vanish on the manifold 
defined by (3.35). The analog of Proposition 3.6 for so(3,2) is 
the following. 

Proposition 3.9: The representations of the algebra 
so(3,2), contained in (ad ® ad)s, to which correspond nonde
generate SO(3,2)-invariant submanifolds, are (0, 1) Ell (0,0) and 
(2,0). The first representation leads to a family of six-dimen
sional submanifolds of so(3,2)*, defined by the equations 
AXB - L = a and L2 - A2 - B2 + B; = k; the second 
leads to a four-dimensional submanifold, defined by Eqs. 
(3.35). 

C. The algebra sp(4,R) 

Let us transpose the results obtained for the algebra 
so(3,2) to the algebra sp(4,R )-so(3,2). Let us denote by 
A 1I,A 12,A21,A22,BII,BI2,B22,CII,CI2,C22 the basis of the alge
bra sp(4,R ) for which the Lie products have the expressions 

[Aij,Akl] = DjkAa - DaAkj , 

[Aij,Bkd = DjkBa -DjiBik , 

[Aij'Ckl ] = - (DikCjI + DaCjk ), (3.36) 

[Bij,Ckd = - (DikAjl + DaAjk + DjkAa + DjiAik) . 

The isomorphism between sp(4,R ) and so(3,2) is given by the 
relations 

LI = (i/2)(AI2 +A 21 ), L2 = - !(A12 -A21)' 

L3 = (i/2)(A II - A 22 ), A I = - !(B II - B22 - CII + C22 ) , 

A2 = - (i/4)(BlI + B22 + CII + Cn ), A3 = !(B12 - Cd, 

BI = - (i/4)(B" - B22 + Cll - Cd, (3.37) 

B2 = !(B" + B22 - C" - Cd, 

B3 = (i/2)(B12 + Cd, B4 = - (i/2)(A" +A22)' 

Using this isomorphism, Proposition 3.7 becomes the fol
lowing. 

Proposition 3.10: The Sp(4,R )-invariant even-dimen
sional submanifolds of sp(4,R )* associated to subrepresenta
tions of (ad ® ad)s are the following. 

(1) A family of six-dimensional manifolds associated to 
representation (0,1) Ell (0,0) and defined by the equations 

(B"C" - Ail) - (B22C22 + A ~2) = 0, 

B 12C22 + C12B" -AdA" +Azzl = 0, 

B 12C" + C12B22 -A21(A" +A22) = 0, 

(B"C" - Ail) + (B22C22 - A ~2) 

+ 2(B12C12 -A l zA21) = k, 

where k is an arbitrary real constant. 
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(3.38) 

(3.39) 

(3.40) 

(3.41) 

(2) A four-dimensional manifold associated to represen
tation (2,0) and defined by the equations 

(B" + C22)(B22 + C,,) - (B12 - Cd2 
- (An +Azz)2 = 0, 

(3.42) 

(B" - Czzl(B22 - Cn ) - (B12 + Cd2 + (A" + Azzl2 = 0, 
(3.43) 

(C"C22 - Ci2) - (BnB22 - B i2) = O. (3.44) 

The polynomials which define the six-dimensional sub
manifold of sp(4,R )* are particularly interesting: relations 
(3.38)-(3.41) have been recently obtained [see Ref. 12, rela
tions (3.23)] as the classical limit of quantum constraints in 
the quasiclassic treatment of the helium atom, in which the 
large quantum number is the dimension ofthe space. To 
recover the identities [see Ref. 12, (3.23)], the generators 
Aij,Bij,Cij (3.36) and (3.37) have to be replaced by Fij,Pij,x,j' 
respectively. 

The quantum constraints considered in Ref. 12 were 
implicitly incorporated in the Holstein-Primakoffrepresen
tation. We proved that the identities (3.38)-(3.41), written in 
symmetrized form, appear as explicit constraints in the 
quantum problem considered in Ref. 12. 
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We illustrate here a new method for computing Clebsch-Gordan coefficients (CGC) for E6 by 
computing CGC for the product 27 ® 27 of the irreducible representation (100000) of E6 with 
itself. These CGC are calculated thrice: once in a weight vector basis independent of any 
semisimple subgroup, then in a basis which refers to SOt 10) C E6 , and finally in a basis referring to 
SU(5)CSO(1O) CE6' 

PACS numbers: 02.20.Rt, 03.65.Fd 

1. INTRODUCTION 

The unification of strong and electromagnetic interac
tions with the weak ones based on a simple Lie group is 
regarded as one of the possible avenues of advancement for 
understanding of the fundamental interactions. Even if the 
ultimate unification should take place in the context of a 
supersymmetry, the Lie group part of it would be left to play 
a major role. It is generally accepted that the largest Lie 
group should contain SU(3)XSU(2)XU(1) of the standard 
model via SUI 5). Among the higher groups SOt 10) and E6 are 
considered most often. 1.2 Details of the approach as well as 
extensive bibliography can be found in recent reviews.2 

Any exploitation of a particular model to the extent 
where experimental predictions or comparisons can be made 
inevitably involves some Clebsch-Gordan coefficients 
(CGe). The purpose of this paper is to provide CGC for 
models based on SOt 10) and E6 • We proceed in a way which 
is complementary to our CGC computation for 
SU(5):)SU(3) XSU(2)XU(1) in Ref. 3. Since E6::JSO(1O), it 
is natural to set up the problem in terms of E6 • 

The idea of our approach, similarly as Ref. 3, is to calcu
late and present only a list of representative CGC and to 
provide a prescription how any other CGC can be readily 
identified with one of the representatives. The main tool of 
such an identification are operators Rh which permute the 
basis vectors-physical states in representation spaces. 
These operators are new in physics literature (Refs. 3 and 4) 
although in mathematics they are known (cf. Ref. 5). Cur
iously, using our method it turns out that the larger the Lie 
group the easier is the CGC computation for relevant repre
sentations. The latter fact is somewhat obscured by the inevi
tably more cumbersome notations for larger groups. 

We consider here the tensor product, 27 ® 27, of the 
natural representations of E6 , identify the basis vectors of the 
representation space of27 with the light fermions of the the
ory3 and calculate the related CGC. Such CGC's are needed, 
for instance, for the study of the Higgs term of the Lagran
gian. The physical states carry (additive) quantum numbers 

alWork supported in part by the National Research Council of Canada, the 
Ministere de I'Education du Quebec, the Korea Traders Foundation, and 
by the Korea Science and Engineering Foundation. 

which are in a correspondence with the weights of the repre
sentation of the Lie group. If a symmetry is exact it is only a 
matter of convenience to consider with the group also a sub
group. In physics, however, the symmetries are broken. This 
forces one to prefer certain subgroups of the unifying group. 
In our case it is E6 ::JSO(lOPSU(5PSU(3)XSU(2)xU(1). 
Thus the task in this paper is to consider the first two inclu
sions and provide a connection with the last one contained in 
Ref. 3. 

The elementary explicit descriptions usually provided 
in physics literature for Lie algebras are not practical for a 
Lie algebra of the size of E6• Although it would be quite 
simple to find the 27 X 27 matrices representing E6 genera
tors (using, for instance, the method of Ref. 4 where the G2 

and F4 generators were found), it would be rather difficult to 
make much use of them. Fortunately, it is not necessary. 

We assume that the reader is familiar with the root de
composition of the Lie algebra and with the algorithm for 
computing weights of a representation, starting from the 
highest one.6 We make use only of the 12 basic generators of 
E6 

ehi,e _ hi' i = 1,2,3,4,5,6 

corresponding to simple roots ;i' The simple roots are num
bered as on Table I. Since our method was described ear
lier,3,5 our explanations are brief. 

Section 2 contains CGC's of the product 27 ® 27 in E6 in 
a basis independent of any subgroup; Sec. 3 (resp. 4) contains 
the CGC's for a basis relative to SO(1O)CE6 [resp. SU(5) 
CSO(1O)CE6]' Section 5 contains an example ofCGC 
of27 ® 27 relative to the SU(3)XSU(2)XU(1)CSU(5) 
CSO(1O)CE6 basis. 

2. CLEBSCH-GORDAN COEFFICIENTS IN Es-BASIS 

The additive quantum numbers of a multiplet of ele
mentary particles associated with an irreducible representa
tion of E6 are precisely the coordinates of weights of that 
representation (up to a normalization and a choice of basis in 
the weight space). For higher rank Lie algebras, only some of 
the quantum numbers may have a clear physical interpreta
tion. 
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TABLE I. Numbering of simple roots of Eo. 80(10), and 8U(5). 

6 

4 cr-o-Lo-o c:-~ 2 3 4 S 

so (10) 

Consider the E6 tensor product 

27 ® 27 = 351' ad51 $27 , 

or equivalently 

S 

0---0---0-0 
2 ~ 4 

SUeS) 

(2.1) 

( 1 ()()()()()) ® ( 1 ()()()()()) = (2()()()()()) $ (010000) $ (0000 10) , 
(2.2) 

where the E6 representations are denoted by their highest 
weights (cf. Table II). Let us first find CGC's for the irreduci
ble subspace (2()()()()()). Obviously, 

(2()()()()()) = (1 ()()()()())( 1 ()()()()()) . (2.3) 

Other weight vectors of the (2()()()()()) subspace are obtained 
from (2.3) by successive application of the generators e _;, to 
(2.3) and then normalizing. 

The action of e ±;, on the basis weight vectors of27 and 

27 is given explicitly by 

{
(WI ± 2,wz + 1,w3,w4,ws,w6 ) if wl:S0 

e ±;1 (w) = 0 otherwise 

{
(WI + 1,wz ± 2,W3 + 1,w4,ws,w6 ) if wz:SO 

e ±;, (w) = 0 otherwise 

{
(W1,WZ + 1,w3 ± 2,w4 + 1,ws,w6 + 1) if w3:S0 

e (w)-
± ;3 - 0 otherwise 

(2.4) 

if wSO 
otherwise 

if ws:SO 
otherwise 

TABLE II. Properties of relevant representations of E6 and 80(10). 

Other 
Lie Highest dominant 

algebra weight Dimension weights 

E6 (100000) 27 
(000010) 27 
(200000) 351' (010000).4(000010) 
(010000) 351 5(000010) 

D, (10000) 10 
(00010) 16 
(00001) 16 
(01000) 45 5(00000) 
(20000) 54 (01000).4(00000) 
(00100) 120 4(10000) 
(00002) 126 (00100).3(10000) 
(10001) 144 4(00010) 
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( ) 
_ {(W1,WZ,W3 + 1,w4 ,ws,w6 ± 2) if w6:S0 

e±;6 w - 0 otherwise· 

Using (2.4) one has 

e _ ;1 (2()()()()()) ~ (0 100(0) ~ (e _ ; I ( 1 ()()()()()))( 1 ()()()()()) 

+ (1 ()()()()())( e _ ; I ( 1 ()()()()())) 

so that 

(2()()()()()) (2()()()()()) I-
e - ; I 2()()()()() ~ 010000 = V1 (11 00(0)( 1 ()()()()()) 

+ ~ (1()()()()())(110000), (2.5) 

where we write x for - x. Here (;:) denotes a weight vec
tor of the weight (010000) belonging to the irreducible sub
space (2()()()()()). Continuing further one gets 

(2()()()()()) (2()()()()()) 1 -
e -;, 010000 = 1 I woo = V1 (011 000)( 1 ()()()()()) 

+ ~ (1()()()()())(01 1000) , 

(2.6) 

(2()()()()()) (2()()()()()) - -
e -;1 010000 ~ 220000 = (110000)(110000) . 

In this way one could, in principle, generate the whole sub
space (2()()()()()). Next we go to the representation 351'. Its 
highest weight is (010000) and the corresponding weight vec
tor (010000) must be orthogonal to (2.5). Choosing conve
niently its arbitrary phase, we have 

(
010000) 1 - 1-
010000 = V1 (11 00(0)( 1 ()()()()()) - v'2 (1 ()()()()())( 1100(0) . 

(2.7) 

Again starting from (2.7) one can generate the subspace 351'. 
There are 10 different products of two 27-weight vec

tors with the dominant weight (000010). Four (resp. five) 
linear combinations of them lie in the subspace 351 (resp. 
351 '). The unique linear combination orthogonal to those 
nine ones is the highest weight vector (:=:~) of the subspace 

27. It is listed in the last column of Table III. The subspace is 
generated directly from it. 

Reduction to the subalgebra D, in E6 and A. ill D, 

(0000 1) $ ( 100(0) $ (0) 
(00010) $ (10000) $ (0) 
(00002) $ (10001) $ (20000) $ (00001) $ (10000) $ (0) 
(10001) $ (00100) $ (01000) $ (00010) $ (00001) $ (10000) 
(1000)$(0001) 
(00 10) $ (1 (00) $ (0) 
(0100) $ (000 1) $ (0) 
(1001)$(0100)$(0010)$(0) 
(2000) $ (1001) $ (0002) 
(0101) $ (1010) $ (0010) $ (0100) $ (1000) $ (0001) 
(0020)$(0101)$(0002)$(0100)$(0001)$(0) 
(0101) $ (1100) $ (0002) $ (1001) $ (0010) $ (1000) $ (0001) 
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TABLE III. CGC for (100000) ® (100000) in Eo. Multiple weights are identified by subscripts. The sUbscripts i specifies the last e _;, used to derive the weight. 

This sUbscript characterizes the weight vector. 

[f200000Y 

(200000) (200000) (010000) 

In 00000) (100000) 1 (010000) (010000) 

(100000) (110000) 1/.1'[ 1/12" (200000) (010000) (000010) 

110000) (100000) 1/.1'[ -1/12" (000010)4 (000010)3 (000010)2 (000010)1 (000010)4 (000010)3 (000010) 2 (000010)1 (000010)" (000010) 

(oooTl1) (0001 aT) 1/2 

(000101) (000111 ) 1/2 

(001101 ) (0011"11) 1/2 1/2 

(OO1T11) (001101) 1/2 1/2 

(011000) (011010) 1/2 1/2 

(011010) (011000) 1/2 1/2 

(110000) (110010) 1/2 

(110010) (110000) 1/2 

(100000) (100010) 

(100010) (100000) 

In this way one can get all 729 ( = 272) linear combina
tions of weight vectors of our problem and thus the cac. 
However, it turns out that the cac takes only a few distinct 
nonzero values. Namely, 

1,l/Y2 and ~ in (200000) subspace, 

± l/v2 and ±! in (010000), 

± l/~ in (000010). (2.8) 

It is, therefore, natural to avoid listing all 729 cac's in 
our problem in favor of a representative subset of them in 
each of the three irreducible subspaces (200000), (010000), 
and (000010). It was pointed out before3

,5 that it suffices to 
give cac's which correspond to dominant weight vectors in 
each of the three irreducible subspaces. Table III contains 
the representative subset ofCaC coefficients for 27 ® 27. 
Each column of the table is denoted by two weights: the 
highest one in the first line of each column indicating one of 
the three subspaces, and the weight of an actual (dominant) 
weight vector. 

Next we need a procedure to relate any other cac with 
one of the entries of Table III. It is shown5 that such a trans
formation is provided by the elements R~, EE6 , where ;; is a 
simple root of E6, given by 

R~i(W) = exp(e _ ~,lexp( - e~,lexp(e _ ~i)(W) 

(2.9) 

Here (w) denotes a weight vector of E6 weight w; r;w is the 
reflection of the weight w 

(2.10) 

The scalar product (w,;;) of a weight w = (w\, ... ,w6 ) with the 
simple root ;; of E6 is given by 

(w,;;) = W; . (2.11) 

We illustrate the action of the R~i by two examples. 
Example 1: Let us consider (2.5). Then 

R~,(200000) = (R,Jl00000))(R~,(IOOOOO)) (2.12) 
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1/2 -1/2 1/ ITIi' 
-1/2 1/2 1/ /TIf 

1/2 1/2 1/2 -1//TIf 

-1/2 -1/2 -1/2 -1//TIf 

1/2 1/2 1/110 
-1/2 -1/2 1/110 

1/2 1/2 1/2 -1/110 

1/2 -1/2 -1/2 -1//10 

1/2 1/2 1/110 

1/2 -1/2 1/110 

or 

(220000) = (110000)(110000). (2.13) 

Similarly one finds that 

etc. 

(022000) = R~2R~,(200000) = (011000)(011000), (2.14) 

(002202) = R~JR~2R~,(200000) = (001101)(001101), 
(2.15) 

Example 2: Suppose we have given 
(wo) = (000011)(00 1 1 11) and we want to find its contribution 
into the representation spaces 351,351', and 27. First 

R _~5R -~4(WO) 
= R _~5(000011)(000101) = (000111)(000101) 

= !(000111)(000101) + (000101)(000111) 

+ !(000111)(000101) - (000101)(000111)_S + A . 
(2.16) 

The antisymmetric term A obviously entirely belongs to the 
space of 351. More precisely, one finds using Table III that 

(2.17) 

where we write the highest weight over the weight in order to 
avoid any ambiguity. The symmetric term S belongs to 

351' EI1 27. One has 

S =(=)=~(=)4 -~(=)3 
( 200000) (200000) (0000 10) + ~ 000010 2 - ~ 000010 \ + ($/Y2) 000010 . 

(2.18) 

Remark: The elements (000010); with different sub
scripts i correspond to different weight vectors of the same 
weight. The subscripts i indicate the last e _ ~i used to derive 
the vector. The subscript characterizes the vector. 
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3. CLEBSCH-GORDAN COEFFICIENTS IN SO(1 0) BASIS 

Here we consider the same product (2.2) of E6 represen
tations. This time we want to calculate the corresponding 
CGC in the basis of SOt lO)-weight vectors. Again it suffices 
to find only the linear combination of products which have 
SO(10)-dominant weights. Since SO(10)CE6, there will be 
generally more SOt 10) dominant weights than in the pre
vious case for the same product space. 

The following matrix? gives a convenient way to trans
late anE6 weight W = (w1"",w6) into a weight v = (V I,. .. ,V5) of 
SO(lO): 

v = PwT = (w2 + W3 + W4,W6,W3,W4 + W 5,W1 + W2) , 

i.e., 

0 1 1 0 

0 0 0 0 
p= 0 0 0 

0 0 1 

0 0 0 

Basic generators of SOt 10) compatible with Pare 

eSI = [e;" [e;"e;,] ] , 

eS4 = [e;.,e;s] , 

ess = [eSI ,eS2 ] • 

(3.1) 

(3.2) 

(3.3) 

The reductionoftheE6 representations 351,351',27, and 27 
to SO(10) is found in Table II. Given that information, we 
proceed as before with the only difference that we must use 
only the generators (3.3) ofSO(lO) and all weight vectors 
must be interpreted as SO(lO)-weight vectors using (3.1). Let 
us underline that (3.2) is one of many possible equivalent 
choices of the matrix P. A different choice would imply dif
ferent linear combinations (3.3) for generators ofSO(lO). For 
extensive computations (3.2) is the rational choice to make. 
If, however, the simplicity of the relations (3.3) is of prime 
importance then one can set, for instance, e~, = es,' for 
i = 1,2,3,4 and eg, = eS6 ' 

In order to specify an SO(lO)-weight vector, one has to 
indicate 

(i) the E6 irreducible subspace, (200000), (010000), or 
(000010) to which it belongs; 

(ii) the SOt 10) irreducible subspace to which it belongs 
(the possibilities for each E6 subspace are listed in Table II); 

(iii) its Sot 10) weight. 
In the tables, the first three lines of each column of CGC 

contain just these three weights. In the text, for example 

(=~O) 00110 

denotes the Sot lO)-weight vector of the weight (00 110) in the 
Sot 10) subspace (000 10) of the irreducible E6 space (0000 1 0). 
An E6 weight cannot be mistaken for an SOt 10) one because 
it has 6 components while the SO(lO) one has only five of 
them. 
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First we translate the E6 highest weight vectors of Table 
III into SOt 10) higher weight vectors: 

pG=)=(=~)=p(G=)(~=)) 
= (=~)(=~) . (3.4) 

Similarly one gets 

(
010000) (10001) 1 (00001)(00001) 

P 010000 = 10001 = v1 00001 10000 

1 (0000 1 )(0000 1) - V1 10000 00001 ' 
(3.5) 

and the last one of them 

P (000010) = (000 10) 
0000 10 000 10 

(3.6) 

is given in the last column of Table III as a linear combina
tion of the products. 

Application ofSO( 10) generatorse _ S, to (3.4), (3.5), and 
(3.6) produces the dominant weight vectors in these sub
spaces. They are listed in Table IV to VI. However, the space 
27 ® 27 contains other subspaces irreducible with respect to 
SOt 10) than the three above. Their highest weight vectors are 
then constructed to be orthogonal to the vectors of the same 
SOt 10) weight from subspaces (3.4)-(3.6). Then again succes
sive application of e _ s,'s produces the rest of our tables. 

Any other CGC than those given in Table IV is ob
tained by the action of operators R!;i of (2.9) with the only 
difference that Si is one of the simple roots of the subgroup. 

4. CGC IN SU(5) BASIS 

In the previous section the CGC's of27 ® 27 were com
puted in the basis of SOt 10) weight vectors. Here we are 
interested in the same tensor product of E6 representations 
but we want to compute the CGC's relative to a basis of 
weight vectors ofSU(5)CSO(1O)CE6' An obvious proce
dure is an exact analog of Sec. 3. For that, one needs only the 
projection matrix? P' for SO(10)~SU(5): 

100 

o 0 
o o 

o ~) (4.1) 

and the basic generators of SU(5) in terms of generators of 
SO(lO) written in a way compatable with P" These are 

ea1 = [eS1 ,eS2 ] , 

eu , = [eS3 ,eS'] , 

ea3 = es• ' 

ea , = [eS"eS3 ] • 

(4.2) 

The representation 27 of E6 decomposes as a represen
tation ofSO(lO) as follows: 

16 Ell + 10 Ell 1 or (0000 1) Ell (10000) Ell (00000) . 

Therefore, in order to calculate the CGC's of 27 ® 27 in the 
SOt 10) or SU(5) basis it suffices to compute the CGC's for the 
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TABLE IV. CGC for the E6 product (100000) (100000) in the SO(10) subgroup basis. On the left side of each line is the product identified in terms ofSO(10) 
weights followed by the corresponding E6 weights. 

(200000) 

(00002) 1(20000) 

(00002) (20000) (200a00) (010aOO) 

I( 00001) (00001) I (10000) (10000) 1 (200001 (10001) (10001) 

1(10000) (10000) I (11 0000) (11 0000) 1 (10001) (10001 ) (200000) (010000 1 (10000) (000J1) (110000) (100000)/ 1/11'2" 1/11'2" (00002) (00100) 

(00001) (10000) (IOGOOOJ (110000) IIV'! -1/V'l (00100) (00100) (200000) (OI00m) 

(000~1) (00101) (100000) (011000) I/V'l I/V'l (00001) (00001) 

(00101) (00001) (011000) (100000) llV'l -11V'l (00001) (00001) (200000) (010000 

(ooeol) (00000) ( 100000) (110110) 1/112 1/112 (20000) (01000) 

(00000) (00001) (110110) (100DaO) 1/11'2" -IIV'! (01000) (01000) 

(11000) (10000) (000111 ) (110000) l/vl l/vl 

(10000) (11000) (110000) (000111 ) l/vl -1/y"[ 

(200000) (010000) (000010 

(00002 ) ( 10000) (00100) (10000) ( 10000) 

(10000)2 (10000)3 (10000) 5 (10000) (10000)2 (10000)3 (10000)5 (10000)4 ( 10000) ( 10000) 

(1111 0) (0111 0) (001011 )(001101) 1/2 1/2 l/M -1/2 -1/2 -1/2 -1/;ru-

(01110)(11WO) (001101)( 001 oIT) 1/2 1/2 l/M 1/2 1/2 1/2 -1/;ru-

(11010)(01010) (000101) (000011) 1/2 -1//IIU 1/2 -1/2 1/ ;ru-

(01010)(11010) (000011)( 000101) 1/2 -1//IIU -1/2 1/2 1/ ;ru-

(10101) (001 01) (011110) (011000) 1/2 1/2 -1//IIU -1/2 -1/2 1/ ;ru-

(00101) (10101) (011000) (011110) 1/2 1/2 -1//IIU 1/2 1/2 1/ ;ru-

(10001) (00001) (100110) (1 00000) -1/2 -l/M 1/2 1/ ;ru-

(00001 ) (1 oooT) (100000) (T00110) -1/2 -1/14lY -1/2 1/1TO 
(10000)(00000) (T1 0000) (110110) -4/14lY 1/12 -1/1TO 

(00000) (10000) (110110) (110000) -4/14lY -1/12 -1/1TO 

(200000 ) (010000) (OOOOl~) 

(10001 ) (10010) (00010) (00010 ) 

(00010)1 (00010)2 (00010)] (00010)5 (00010)5 (00010)3 (00010), (00010) (00010) (00010) 

(11010)(il0oo) (000101) (000111) 1/2 1/2 -1/2 -1/2 -l/v'iO 11.110 

(11000)(11010) (000111 J (000101 J 112 1/2 112 1/2 lIVlo INTo 

(i001O) (1 0000) rl j 0010)( 11 0000) 1/2 -112 lNio -INTo 

(10000)(ioOIO) (iloOOO)(liOOIO) 1/2 1/2 -1/.10 -1!ciTO 

(01100)(01110J (001ili)(001101) 1/2 1/2 1/~ 112 -l/v'jQ -1/110 

(011l<l)(01100) (001101 )(001111) 1/2 II, -lIZ -1/2 1/,'jQ -1/v1o 

(OOill)(OOlol; (011010) (011000) 1/2 1/2 1/2 1/2 1/\10 1/ !iO 

(00101 )(ooi 11) (011000) (011 010) 1/1 1/2 -1/2 -In -1!,1o 1/,10 

(00011) (00001) i1 000 1 0 ) i1 00000 ) -1/2 -1/2 1/,40 11,10 

(00001 )(00011) (100000)(100010) -112 112 -11/jQ 11\10 

( 100000) (010000) (000010) 

(20000 ) (00000 ) (01000\ (00000) 

(00000)5 (00000)] (MOOD), (00000) 1 (00000) (00000)1 (00000)2 rOOOOD) 1 (00000)4 (00000) 5 (00000) 

(0001!)(00011 ) (100010) (010100) 1/2 1 f\/1 0 1/2 1/2 

(00011 )(00011) (010100)(100010 ) 1/2 I/VID -1/2 -1/2 

(00Ii1)(00111 ) (TOlloo) (011010) 1/2 1/2 -l/v1o -112 + 1/2 - 1/2 

(00111 )(00111) (011010) (Tolloo) 1/2 1/2 -1/v1o 1/2 -1/2 + 1/2 

(01100)(oil00) (Tl1001 ) (001 11 I) 1/2 1/2 l/v1o -1/2 -1/2 

(01100)(01100) (00 lllli (fl IDOl) 1/2 1/2 If\/lO 1/2 1/2 

(11000)(il000J (11000n( 00011)) 1/2 1/2 -1/JlO -1/2 -1/2 

(il 000)( 1 iooo) (000111) (11 0001) 1/2 1/2 -1/VlD 1/2 1/2 

(ioooo) (10000) (000110)( 110000) 1/2 1/1iO -1/2 

(10000)( i 0000) (110000)( 000110) 1/2 I/VlD 1/2 

(00000) (00000) (1'0Iio)(H0110) 1 
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TABLE V. CGC for the SO(IO) product (00001) ® (00001). 

(00C02) 

(00002) (00002) (00100) 

1(00001) (00001) 1 (00100) (00100) I (DOlO!) (0000]) 1/-.ft 1//2" (00002) 

(0000]) (00101) 1/-.ft -1/\? ( 10000)2 (10000) 3 (10000) 5 

(010iO) ( liol0) lIZ 

( 11010) (01010) 1/2 

(lmO) (Olfl0) lIZ 1/2 

(01 flO) (1 i110: 1/2 1/2 

(10fo1) (0010T) 1/2 1/2 

(00101) (10fo]) 1/2 1/2 

(10001 ) (00001 ) 1/2 

( 0000]) ( 1O00l) 1/2 

TABLE VI. CGC for theSO(IO) product (10000) ® (00001). 

(10001 ) 

I (10001 ) (10001 ) (00010 ) 

1(10000) (00001 ) 1 (00010 )1 (00010)2 (00010)3 (00010>, (00010 ) 

( 10000) (10010) if '2 I! 5 

!Jl000) (11010: 1/ ';' 1/ ? -1/ '5" 

'0; lOG) {el i10 \ 11 i 1/ ~ 1/'5 

,Joill i (O(lloi: 1/.-' 1/7 -J, ~ 

(00011 ) (OOOGI ) I! ;~- 1/ '5 

TABLE VII. CGC for the SOt 10) product (10000) ® ( 10000). 

,,-
. (0000) 

, 20000 (2000C) (01000) 

1'100001(10000) I (01000: (01000 ) 

1(11000)(10000) 1/, £' 11 v'2 (20000 ) 

(1000C)(TloOO) 1/.7 -1/ .. '2 (000001 1 (00000)2 (00000)3 (00000) 5 

(foooo)( 1 0000) 1/2 

(10000)(10000) 1/2 

(HOOO)(f1000; 1/2 1/2 

(11000)(11000) 1/2 1/1 

(OlTOO)(Ofl00) 1/2 112 

(OflOO)(OlfoO) 1/2 1/2 

(OOlff)(ooTll ) 1/2 1/2 

(OOfll)(OOlH) 1/2 1/2 

(OOOn )(oooH) 1/2 

(0001 f) (OOOfl) 1/2 
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(00100) 

(10000)2 

1/2 

-1/2 

1/2 

-1/2 

(01000) 

(00000)1 

1/2 

-1/2 

1/2 

-1/2 

(10000) 

(10000)3 (10000)5 (10000)4 ( 10000) 

-1/2 1/v'S 

1/2 1/18 

1/2 1/2 -1/v'!i 

-1/2 -1/2 -1/18 

1/2 1/2 1/v'S 

-1/2 -1/2 1/v'8 

1/2 -1/.'8 

-1/2 -1/.'8 

following SO(lO) tensor products: 

(10000) ® (00001), (10000) ® (10000), (00001) ® (00001). 

This is done in two ways: first in the sot 10) basis (Tables V
VII), using the same technique as in Sec. 2, then in an SU(5) 
basis as in Sec. 3 (Tables VIII-X). 

Remark: A E6-weight vector of27 is uniquely specified 
by its SO(lO) weight because the representations 16, 10, and 1 
ofSO(10) have all weights distinct. 

5. EXAMPLE 

Finally, let us consider an example in which we com
bine the results of this article together with those of Ref. 3. 
Consider the product X of two E6 weight vectors 

X=(~~)(~=) (5.1) 

each from the 27 space and let us express it in terms of the 
SU(3)XSU(2)xU(1) weight vectors. Using Table III of Ref. 
3 such a weight vector is readily rewritten as a state of two 
light fermions of the SU(3)XSU(2)XU(1) theory. 

First we rewrite X as a linear combination of contribu
tions Xs and X A , respectively, from E6 subspaces 351' and 
351. Namely, 

(00000) 

(00000 )2 (00000) 3 (00000)4 (00000)5 (00000) 

1/\10 

11\10 

1/2 -l/iio 

-1/1 -11.10 

1/2 1.'2 1/·10 

-1/2 -1/2 11.'10 

1/2 1/2 1/2 -l/,1'fO 

-1/2 -1/2 -1/2 -l/v'IO 

-1/2 1/2 l/v'1O 

1/2 -112 1 IV10 
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TABLE VIII. CGC for the SO(lO) product (00001) ® (00001) in the SU(S) subgroup basis. 

(OOCOZ) 

(0200) (OOCOl) (00100) 

(0200) (0200) (1010) 

I (00001) (00001) 1 ( 1010) ( 1010) (00002) (00100) 

(00101) (00001) 1/'1/2 1/'1/2 (0101 ) (0101) 

(00001) (00101) 1/'1/2 -1/'1/2 (0101 ) (0101) (00002) 

(01110) (00001) l/V2 1/'1/2 (0002) (00002) (00100) 

(00001} (01110) l/V2 -1/'1/2 (0002) (0100) (0100) 

(01110) (01110) 1 (0100) (0100) (00002\ (00100) 

(1THO) (00001} l/V2 1/'1/2 (0002) (0010) 

(00001) (11110) 1/'1/2 -1/'1/2 (0010) (0010) (00002 

(10001) (01i10) 1/112 1 IV'[ (0000) 

(01110) (10010) 1/'1/2 -1/112 (0000) 

(lilio) (lTllo) 1 

(00002) (00100) (10000) 

(0101) (OlDl ) (1000) (1000) 

(1000)4 (1000)j (1000)Z (1 000)4 (lOGO lJ (1000 )2 (1000) (1000) 

(01110) (l0110) 1/2 1/2 livE -livE 

(T0110\ (01110) 1/2 -1/2 -livE -livE 

(10010) (01010) 1/2 -1/2 112 -1/2 -l/VS l/VS 

(01010) (i0010) 1/2 -1/2 -1/2 1/2 l/VS l/VS 

(1101) (00101) 1/2 1/2 1/2 1/2 -l/VS 1/v8 

(00101) (iliOl ) 1/2 1/2 -1/2 -1/2 11'18 l/VS 

(11001) (00001) 1/2 1/2 lrv'S -l/VS 

(00001) (11001) 1/2 -1/2 -11'/8 -1//8 

(00002) (00100) (10000) 

(0200) (Qool) (1010 J (0001 ) (000l) 

(000 1)3 (00C1)2 (0001. ) (000l) 3 (0001) 2 (':1001)1 (0001 ) (0001 ) 

(lT010) (01010) -1/2 lr'z4 -1/2 -1/2 1/18 

(01010) (1 T010) -1/2 lr'z4 1/2 1/2 1/.'8 

(10Tm) (00101) 1/2 1/2 1/\'24 1/2 1/2 -1/2 1/.'8 

(00101) (10TOl ) 1/2 1/2 1/1'24 -1/2 -1/2 1/2 1/03 

(1000i) (00001 ) 1/2 -1/'/24 1/2 -1/03 

(00001 ) (1 oooi ) 1/2 -1/'/24 -1/2 -1/ /8 

(1 TlTo) (01 TlO) \'3/v'8 lN2 -l/v'S 

(olTl0) (11lTo) V3/VS -1/'1/2 -l/VS 
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TABLE IX. CGC for the SO(lO) product(\OOOO) 0 (0000\) in the SU(5) subgroup basis. 

(10001) 

(0101 ) (10001 ) 

(0101 ) ( 1100' (10001 ) 

I (10000) (00001) I (1100) (0002) (1000l) 

I (flOOD) (00001) 1 (~002) (1001) (10001 ) (00010) 

1 (10000) (01 flO) 1 (1001) (0101 ) (1000) (1000) 

I (flOOD) (OlflO) 1 (1000)4 (1000)3 (1000)2 (1000) (1000) 

(10000) ( fOlIO) 1/\-2 1/2:5 I/\~ 

(Oil00) (OIGIO) -1/1[ -1/ I? 1/2,~ 1/ ,~' 

(00011) (00101) -1/"? -1/ .2 -112.'5 -I/v~ 

(OOlff) (00001 ) 1/1? 1/21''5 I/.~ 

(flOOO) (illiO) 2/1'5 -I/~ 

(iI000) (1 fOl0) 

(OOfll) (00101) 

(OM11) 100001) 

(10000) (l0010) 

(OilOO) (01110) 

(10001 ) (00010) 

( 1100) (0002) (0010) (0010) 

(0010)2 (0013)1 (0010) (DOlO) (DOlO) 

I/v? -1/.'5 

-I/v'[ l/i2" -1/',.,' 

1/1'1 1/ '-5 ( 10001) (00010) 

1/ ,,! l! ,,[ 1/,'!) (1001) (0000) 

1/'.'[ -1/.'2 1/,5 10000)4 (0000) 3 (0000)2 (0000) I (0000) 

(10000) (oli 10) l!, '2 1/11'5 

(01100) (100 10) 1/'2 1/':2 -1/11'5 

(0001 f) (11101) 111 1/1'1 IllS" I (10010)' 

(OOTI I) (11001) 1/''2" -1/1'2" -1/\'5' 
~I (11000) (00110) -1/,'[ I!~ (0001) 

(10000) (111io) 1 



                                                                                                                                    

TABLE X. CGC for the SO(IO) product (10000) ®(10000) in the SU(5) subgroup basis . 

...-
20000) 

(0002) (20000) (01000 

(0002) (0002) (0010) 

I (10000)( 1 0000 1 (0010) (0010) (20000) (01000) 

1(01100)( 10000) IIV'[ 1/.'2 (1001 ) (1001 ) 

( 10000)(01100) IIV'[ -1/11'2 (1001 ) (1001 ) (20000) 

(11000) (10000) IIV'[ IIV'[ (2000) (20000) (01000 

(10000) (11000) IIV'[ -IIV'[ (2000) (2000) (0100) 

(11000) (11000) 1 (0100) (0100) 

(00111) (11000) llv"I llv"I 

(11000) (00111 ) 1/.~ -1/''2 

(10000) (10000) 

(10000)( 10000) 

(01100)(01100) 

(01100)(01100) 

(OOOli )(OOOil) 

(OOOil)(oooll) 

(00111 )(00111) 

(00111)(00111) 

(11000)(11000) 

(11000)(11000) 

(5.2) 

where 

1 (100000)( 1 00(00) 1 (100000)( 100(00) 
Xs = ~ 001101 011000 + ~ 011000 001101 ' 

(5.3) 

1 (100000)( 1 00(00) 1 (100000)( 1 00(00) 
X A = ~ 001101 011000 - v2 011000 001101 . 

Since the weight (010101) is unique in (200000) and in 
(010000) we have 

(
200000) (010000) 

Xs = 010101 and X A = 010101 . (5.4) 

TheE6 weight (010101) is reinterpreted as the SO(lO) weight 
(01011) by means of(3.1). Then applying the SO(lO) reflec
tions rS.rS3 to (0101 I), we find that it belongs to the orbit 
(00100) or the SO(lO) Weyl group. Hence, Xs belongs to the 
SO(lO) irreducible subspace (00002) andXA belongs to 
(00100), i.e., 

Xs = (=;) and X A = (:~). 
01011 01011 

(5.5) 

Next we reduce the SO(lO) weight of Xs and X A to the 
SU(5) weight (1 Ill) using (4.1). This weight belongs to the 
SU(5) Weyl group orbit (0101). Indeed, 

(0101) = r
a2

(ITIl). 

Therefore, Xs and XA can be written as the SU(5)-weight 
vectors 
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(20000) (01000) (00900) 

(1001 ) (1001 ) (0000) (0000) 

(0000). (OOOO)J (0000)/ (0000)1 (0000)4 (0000)) (0000)2 (0000)1 (0000) (0000) 

-1/2 -1/2 l/ViO l/vW 

-1/2 112 -11,1"0 l/vW 

1/2 1/2 1/2 1/1 11M l/vW 

1/2 1/2 -1/2 -1/2 -1/v'fO l/vW 

-1/2 -1/2 -1/2 -1/2 l/v'fO l/vW 

-1/2 -1/1 112 1/2 -1//\0 l/v'fO 

-1/2 -112 -1/2 -1/2 -1//\0 -lIvW 

-1/2 -1/2 1/2 1/2 11M -l/vW 

1/2 1/2 -1/vW -l/vW 

1/2 -1/2 11.10 -1/vW 

Xs = (;:) and XA = (~:) . 
1111 1111 

Finally, we reduce (1 Ill) to SU(3) XSU(2)XU(1) weight [Eq. 
(10) of Ref. 4] and get (02)(0)(2) which is the highest weight 
vector of one of the irreducible SU(3)XSU(2)XU(1) sub
spaces in (0101) ofSU(5) [cf. Table 2 of Ref. 4]. Thus one has 

200000 

00002 

Xs = 0101 

(02)(0)(2) 

(02)(0)(2) 

010000 

00100 

, X A = 0101 

(02)(0)(2) 

(02)(0)(2) 

Similarly one can reinterpret the E6-weight vectors 
(~7,':,) and t=:) in (5.1) as the SO(lO)-weight vectors 

(
100000) (100000) 00001 and 00001 , 

01110 00101 
(5.6) 

then as the SU(5)-weight vectors 

(=)and(~)' 
0001 0110 

(5.7) 

and finally as the dominant SU(3) X SU(2) X U( 1) weight vec-
tors 
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100000 

K= 

100000 

, L = 0100 

(01)(0)(4) 

(01)(0)(4) 

Let us recall that the top line inK andL gives theE6 irreduci
ble subspace, the second line gives the corresponding SOt 10) 
subspace, the third line indicates the SV(5) subspace, and the 
fourth line gives the SV(3) X SV(2) X V( 1) subspace. The bot
tom line gives the actual SV(3) X SV(2) X V( 1) weight. It hap
pens to also be the highest weight in our example. 
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The direct transformation from the polygonal to the Fourier series representation of Feynman 
path integrals, via a change of integration variables, is effected explicitly for cases where the 
Lagrangian is of the form L (x,x,t ) = !X2 - V (x,t). This transformation involves a "functional 
Jacobian" stemming solely from the velocity term in the Lagrangian; this is because N-segment 
polygonal paths of the type contributing significantly to the integral, and their N-term Fourier 
series approximants, coalesce together as N- 00, but not their derivatives. We also consider 
integrals over paths with fixed means T -I S~ dt x(t ) = const. The usefulness of the Fourier 
representation is illustrated with the harmonic oscillator case V(x) = !W

2
X2, in both the free and 

fixed means situations; in particular, the Fourier evaluation of the path integrals trivially 
determines the large time phases (Maslov indices), and the ranges of w2 values for which the 
integrals are finite or infinite in the imaginary time cases. 

PACS numbers: 02.30. + g, 03.65.Db, 03.70. + k, 04.60. + n 

I. INTRODUCTION 

Path integrals were initially defined in terms of poly
gonal paths,I.2 i.e., as limits of discretized expressions. Soon 
after Feynman's introduction into physics of such path inte
grals,2 Davison3 proposed Fourier series (or more generally, 
complete sets of orthonormal functions) as convenient para
metrizations of paths; the Fourier series path integral repre
sentation of the Feynman propagator (or Green's function) 
was written down in a rather obvious manner, and proven to 
be equivalent to the polygonal path integral representation 
when the Lagrangian is of the form 

L (x,x,t ) = !X2 
- V (x,t ), (1.1) 

where V is independent of x. This was done by showing that 
the Fourier representation obeys the requisite composition 
law for propagators, and that it is identical to the polygonal 
representation in the small time limit. 3 

The Fourier series representation allows an efficient 
evaluation of the path integral in those cases where it can be 
evaluated in closed form,~ i.e., quadratic potentials, and 
yields useful approximations and methods of numerical eva
luation in the general case (1.1).7 

The Fourier series representation has also been used in 
more general situations than (1.1 t8; this however has drawn 
some criticism,9.lo for it is suspected that when the Lagran
gian contains terms like xx, e.g., then the polygonal and 
Fourier series representations of a path integral may be dif
ferent objects (this may be inferred, in particular, from the 
fact that the result of the polygonal path evaluation depends 
itself on the choice of "discretization procedure," or corre
spondence rule 11). Unfortunately, Davison's proof" offers 
little insight as to why the two representations are equivalent 
in the case (1.1), but not necessarily otherwise. 

In their book on path integrals, Feynman and Hibbs 12 

use the Fourier representation to evaluate the propagator for 
the harmonic oscillator of frequency w. They consider the 
passage from the polygonal to the Fourier representation as 
a linear transformation, and make mention of its "Jacobian" 
J; however, they bypass the direct evaluation of J, by fixing 

the final normalization by comparison with the known value 
in the case w = 0, on the "evident" presumption that J must 
be independent of w. 

A direct passage from the polygonal to the Fourier re
presentation, by way of an explicit change of integration var
iables, was apparently first done by Chang,13 for the case of 
the harmonic oscillator; specifically, the transformation is 
from N-segment polygonal paths to N-term Fourier series, 
with the limit N_ 00 taken concurrently in both representa
tions. 

In this paper, we make the direct passage from the poly
gonal to the Fourier representation for cases where the La
grangian is of the general form (1.1). This provides an alter
native proof of the equivalence of the two representations, 
and some further insight. The transformation from one re
presentation to the other involves what might be better 
called a "functional Jacobian." The value of this Jacobian is 
tied with the velocity term in the Lagrangian, which is per
haps not surprising when one recalls that that term defines 
the Wiener measure for paths. 1 The more specific reason is 
that, whereas N-segment polygonal paths and their N-term 
Fourier series approximants approach one another as 
N- 00, for those paths of the type contributing significantly 
to the integral, their time derivatives on the contrary diverge 
from one another (clearly implying that the polygonal and 
Fourier representations of a path integral may indeed be dif
ferent objects when V is velocity dependent). 

We also consider integrals over paths x(t ), O..;;;t..; T, con
strained to having a fixed mean value T -IS~ dt x(t ).14-16 

Davison's proof" of the equivalence of the Fourier and poly
gonal representations does not apply to such fixed means 
path integrals, and it was the need to evaluate such inte
grals l6 which provided the initial motivation for the present 
study. 

We illustrate the convenience of the Fourier representa
tion by treating the harmonic oscillator case V (x) = !W2X 2, in 
both the free and fixed means situations. In particular, the 
Fourier series evaluation ofthe path integrals allows to very 
simply determine the large time phases (Maslov indices) and 
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the ranges of 0)2 values for which the propagators are finite or 
infinite in the imaginary time cases; these ranges do not seem 
to be so easily deducible otherwise. 

In Sec. II, the basic expressions and definitions we shall 
use are written down, and the class of paths which contribute 
significantly to the integrals are identified. In Sec. III, we 
show that the N-segment polygonal paths belonging to the 
above class, and their N-term Fourier approximants, ap
proach one another as N- 00 . In Sec. IV, the change ofinte
gration path variables is effected. In Sec. V, we consider inte
grals over paths with constrained means. Section VI deals 
with the harmonic oscillator. We end with a short discussion 
in Sec. VII. Several appendixes contain the more technical 
details. 

II. BASIC EXPRESSIONS 

We consider path integrals of the form 

K6(Xa,ta;Xb,tb) = (Xb.1b fi1x(t )e- 6S [x(t 11, 

JXa.ta 
(2.1) 

where the functional 

S [x(t)] = Lb dt [ ~ X(t)2 - V(x(t ),t)] 
-Svedx(t)] + Spot [x(t)]. (2.2) 

The symbol () stands for either 1 or i = ( - 1)112, and the 
integral is over all paths x(t), ta <t<tb' with fixed endpoints 
x(ta) = xa,x(tb) = xb.Notethatincaseswhere V(x,t) = V(x) 
is independent of time, 

(2.1) = (xb Ie - 6(lb- laIHel xa ), 

whereH6 = ~d2/dx2 - () 2V(X), i.e.,K6~i isa real time pro
pagator, while K6 ~ I is a thermal, or imaginary time, propa
gator (with potential - V). 

The explicit meaning of(2.1) is as follows lO
•
12

: Divide 
the time interval [ta ,tb ] into N equal parts, and let 

(2.3) 
tj=to+j€, -oo<xj<oo, }=1, ... ,N-1, 

where 

€ = (tb - taJlN. (2.4) 

Define a N-segment polygonal path 

Xp(t;Xl,x2,···,xN _ 1) (2.5) 

as the succession of N straight segments 
[(Xj _ I ,tj _ 1 ),(xj,tj )] ,) = 1, ... ,N, in the (x,t I-plane. The path 
integral (2.1) is then 

K6(Xa,ta;Xb,tb) 

= 1~ (21TdtJ)-N12 f: 00 dX 1 dx2···dxN_ I 

Xexp! - ()S [xp(t;XI" •. XN_ I )]j. (2.6) 

In S [xp(t;X1",XN _ I)]' the velocity term is evidently 

Svel [x p] = 1- €- I f (Xj - Xj _ I )2, (2.7) 
2 j~1 

while the potential term is taken as the Riemann sum 

2874 

N 

Spot [xp] = € L V(Xj,tj)' 
j~ I 
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(2.8) 

The factor (21Td())-NI2 in (2.6) is such as to guarantee a 
sensible value in the limit N- 00, the combination (21Td 
() )-1/2 exp[ _ !()€-I(Xj - Xj _ I )2] tending to the 8-function 
8(xj -xj_l)asN-oo. 

Because of the €- I in (2.7), it is the velocity term Svel 

which determines the class of paths which contribute signifi
cantly to the integral (2.6) as N- 00. Given any real number 
a, let us call "a-path," and sometimes identify with a super
script a, a path xp(t;XI",XN _ I) for which 

IXj - x j _ I I <~ for all} = 1, ... ,N. (2.9) 

We now show that as N- 00 , it is only a-paths with 

(2.10) 

which contribute to the integral (2.6). Partition the integra
tion volume! - 00 <Xj < 00 ,} = 1, ... ,N - 1 J into two parts: 
a part fla within which (2.9) is obeyed for some real a, and 
the remainder n ~. Within fl ~, (2.9) is violated for at least 
one value ofj, so that 

Svel [xp] > !€-I(~f = !ca 
- I, xpEfl~. (2.11) 

Thus, the part of the integral (2.6) over fl ~ is of order 
exp( - const X N I - 2a) when () = 1, and is negligible as 
N- 00 if a satisfies (2.10); it is also negligible when () = i, 
because of the rapid oscillations of the imaginary exponen
tial inside fl ~ [the oscillation wavelength 
€IXj - Xj _ I 1- I < €I - a ---+0 as N- 00 for at least one value of 
II We may thus replace (2.6) by 

K = lim ( 21T€ ) -N/2 
N~oo () 

1 d d -6S[xp] 1 
X xl···xN_Ie ,a<-. 
~ 2 

(2.12) 

In view of the above, it is usual to let the velocity term define 
a "measure" for paths, 17 i.e., to rewrite (2.1) as 

(2.13) 

As is well known, 12 one may express (2.1) as 

K ( . - -6S[Xd (II]K'" (0 '0) (214) 6 xa,ta,xb,tb) - e 6 ,ta, ,tb , . 
where Xcl (t) is the classical trajectory between (xa ,ta) and 
(Xb,tb), at which the action is stationary, and K6 is given by 
(2.1), but with the potential V replaced by (V'=dV /dx) IS 

V(x,t) V(xcl(t) +x,t) - V(xcdt),t) -xV'(xcl(t),t). 
(2.15) 

We may accordingly limit our considerations to the path 
integral 

K 6=K6(0,0;0, 1) = ,.1 fi1x(t)r 6S [X('11. (2.16) 
)0.0 

Henceforth, it will be understood that 

ta = 0, tb = 1; xa = x(O) = Xb = x(l) = 0, (2.17) 

whence, also, 

€ = liN. (2.17') 

An alternative, nondiscretized, representation of (2.1) is 
obtained by expressing the paths x(t ) as Fourier series, e.g.,6 

[for the case (2.17)] 
00 

xF(t;b l,b2,···) = L bn sin(1Tnt). (2.18) 
n=l 
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Then 

(2.19) 

with 

y" =2n- I (1T0)-1/2. 

Again, it is the velocity term 

(2.20) 

that decides which frequency components in (2.18) contri
bute significantly to (2.19): indeed, the combination 

- I - 811141"",,'b~ . lI(b ) y" e ~ " as n-+oo, (2.21) 

so the high-frequency components of (2.18) (on the scale of 
variation of e - () f V dt) only contribute factors 1 to (2.19); the 
requirement that this be so, for (2.19) to make sense, fixes the 
normalizers y" . 

It is not really obvious that (2.19) is equivalent to the 
polygonal representation (2.6). Davison3 demonstrated that 
equivalence, for the case of a slightly different Fourier repre
sentation, wherein it is x(t ) which is expanded like (2.18), by 
showing that, like (2.6), the Fourier representation satisfies 
the semigroup law 

K(xa,ta;xb,tb) = f: "" dx K(xa,ta;x,t)K(x,t;xb,tb), 

(2.22) 

and that it is identical to (2.6) in the small time limit 
tb - ta-+D. The equivalence of(2.19) with (2.6) will be shown 
more directly in Sec. IV, by explicitly transforming from 
(2.6) to (2.19) by way of a simple change of integration varia
bles. 

The Fourier parametrization (2.18) in terms of a pure 
sine series is the simplest, but it is not the only one possible. 
Mixed sine--cosine series may also be used, e.g. [for the case 
(2.17)], 

"" 
x F(t; (a" ,b" )) = ao + L [an cos(21Tnt) + bn sin(21Tnt)]. 

n~1 

(2.23) 

Here, the endpoint constraints x(O) = x( 1) = 0 become the 
condition 

(2.24) 

which may be guaranteed by the insertion of an appropriate 
l5-function. We have 

K(} = 2- 1/217'-1 f"" dao dal ... db l db2 
- "" 110 111 111 112 

···I5Cto a,,) exp { - OS [xF(t;{a",b" ll]}, 

(2.25) 

where the normalizers 

110 = (17'0)-1/2; 11" = n- I(1T0)-1/2, n>l (2.26) 
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may again be guessed by inspection of the velocity term 

"" 
Svel [x F(t; (a" ,b" J)] = L rn2(a~ + b ~) (2.27) 

,,~I 

and the demand that 

11 ,,- 2 exp [ - Orn2(a~ + b ~ ) ] -b(a" )I5(b" ) as n-+ 00 • 

(2.28) 

For integrals of the type (2.16), the pure sine series (2.18) 
is the more convenient; but when additional constraints are 
imposed on the paths, such as, e.g., f6 dt x(t ) = 0, then other 
forms such as (2.23) may be more useful, as will be discussed 
in Sec. VI. 

III. APPROXIMATING A N-SEGMENl POLYGONAL 
PATH BY A N-TERM FOURIER SERIES 

A polygonal path Xp(t;XI'''XN_ d can always be ex
pressed as an infinite Fourier series. However, in order to 
pass from the polygonal representation (2.6) to the Fourier 
representation (2.19) via a change of integration variables, 
we must pass from N-segment polygons to N-term Fourier 
series, such as to preserve the number of integration varia
bles; the limit N-+oo is thus taken concurrently in both re
presentations. The question then arises as to how closely is a 
N-segment polygonal path represented by a N-term Fourier 
series, and does the latter approach the former as N-+ 00 

simultaneously in both quantities. We will see that the an
swer to the last question is no in general, but yes in the case of 
paths obeying the restriction (2.9) with a > 0; however, even 
in the latter case when a < 1, the derivatives of the polygonal 
and Fourier paths do not approach each other, but on the 
contrary diverge from each other as N-+ 00 (see Ref. 19). 

Let us view the polygonal path xp(t;XI""xN _ I)' O.,;;t,;;; 1, 
with null endpoints Xo = x N = 0, as defined by a point or 
vector (x I'''''X N _ I) in some (N - 1 i-dimensional space. Oth
er parametrizations of x p may be obtained by effecting coor
dinate transformations in that space. If the vector 
(a I, ... ,a N _ d is related to (x I""'X N _ I) by some such transfor
mationM, 

a =M-1x, x =Ma, 

we write 

Xp(t;x1,,,,,XN _ I) = xp(t;(Ma)I,· .. ,(Ma)N _ I) 

(3.1) 

==.xp(t;al,···,aN _ I)' (3.2) 

Specifically, we shall require the following rotation: 

x·- - ~ a sm -_ ( 2 ) 112 N - I • (1Tin) 
I N "~l 11 N' 

i = 1, ... ,N - 1,(3.3) 

(
2 )1I2N-I (.) 

an = - .L Xi sin !!!!!:. , 
N ,~I N 

n = 1, ... ,N -1, 

where the matrix 

M i" = (2/N)1/2 sin (1Tin/N), 

i= 1, ... ,N - 1, n = 1, ... ,N - 1 

is orthonormal [see Eq. (D3b) of Appendix D]: 

(MM T) _ ( 2 ) N ~ 1 • ( 1Tij ) . (1Tjn) i,,-- ~sm-sm-
N j~1 N N 
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Thus, the Jacobian ofthe transformation (3.3) is 1. 
Given now a point (al, ... ,aN_ d in our (N - I)-dimen

sional space, we associate with it the following smooth curve 
in the form of a (N - 1) term Fourier series: 

( 
2 )1/2 N-I . 

xp(t;al,···,aN_ d= - L an sm(1Tnt). 
N n=1 

(3.4) 

Again, relating the an's to x;'s by the transformation (3.3), 
we write 

xp(t;al, ... ,aN_ 1) =xp(t;(MTXh,···,(MTX)N_I)==XP(t;XI,· .. ,xN_I) 

(2N) -1 . ( ) N~I ( )i- j sin(1TiIN) = sm 1Tr "'" Xi -
i= 1 sin [!1T(j + i + r)lN ]sin[~1T{j - i + T)/N] 

(3.5) 

In the last line, derived in Appendix A,j is any integer 
between 0 and N, and T is defined by [note that tj = jlN in 
view of (2.17)] 

t = tj + TIN = (j + T)I N. (3.6) 

By construction, the curve xp(t;x.,· .. ,xN _ I) passes 
through th~ points (xj,tj ), j = O, ... ,N, Xo =XN = 0, in the 
(x,t I-plane [indeed, letting T-o in (3.5), one obtains zero for 
all the terms of the sum over i, except the term i = j which 
yie1dsxj ]. However, in between these points, Xp(t;XI"'XN _ I) 
does not reproduce the straight segments of the polygonal 
pathxp (t;XI,. .. ,xN _ I)' and may, in fact, differ from it by any 
arbitrary amount, whatever the value of N. [Let, e.g., all the 
Xi be zero, except xj ; then 20 

sin(1TT) T 
xp(t;O, ... ,O,xj,O, ... ,O)r;;;;r.Xj -- for - <1 (3.7) 

1TT N 

(see Fig. 1); by letting Xj be sufficiently large, one can have x p 

differ from Xp by any amount at any point t outside the set 
{tj,j = O, ... ,N J ]. Thus, in general, and whatever the value 
ofN, 

Svel [Xp(t;XI"'XN_ d] =j:.Svel [xp(t;XI'''XN_ d], 

Spot [Xp(t;XI"'XN _ I)] =j:.Spot [xp(t;X1'''XN - Il]· 
(3.8a) 

(3.8b) 

But now consider a path x~(t;x I"'X N _ I) for which (2.9) 
is satisfied for some a > O. We show in Appendix A that, for 
Irl·q, 

x~(tj + TlN;X.,· .. ,xN_ Il 
= Xj + tJ(N - aI41), a> 0, Irl'!. (3.9) 

Since a similar relation obviously also holds for the corre
sponding polygonal path, i.e., x~(tj + TIN;XI"'XN _ 1) 
= Xj + tJ(N - a), we have, for any O,t, 1, 

x~(t;x I'''',x N _ • ) = x~(t;x I'''',x N - 1 ) 

+ tJ(N -aI4), a>O (3.10) 

FIG. 1. Full line is the polygonal path xp(t;O •...• O,xj.O •...• O); dotted curve is 

its Fourier approximant XF(t;O ..... O.Xj.O ..... O). Eq. (3.7). 
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It follows from (3.10) that 

Spot [X~(t;Xl· .. XN_ III = Spot [X~(t;XI· .. XN_ dl 
+ tJ(N -aI4), a>O (3.11) 

as is immediately inferred from considering (2.8) and (3.9). 
However, even though x~ and x~ approach one another as 
N_ 00 when a > 0, this is not the case with their derivatives 
for 0 < a < 1. 21 Indeed, x~ and x~ are both of order 
.tJxl.tJtr;;;;r.N -aiN -I = N I - a in magnitude, yet unequal in 
general, so that they actually diverge from each other as 
N-oo when a < 1. [Numerical examples are shown in Fig. 
2. There, the paths obey (2.9) with a = 1, One can see that in 
the case N = 10, X F and x p are nearer to one another than in 
the case N = 4, but that the contrary holds for their deriva
tives.] We thus still have 

Svel [x~(t;X!,"XN _ I) 1 =j:.Svei [x~(t;X!"'XN _ 1)]' a < 1 
(3.12) 

whatever the value of N. 

IV. TRANSFORMING FROM THE POLYGONAL TO THE 
FOURIER REPRESENTATION 

In the polygonal representation (2.6), let us make the 
change of integration variables 

(4.1) 

with the Xi'S and an'S related by the linear transformation 
(3.3) of unit Jacobian, i.e. [for the case (2.17)], 

K(J = lim (NO )N12 f'" da .... daN_
1 

N~", 21T - '" 
X exp { - OS [xp(t;a., ... ,aN_ d]}. (4.2) 

Because of(3.1I) and in viewof(2.12)(taking, e.g., a = 1), we 
can replace 

Spot [xp(t;al, ... ,aN_ d]-Spot [xp(t;al, ... ,aN_ 1)], (4.3) 

i.e., in the potential part of the action, the polygonal path 
xp(t;al ... aN_.) can be replaced by its smooth Fourier ap
proximantxp(t;a! ... aN_ I)' But this cannot be done with the 
velocity termSvel , in view of(3.12). Indeed, substituting (3.3) 
into (2.7), we have (see Appendix C) 

The terms n<N in the above two sums are nearly equal, but 
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2+--~""" 2 
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-2 -2 

'.: t 

FIG. 2. Examples of N-segment polygonal pathsxp(t;Xl, .. ·,xN_ 1)' O<t< I (full lines), with their N-tenn Fourier seriesapproximantsxF(t;x1, ... ,xN_ 1) (dotted 
curves); N = 4 in (a), and N = 10 in (b). The upper parts of the figures show Xp and X F ' while the lower parts show their derivatives xp and x F • 

not the terms for which nl N is not negligible. 
When N is very large, however, nl N not negligible im

pliesN sin2(~1TnIN) andN(nIN)2 both large, so that the ex
ponentials 

exp [ - 02Nsin2(!1TnIN)a~] (4.6) 

and 

exp [ - 0 2N (!1Tnl N fa~ ] (4.7) 

both act as unnormalized l5-functions of a" [this is clear 
when 0 = 1, (4.6H4.7) then being narrow Gaussians; when 
0= i, (4.6H4.7) are rapidly oscillating functions of a", of 
wavelengths proportional to (Na,,)-', so that inside an inte
gral over a", they cause only a narrow region (of stationary 
phase) around a" = 0 to contribute]. Thus, inside an integral 
over a", (4.6) may be replaced by (4.7) multiplied by a factor 
matching the normalizations, specifically, 

(4.6)-+ . !1TnIN exp [ _ 02N( !1Tn )2a~] (N-co), 
smj!1Tnl N) N 

(4.8) 

where the pre-exponential factor is the ratio of the areas of 
(4.6) and (4.7) as functions of a". 

Doing (4.8) in (4.2H4.4), we get 

(4.9) 

where the "functional Jacobian" 

I N = Nil' ( . !1TnIN ) = N - ,/2Nif (.!!!!.-) (4.10) 
,,= 1 sm(~1TnIN) ,,= 1 N 

the second equality following from Eq. (011) in Appendix 
D. Denoting 

b" = (2/N)
1/2a" (4.11) 

we obtain (2. 19H2.20). 
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The transformation from the polygonal to the sine-co
sine representation (2.25) is done in a similar manner (see 
Appendix B). 

V.INTEGRALS OVER PATHS WITH FIXED MEANS 

In some problems 14-16 there arise path integrals of the 
form 

I
Xb'lb 

G (x t·x t;X) = 9)x(t)e- OS(x(/)1 
e a' a' b' b Xa.ta ' 

(5.1) 
x=x 

wherein the integration is over paths x(t ) with mean 

J
Ib 

X=(tb-ta)-I dtx(t) 
I. 

(5.2) 

equal to the fixed value X. The precise meaning of (5.1) is as 
in (2.6), but with a l5-function 

( 

N x· +x. I ) l5(xp (t;x ,,· .. ,xN_d-X) =15 E L J J- -x 
j= I 2 

(5.3) 
inserted in the integrand. 

In close analogy to the free x case, it is possible to ex
press (5.1) as [compare Eq. (2.14)] 

G ( ;X) -OS[X,(/)lG- (0 0 0) (54) o xa,ta;Xb,tb· = e 0 ,ta; ,tb;, . 

where G is given by (5.1), but with the potential V(x,t) re
placed by 

V(x,t) = V(x.(t) +x,t) - V(x.(t),t) -xV'(x.(t),t) 

and x.(t) is that path, subject to the constraints 

x.(ta) = Xa' x.(tb) = X b , andx. =X, 

which makes the action S stationary. We shall accordingly 
limit our considerations to the integral 

Fo
'l 

G ==.G (00'0 1'0) = 9) x(t )e - os [xl/)1 o 0"" 0,0 • 

x=o 

(5.5) 
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When transforming to the Fourier representation, the 
mean valuexp in the 8-function (5.3) may, in view of (3.10), 
be replaced by XF' Thus, G() in the pure sine series represen
tation is given by (2.19) with 

8(XF(t;bl, ... ,bN_I))=8(21T-1 I ~) (5.6) 
n = 1.3.5.... n 

inserted in the integrand, and the mixed sine-cosine repre
sentation of G() is given by (2.25) with22 

8(XF(t;! an ,bn I)) = 8(ao) (5.7) 

inserted. 

VI. HARMONIC OSCILLATOR 

We now illustrate the considerations of the preceding 
sections with the harmonic oscillator case 

V(x) = !W2
X

2 (6.1) 

(for which V = V = V). Here, 

Spot [xF(t;b l,b2, ... )] = - (!!C) i b~ 
4 n= I 

(6.2) 

so that (2.19) becomes 

(6.3) 

(6.4) 

i.e., in view offormula (D7), 

K() = (8 /21T)1/2(w/sin W)1/2. (6.5) 

In the case 8 = 1, (6.4)-(6.5) is true only if rn 2 
- w2 ;;.0 for 

each n = 1,2, ... ,i.e., if 

w 2<,r. (6.6) 

Otherwise, K() = I is infinite (the action being unbounded be
low). Note that when w2 < 0, i.e., w is imaginary, the sine 
function becomes a hyperbolic sine. 

Throughout the range (6.6), (w/sin w) conserves the 
same sign, so that there is no problem of interpreting the 
square root (6.5). In the case 8 = i however, (6.4)-(6.5) holds 
for all values of w2

, and the meaning of (6.5) must be made 
more specific, since sin w undergoes periodic sign changes as 
w ranges from 0 to 00. But clearly, the intermediate form 
(6.4) forces the interpretation 

(sin W)1/2 = exp [F1T Int(w/1T)] Isin wl l/2, (6.7) 

where Int(w/1Tj, the integral part of (W/1T), is the number of 
factors (1 - w2/n 2r) which are negative in (6.4). The phase 
in (6.7) is the so-called Maslov index for the harmonic osciI
lator.23 Note that Int(w/1T) is the number of sign changes 
suffered by sin(x) between x = 0 and x = w, so that (6.7) real
ly corresponds to the most natural interpretation of the 
square root of a function/Ix) undergoing sign changes: Each 
time/Ix) changes sign, an additional factor ( - 1 )1/2 = ei1T12 is 
produced, whence 

/(x) 1/2 = e(1I2)ni1T lf(x) I 1/2, (6.S) 
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where n is the number oftimes/(x) changes sign between 0 
andx. 

To calculate the fixed means integral (5.1), the sine-co
sine parametrization (2.25) with (5.7) is the more convenient: 
We then have 

Introducing the representation 

8(X)=(21T)-IL"'co dkeikx (6.10) 

for 8(l:: = I an), we obtain, on interchanging the order of the 
k and ! an I integrations, 

G() = (21T)-
3/2

8 1/2 J: co dk )l {[ 1 - ( -!; Yl-I 
X exp [ - : 8-1k 2(rn2_ ! (2)-I]) (6.11) 

= 81T- 12- 1/2 IT [1_(~)2]-1 
n=l 1Tn 

X [ mtl (rn2 - -±-WZ)-I] -112, (6.12) 

that is, in view offormulas (D7) and (DS), 

G() = 81T-I(~w/sin ~w);(!W)-I/Z 

= 81T- 1(w/sin W)1/2S (!W)-1/2, 

where we defined 

(6.13a) 

(6.13b) 

;(z) = (Z-I - cotz)/z =! + ~ + ~4 + ... , (6.14) 

S(z) = (tanz - z)/r = ~ + ¥- + -Mz4 + .... (6.15) 

In the case 8 = 1, (6.11)-(6.13) is true only if rn2 - aw2;;.0 
for every n = 1,2, ... , i.e., if 

(6.16) 

Otherwise, G () = 1 is infinite (the action S [x( t ) ] x = 0 being 
unbounded below). In the case 8 = i, the square roots in 
(6.13) must be interpreted in the natural manner (6.S). 

On the choice of Fourier parametrization 

One could also elect to evaluate K() by using the sine
cosine representation (2.25), or to evaluate G() via the pure 
sine representation (2.19) with (5.6). These alternatives, how
ever, do not allow us to determine correctly the ranges of w2 

values for which these integrals are finite or infinite in the 
case 8 = 1. As a general rule, it seems that the Fourier para
metrization to be chosen preferably is that which allows to 
see unambiguously for which values of w2 the action S [x(t )] 
or S [x(t)]x=o is bounded or unbounded below. Consider, 
e.g., the sine-cosine expansion 
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S [xF(t;lan,bn J)] 

= - a~w2 + f (a~ + b ~ )(rrn2 - l..w2). (6.17) 
n=1 4 

Without the constraint (2.24), one would conclude that (6.17) 
is unbounded below when w2 > 0, because of the term 
- a~w2. But with (2.24), we do not know how to deduce 

when (6.17) is bounded or unbounded below. The sine-<:o
sine representation of Ko is identical to (6.9), except for an 
extra integral over ao, resulting in an additional factor w - I, 

and a term w-2 added to the sum }:,;;' = I (rrn2 - A(2)-1 in 
(6.12). The final answer is again (6.S). But in the case e = 1, 
the integral over ao diverges for w2 ;>0, whereas we know, 
from the calculation (6.3)-(6.S), that Ko = I is finite for (6.6). 
This apparent contradiction has its origin in the change of 
the order of the k and I an 1 integrations done in passing from 
(6.9)-(6.10) to (6.11), which is evidently not permissible when 
0<w2<rr. 

The same kinds of undesirable features are met when we 
try to evaluate Go in the pure sine representation (2.19) with 
(S.6). Note that in the evaluation (6.9)-(6.16) of Go, the con
straint (2.24) and the concomitant change of the order of the 
k and {an 1 integrations, (6.9)-(6.10) to (6.11), cause no prob
lem, because the value of w2 separating the regions where 
S [x(t)]x = 0 is bounded or unbounded below is determined 
by the term containing bl , and the bn 's are not subject to any 
constraint. Another manner of calculating Go is given in 
Refs. ISa,b; but this again does not allow us to correctly 
deduce the range (6.16). 

VII. CONCLUSION 

We transformed, by way of a change of integration var
iables, from the polygonal to the Fourier representations of 
path integrals when the action is of the form (1.1). The possi
bility of effecting such a transformation is due to three fac
tors. The first is that it is only a restricted class of polygonal 
paths which contribute to the integral. The second factor is 
that, within that restricted class of paths, N-segment poly
gonal paths and their N-term Fourier approximants ap
proach one another arbitrarily closely as N_ 00, although 
their derivatives diverge from each other. The third factor is 
that the velocity terms in both representations induce effec
tive 8-functions, though of different normalizations; the key 
step is thus the matching of these normalizations, whence 
emerges the "functional Jacobian" of the transformation. 

The above ascertainments provide valuable insight, and 
allow us to understand how the polygonal and Fourier repre
sentations of a path integral may be different objects when 
additional velocity-dependent terms are present in the ac
tion. 

In the harmonic oscillator case, the Fourier series re
presentation trivially determines the large time phase in the 
real time case, and the ranges of w 2 values for which the 
propagator is finite or infinite in the imaginary time case, in 
both the free and fixed means situations. The calculation of 
the large time phase by other means is much more elabo
rate,23 and it does not seem so easy to deduce the above w 2 

ranges outside the Fourier series representation. 
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APPENDIX A: DEMONSTRATION OF EQS. (3.5) AND 
(3.9) 

Proof of Eq. (3.S): Substituting (3.3') into (3.4), we have 

X F(t;X I'''''X N _ I ) = - L L Xi sin 1Tnl sin(1Tnt ). (
2 )N-IN-I (.) 

N i=ln=1 N 
(AI) 

Since sin(1Tnil N) = Oat n = N, we can let the sum over n run 
up to N; using then (DId), and then (D2b), we find 

(A 1) = (~) Nil Xi(~) 
N .=1 4 x{ sin[1T(N+~)(t-iIN)] 

sin [!1T(t - ilN)] 
sin[1T(N + !)(t + iIN)] }. 

sin[~1T(t + iIN)] 
Introducing the notation (3.6), we have 

sin[1T(N + !)(t ± ilN)] 

= sin{1T[(j ± i) +!(j ± i + r)lN + r] 1 
= ( - )H i sin [!1T(j ± i + r)IN + 1Tr]. 

(A2) 

(A3) 

Substituting into (A2) and using (DIg) with 
a = !1T(j + r + i)l N, b = 1Tr, c = !1T(j + r - i)1 N, we ob
tain (3.S) [note that (_ )i±i = (_ ),-i]. 

Proof of Eq. (3.9): Now let the Xi'S obey (2.9) for some 
a > 0. Setting 

i - j = I, ° < Irl <!, 
Xi + 1 = Xi + N - af(/), 

where we have, because of (2.9) [with (2.17)], 

If(1 + 1) - f(l)1 < 1, If(l)1 <I, 

we rewrite (3.S) as 

XF(t;XI,. .. ,xN_ I) 
N-j 

(A4a) 

(A4b) 

(AS) 

= (2N)-1 L (- nXj + N -af(I)]G(I), (A6) 
1= -j 

where 

G (I) = H(/)L (I), 

H(I)= sin[1T(j+I)IN] 
sin [ 1T(j + !l + !r)l N] , 

(A7) 

L (I) = sin(1Tr) 
sin[!(r -1)lN] 

In the last part of this Appendix, we show that (cte denote 
constants independent of N) 

IG (/)1 < {(cte)N, 1=0, 

(cte)N 11/1, I ¥-O, 
(A8) 

and 

I.JG (/)1 < {(cte)N, 1= 0, 
(cte)N 11 2

, I ¥-O, 
(A9) 

where we denote, for any function F(/) of the integer I, 

.JF(/)=F(I + 1) - F(/). (A 10) 

We will use the relations 

.J (fG) = (.JJ)G + J(.J G) + (.JJ)(.J G ) (All) 

and 
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I, r (- )IF(/) = r .jF(/) + E, 
I = II I even 

(A12) 

where E consists of possible unpaired initial or final terms 
[Le., E = Ell F (I d + (1 - EI,F (/2), where Em = 1 if m is even, 
Em = 0 if m is odd]. 

With the above results, we have, for the second sum in 
(A6), 

IN -I-ar (- )1(1)G(/)1 

..;;(cte)N - a(cte' + r I-I) 
leven ... O 

..;;(cte)N -a In(N) (Al3) 

(since I/I..;;N) [the end-point correction E is of order N - a 

since If(I)G (I) I ..;;(cte)N; it has been incorporated in cte', to
gether with the term 1=0]. 

We now estimate the first sum in (A6). Let us break up 

.!XjN-1 r (- )IG (/)==.4 I +A2' (A14) 
2 I 

where AI is the part 1/1..;;NaI4. andA2 the part 1/1>NaI4. 
Using (AS)-(A12), we have 

IA21..;;(cte) r 1-2";;(cle)N- aI4. (A15) 
I even,>N a/4 

To estimate A I' three cases are considered: 
Case (i): N aI2<j..;;N - Na12. Since III ..;;Nal4, we have 

Illjl,,;;(cle)N- aI4 and IIINI..;;NlaI4)-I, whence [cf. Eqs. 
(A7)] 

H(/) = 1 + d(N -aI4), (A16) 

sin [!1T(7 -1)lN] = ~1T(7 -1)lN + d(N - 3(1- aI4)). 
(A17) 

Substituting into A I' Eq. (A 14), and using the formula24 

CSC(1T7) = 1T- I i: 1=1. (A1S) 
1~-007-1 

we deduce 

AI =xj + d(N -aI4). (A19) 

Case (il): O<j..;;N a12. We have, from (AS)-(A12), 

whence IA II ,,;;(cle)xj' But since IXj I ,,;;(cle)N - al2 in view of 
(2.17) and (A4b) (withj = 0, I..;;N a12), we can again write Eq. 
(A19). 

Case (iii): N - N aI2<j..;;N. This case is symmetric with 
case (ii). 

The above results together yield (3.9). 
Proof of (ASHA9): Denote 

H(/,t') = sin(1Tt')/sin[!1T(1 + I')], O..;;t,t'..;;1. (A21) 

We have 

IH(t,t')I..;;ctel' (A22) 

I( d~' )H(t,I')1 
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{
It + t ')-1 for O..;;t..;;~ 

";;cte2 [(1- t) + (1- 1')]-1 foq";;I";;1. (A23) 

This is shown, for the case O";;t";;~ [so that O";;W + I ')";;a] by 
using Isin(m')I";;1TI' if O..;;t'..;;l, Isin(~1Tx)I";;!Kx if O,,;;x";;a, 
whereK = sin(31T14)1(31T14), and I COS(1TX) I ..;; 1, t '/(t + t ')..;; 1. 
The case !..;;t..;; 1 follows fromH (/,t') = H (1 - t,l - I '); spe
cifically, cle1 = 21TIK, cte2 = (217iK) + 2r1K. 

With H (I ) defined as in (A 7), i.e., 

H(I) = H(I = (j + 7)IN, I' = (j + I)lN) (A24) 

with 

o <j..;;N, - j..;;I..;;N - j, 171..;;! 

we have 

IH(I)I";;cle, 

I I {cte, 1=0 
.jH(1) ..;; clell/l, 1#0' 

The case I #0 in (A27) follows from 

I.jF(1) I = IF(I + 1) - F(l)I..;; Max I dF(x) I 
l<x<l+ I dx 

(A23) and (A25); the case I = 0 follows from 

I.jF(I)I..;;IF(1 + 1)1 + IF(I)I 

and (A22). 
Denoting now 

1:(/)=sin(1T7)/sin(~1Tt), 171..;;!, 1/1";;1 

we have 

following from 

Ixl..;;lsin(!1Tx)I";;~1Tlxl if Ixl";;l 

and Icos(1Tx)I ..;; 1. With 

L (I) = 1: ((7 -I)INI, 171..;;!, 17 -/I..;;N 

as defined in (A 7), we have 

{
cte, 1=0, 

IL (1)1..;; ctell!l. 1#0, 

{
cle N, 1=0, 

I.jL(I)I..;; cteNI/ 2, /#0, 

(A25) 

(A26) 

(A27) 

(A2S) 

(A29) 

(A30) 

(A31) 

(A32) 

(A33) 

(A34) 

(A35) 

following from (A31 I, (A2S), and (A29). Equation (AS)-(A9) 
follow from the above and (All). 

APPENDIX B: TRANSFORMING TO THE SINE-COSINE 
REPRESENTATION 

In this Appendix, we transform from the polygonal re
presentation (2.6) to the sine-cosine Fourier representation 
(2.25). Let us first rewrite (2.6) as [for the case (2.17)] 

K(J = lim (NO)NI2foo dxodxc,.dxN_1 
N~oo 21T - 00 

x6(xo)exp! - OS [xp(/;XO,xI, .. ·,xN _ 1)] I, (BII 

wherein the integration is over all polygonal paths Xp 

(I;XO,x!> ... ,xN _ 1) which have equal but free endpoints 

(B2) 
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Letting N be even, we make the change of integration varia
bles 

[XO,xI,· .. ,xN- I 1-[ a~,a; , ... ,a(1/2)N,b ; , ... ,b (1/2)N - I 1 
(B3) 

via the transformation 

( 
2 )1/2 [ {1/2)N ( 21Tn' ) 

Xj = N 2-1/2a~ + n~1 a~cos N!J 

(1/2)N-I , . (21Tnj)] . + L bnSIn -- , J=O,I, ... ,N-l 
n=1 N 

(B4) 

of unit Jacobian [see (e6)]. Note that if extended to the case 
j = N, (B4) satisfies (B2), i.e., 

XO=XN=(!)1/2[2-1/2a~+ (~~~a~]. (B5) 

The polygonal paths may be parametrized by either the xj's 
or the [a~,b ~ 1, and we denote 

xp(t;.xO,xI, ... ,xN_I )==Xp(t;la~,b ~ IN)' (B6) 

Substituting (B4) into the discretized expression (2.7) of Svel' 

we obtain (see Appendix C) 

Svel [xp(t; [a~,b ~ 1 N)] = N [ (I~N a~2 sin2
( 1Tn ) 

n=1 N 

+ (1/2~ - I b ~2 sin2( 1Tn )]. 
n=1 N 

(B7) 

Introducing the smooth Fourier approximant 

xF(t;la~,b ~ IN) 

( 
2 )1/2 [ (1/2)N 

= - 2-1/2a~ + L a~ cos(21Tnt) 
N n=1 

(1/2)N- I ] 

+ n~1 b ~ sin(21Tnt) (B8) 

to the polygonal path (B6), we have 

{1/2)N - I (1Tn )2] + L b~2 - . 
n=1 N 

(B9) 

For the same reasons which allow the substitution (4.8), we 
may replace in the integral (Bl) 

exp[ - (}Na~2 sin2
( ; )] 

(1TnIN) [(}llI.T 12( 1Tn )2] - exp - lYa -
sin(1TnIN) n N 

(BIO) 

and likewise with the b ~ terms. We thereby get, using (B5), 

K() = lim (N() )N/2 I N N-oo 21T 

X J: 00 da~ da; ..• da(1/2)N db ; • .. db (1/2)N - I 

X8(N-I/2a~ +21/2N-1/2{~~: a~)e-()S[XFJ 
(BIl) 

where the functional Jacobian 

_ {1/2)N [ (1TnIN) ](1/2)N-1 [ (1TnIN) ] 
I N - II II 

n = I sin(1TnIN) n = I sin(1TnIN) 
= N -N(21T)N-I(W)!(W - I)! (BI2) 
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in view offormula (DI2). Denoting 

ao=N-I/2a~, an =(2/N)I/2a~, 

bn = (2/N)I/2b~, n;>l, 

we recover (2.25H2.27). 

(BI3) 

APPENDIX C: EVALUATION OF 'J.'! ~OI (xi + 1 - XJ)2 IN 
FOURIER COORDINATES 

Let us denote 
1 N-I N-I N-I 

.d = - L (xj+ I - Xj f = L xJ - L XjXj + I' 
2 j=O j=O j=O 

(el) 

where we assumexN = Xo [so that 'J.f=c/xJ+ I = 'J.f=-OIXJ1. 
Pure sine case: Here, Xo = x N = 0, so that the sums in 

(el) run from 1 to N - 1. Introducing the transformation 
(3.3), and defining a matrix L by 

Lij =8f~ I,j (e2) 

so that, e.g., (Lx)j = xj + I' we rewrite (e1) as 

.d = XTX - xTLx = a™ TMa - a™ TLMa. (e3) 

Using 

MTM = 1, (MTLM)mn = 8mn cos (1TnIN) + /mn 
(e4) 

following from (D3) and (D4), we find 

.d = : ~: a~ [ 1 - cos( ; )] 

N- I ( l1Tn) 
= 2 L a~ sin2 

..L.::.. 
n=1 N 

(e5) 

(note that a'ia = ° since/mn = - /nm). 
Sine-cosine case: Introducing the transformation (B4), 

we find, using (D5) 
N - I 11/2)N (1/2)N - I 

L xJ = L a~2 + L b ~2 (e6) 
j=O n=O n= I 

implying that the transformation (B4) is a rotation, of unit 
Jacobian. We also have, on using (D6) with k = 1, 
N-I 
L XjXj+ I 

j=O 

= (3..) Nil L a~a;" cos( 21Tmj )cos[ 21Tn(j + 1) ] 
N j=O n,m N N 

+ L b ~b;" sin( 21Tnj )sin[ 21Tn(j + 1) ] 
n,m N N 

+ ~ , b ' ( 21Tnj ) . [ 21Tm(j + 1) ] ~ an m cos -- Sin 
n,m N N 

+ . ( 21Tmj ) [ 21Tn(j + 1) ] Sin -- cos 
N N 

(e7) 

= L a~2cos -- + L b~2COS ~ 
11/2)N ( 21Tn ) 11/2)N - I ( 2 n ) 

n=O N m= I N 
(e7') 

[the last two sums in (e7) cancel one another]. Thus 

11/2)N [ ( 2 n )] 
.d = n~o a~2 1 - cos ; 

{1/2)N-I [ ( 21Tn )] + L b ~2 1 - cos --
n=1 N 
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(1/2)N ( 1Tn ) 
= 2 L a~2 sin2 

-
n~O N 

H! sin [1T(m + n)] + sin2 [!1T(m + n)]eot[!1T(m + n)/N] 
+! sin [1T(m + n)] 

+ 2 L b ~2 sin2 1Tn . 
(1/2)N-1 () 

n~1 N 
(C8) + sin2 [!1T(m - n)]eot[!1T(m - n)lN] ). 

APPENDIX D: TRIGONOMETRIC IDENTITIES 

In this Appendix, we derive some useful trigonometric 
identities. Let us first list a few standard formulas to which 
we will need to refer: 

sin(a + b) = sin(a)cos(b) + cos(a)sin(b), (DIa) 

cos (a + b) = - sin(a)sin(b) + cos(a)cos(b), (DIb) 

eot(a) ± eot(b) = ± sin(a ± b )/[sin(a)sin(b)], (DIc) 

sin(a)sin(b) = Heos(a + b) - costa - b)], (DId) 

cos(a)eos{b) = Hcos(a + b) + costa - b)], (DIe) 

sin(a)cos(b) = Hsin(a + b) + sin(a - b I]' (DIf) 

sin(a + b) _ sin(e + b) = sin(b )sin(e - a) . (DI ) 
sin(a) sin(e) sin(a)sin(c) g 

From evaluating the geometric sum ~f ~ o (eiX
)\ one deduces 

£ cos(kx) = cos(!Nx)sin[!(N + I)x] (D2a) 
k~O sin(!x) 

! sin[(N + !)x] + ~ (D2b) 
sin(x) 2 

= ! sin(Nx)cot(!x) + cos2(!Nx), (D2c) 

£ sin(kx) = sin(!Nx)s~n[!(N + I)x] (D2d) 
k~O SID(!x) 

= ! sin(Nx) + sin2(!Nx)cot(!x) (D2e) 

the cases c and e following from (DIa) with a = !Nx, b = !x. 
Lemma: Given integers m,n satisfying 
h;m,n<;;;N - 1 (D3a) 

we have 

N - 1 (1Tjm) ( 1Tjn ) .L sin -- sin - = !N8mn , 
}~I N N 

N - 1 (1Tjm) ( 1Tjn ) L sin -- cos -
}=I N N 

{

a, for m ± n even, 

= 1 sin(1Tm/N) , 
2 sin[!1T(m + n)lN ]sin[!1T(m - n)/N] 

m ±nodd. 

(D3b) 

(D3c) 

Proof We first note that we can extend the sums on the 
left-hand side of (D3b) and (D3c) to ~f~ 0' the terms j = ° 
and Nbeing zero; this will allow us to use Eqs. (D2). Using 
(DId) and then (D2c), we have that the left-hand side of 
(D3b) equals 

H! sin[1T(m - n)]cot[!1T(m - n)/N] + cos2 [!7T(m - n)] 

- ! sin[ 7T(m - n)]cot[!7T(m + n)/N] 

- COs2 [!1T(m + n)]). 

The first term equals !NlJmn; the third term is zero; the sec
ond and fourth terms are zero when m ± n is odd, and cancel 
one another when m ± n is even. Whence (D3b). Using (DIf) 
and (D2e), we have that the left-hand side of (D3c) equals 
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The first and third terms are zero. The second and fourth 
terms are zero when m ± n is even; when m ± n is odd, we 
have sin2 [!1T(m ± n)] = 1, whence (D3e) on using 
(DIe). QED 

Corollary: Given (D3a), we have 

Nil sin( mnj )sin[ 1Tn(j + 1) ] 
j~1 N N 

1 ( 1Tn ) = "2 NlJmn cos Ii + Imn' (D4a) 

where 

Imn = gmn sin(1Tn/N) = -Inm (D4b) 

and gmn is the right-hand side of (D3c). 
Proof Follows from using (DIa) with a = 1Tnj/N, 

b = 1Tn/N, and then applying (D3). 
Lemma: Given integers m and n satisfying 

O<;;;m<;;;!N, O<;;;n<;;;!N, N even 
we have 

11 cos( 21Tnj )cos( 21Tmj ) 
j=O N N 

= {!NlJmn , m,n=j.O,~N, 
NlJmn , morn=Oor~N, 

N~ 1 • (21Tnj). (21Tmj) {!NOmn, 
~ SID -- SID -- = 
j~O N N 0, 

N ~ 1 ( 21Tnj ) . ( 21Tmj ) ° ~ cos -- sm -- = . 
j=O N N 

(D5a) 

(D5b) 

(D5c) 

(D5d) 

In (D5c), and in Eqs. (D6) below, the upper and lower values 
apply, as in (D5b) and (D6a), to the cases 1m =j. ° or !N and 
n=j.Oor!N I and 1m = Oor!Norn = Oor!N I,respectively. 

Proof The cases m or n = ° or !N are obvious. Cases 
m,n=j.O, !N: 

Using (DIe) and then (D2c), we have 

~ ( 21Tnj ) (21Tmj ) ~ cos -- cos --
j~O N N 

I { 1 . [ 1T{n - m) ] ="2 "2 sIn [21T(n - m)]cot N 

+ Cos2 [1T(n - m)] + J... sin [21Tj(n + m)] 
2 

xcot[ 1T(n; m) ] + cos2
[ 1T(n + m)]} 

The first term equals !Nomn , the second and fourth terms 
equal 1, and the third term is zero, whence (D5b) since the 
termj = N equals 1. (DSc) is shown similarly. Using (DIf) 
and then (D2e), we have ± cos( 21Tnj ) sin ( 21Tmj ) 
j~O N N 

= ~ { ~ sin [21T(m + n)] 
2 2 

+ sin2 [1T(m + n)]cot[ 1T(m N+ n) ] 
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o 
N-l N N+l 
IN-l iN tN+l 

2N-l 2N 
N-l N 

FIG. 3. Illustrating the derivationsofEqs. (D11) and (DI2). For (D11), the 
curve represents sin(~1Tn/ N) vs n, the values of n being the upper ones. For 
(D12), the curve is sin(1Tn/N) vs n, the values of n being the lower ones. 

+ ~sin[21T(m - n)] 
2 

+ sin2[1T{m _ n)]cot[ 1T{m; n) ]} 

=0, 

whence (05d), since the termj = N is zero. 

Corollary: Given (05a), we have 

N
f 

I cos( 21Tmj )cos[ 21Tn(j + k) ] 
}=o N N 

= {Wl5mnCOS(21Tflk/N), m,n#O,W, 

Nl5mn , m or n = ° or W, 
N ~ I ( 21Tmj ) . [ 21Tn(j + k) ] 
~ cos --- sm 

}=o N N 
= {Wl5mn Sin(21Tnk IN), 

0, 

N ~ I . ( 21Tmj ) . [ 21Tn(j + k) ] 
~ sm --- sm 

}=o N N 

= {Wl5mnCOS (21TnkIN), 
0, 

Nfl sin( 21Tmj )cos[ 21Tn(j+k)] 
j=O N N 

= { - Wl5mn sin(21Tnk IN), 
0. 

QEO 

(D6a) 

(06b) 

(06c) 

(06d) 

Proof Follows from using (Ola) - (Olb) with 
a = 21Tnj/N, b = 21Tnk IN, and then applying (05). 

We also need the following standard formulas2s : 

sin(z) = z IT [I _ (-.!...... )2], 
n= I n1T 

(07) 

cot(z) =Z-I + 2z IT (r - n2~)-I, (08) 
n=l 

NIT I sin(x + n1T) = 2 - N + I sin (Nx). 
,,=0 N 

(09) 

From (09), we deduce 

Nif sin( 1Tn ) = 2 -N+ llim sin(Nx) = N2 -N+ I, 

n = I N x-.() sin(x) 
(010) 

whence (see Fig. 3) 

N if sin( !1Tn ) 
n=1 N 
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= r)f sin( !~n )r2 

= (2N2-2N+I)I/2 

= NI/22 -N+ I (011) 

and 

(1/2)N-I . ( 1Tn )(1/2)N • ( 1Tn) N-I. ( 1Tn ) II sm - II sm - = II sm -
,,=1 N ,,=1 N ,,=1 N 

=N2- N + I
• (012) 
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[--{3.7) as N-+oo]. 

X [Sin(1Ttj + ~1TT/N)sinH1TT/N)l 
=xj(2N)-1 sin[nit-TlN)] 

sin [nit - !T/N)] 
X sin{1TT) 
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the third one follows from [see (05)] 

L cos __ I} = I sin 1Tn} = 0 for n¥O. N - I ( 21Tn') N - I ( 2 .) 
}=o N }=o N 

23For a more elaborate derivation of that phase, see e.g.: Ph. Combe, R. 
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(1978). 
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The solid harmonicYLM [(rl/\ r 2) /\ r3] was expressed in terms of the spherical harmonics 
YL,M, (fl)' YL,M, (f2), and YL,M, (f3), where the coefficients of the expansion were expressed in terms 
of 9j symbols. Here we present a simpler form of those coefficients expressed in terms of 6j 
symbols. 

PACS numbers: 02.30.Gp 

I. INTRODUCTION 

The author I recently presented the expression 

(L\ 
YLM [(rl/\ r2) /\ r3) = L A (L I ,L2,L 12,L3,L) W 

L,L 2L"L,M,M, I 

X YL,M, (fl)YL,M, (f2)YL,M, (f3)' 

where the coefficients A (L 1,L2,L12,L3,L ) were expressed in terms of 9j symbols in the form 

where r, s, and t take the values 

r = L, L - 1, L - 2, ... 0, 

s = r, r - 2, r - 4, ... ,1 or 0, 

t = L - r, L - r - 2, L - r - 4, ... ,1 or 0, 

and 

K(r,s,t,L
1
,L

2
,L3,L) = 41T(rlr2r3)L (os L - r LI) (t r L2) (t s L3) 

00000000 

(1) 

(2) 

X 21121s 
+ t- LI(2L + I)(2s + 1)(2t + l)r!(L - r)I [ (2LI + I)(2L2 + 1)(2L3 + 1)(2L )1] 112 (3) 

[~(r - s))!U(L - r - t ))!(r + s + 1)l!(L - r + t + I)l! (2r)!(2L - 2r)! . 

It is the purpose of this article to express those coefficients in terms of 6j symbols in the form 

A (L\,L2,L12,L3,L) = (- I)M,-11I2)(L+L")(rlrZr3)LC(L12,L3,L) L C{jI,i2,LdB(p,il,j2) {~I 
~h h 

where 

C(x,y,z) = r+ y- Z [41T(2z + 1)(2x + I)(2y + l)(x - y + z)!(y - x + z)!(x + y + z + I)! ]112 
(x+y-z)! 

X [!(z + x)]![!(z + y)]! 
[!(z - x)]![!(z - y))!(z + x + l)!(z + y + I)! ' 

with the factorials implying integer arguments and 

B (P,jl>j2) = n!n!(4p + I)22n(2p)!(n + p)!~(2LI + 1)(2L2 + I)(2il + I)(2i2 + 1) (il 
p!p!(n - p)!(2n + 2p + I)! \0 

with n = !(L - Ln!. 

II. CALCULATION OF THE COEFFICIENTS 
Hage Hassan et al. 2 gave the expansion 

1jm(rl /\rZ) = (- 1)m-(1I2)j(rlr2 )J L C(j"iz,i) el 

jlj2m • m. 

aj Current address: Department of Applied Mathematical Studies. Universi
ty of Leeds. England. 

2p L2) 
00' 
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(4) 

(5) 

(6) 

(7) 
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which we use to write 

YLM [(CI Ac2) Ac3 J = ( - l)M- (1I2)L(rlr2r3 sin edL I C(j12,L3,L) el2 

i12L3U12 u 12 

but 

(r lr2 sin en)j"lj"u" (c;Ac2) = lj"u" (c i A c2). 

Therefore on using Eq. (7) once more we write Eq. (8) as 

YLM [(CI A cz) A c3 J = ( - l)M - (1I2)L(r lr2rZ)L I ( - 1)"" - (1I2)L12C(jIJ2,idC (j12,L3,L ) 
jli2j12L 3U l2 

X (il i2 il2) (il2 
UI U2 - U12 U12 M3 

Since L - il2 = 2n is an even integer we write 

. e 2n (1 2 e)n '" (- 1 )qn! 2 e sm 12 = - cos 12 = £.. cos q 12' 
q q!(n - q)! 

and use the relationship 

2(P-q)(2 )' 
cos2q e = 41T '" q. Y· (i)Y (i) 

12 * (q _ p)!(2q + 2p + I)!! 2p.u I 2p.u 2, 

together with Eq. (4.6.5) in Edmonds3 in the form 

(2il + 1)(2i2 + 1)(2i3 + 1) (il i2 i3) (il 
41T 0 0 0 m l 

i3 ) Y
J
. m (i), 

m 33 
- 3 

to write 

sin e i~ lj,u, (iIllj,u, (i2) = I ( 1)Q+U+M,+M'n'(2q)'2P-q(4 + 1) 
- .. P ~(2il + 1)(2i2 + 1)(2L1 + 1)(2L2 + 1) 

q!(n - q)!(q - p)!(2p + 2q + 1)l! pqL,L2M,M2 u 

2p 

-u 

which requires that U = UI - MI = M2 - U2 or UI + U2 = MI + M 2. 
We now use Eq. (6.2.6) in Edmonds in the form 

( 
LI il 2p ) (2P i2 L2) 

- MI UI - U U U2 - M2 

= (_ 1tdM, I (2LI2 + l)(il i2 _LI2) (LI L2 LI2) {LI 
L" UI U2 MI2 WI M2 - MI2 i2 L2 

to write Eq. (12) as 

sin e i~ lj,u, (il)lj,u, (i2) = I B (P,il,i2)(2L 12 + 1) eu'l 
pL.LzL,zM,Mz 1 

X {~I il L
2P

} YL,M, (i l )YL,M,(i2). 
h L2 12 

2p 

U 

2P } 
LI2 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Here we have used Eq. (A. 1.2) in Edmonds and the duplication formula for the Gamma function to evaluate the summation 
over q as follows: 

( - l)Q(2q)!(p + q)! 2n -Pn!(2p)!(n + p)! 

~ q!(n - q)!(q - p)!(2p + 2q + I)! = p!p!(n - p)!(2n + 2p + I)! . 
(15) 

Substituting Eq. (14) in Eq. (9) and using the orthonormality of the 3i symbol given by Eq. (3.7.8) in Edmonds in the form 

j2 (16) 

we finally arrive at Eq. (1) where the coefficients A (LI,L2.L12,L3,L ) are given by Eq. (4). 
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Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics 
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Symmetric transverse traceless tensor harmonics of arbitrary rank are constructed on spheres S" 
of dimensionality n:>3, and the associated eigenvalues of the Laplacian are computed. It is shown 
that these tensor harmonics span the space of symmetric transverse traceless tensors on S" and are 
eigenfunctions of the quadratic Casimir operator of the group O(n + 1). The dimensionalities of 
the eigenspaces of the Laplacian are computed for harmonics of rank 1 and rank 2. 

PACS numbers: 02.30.Gp, 02.20. + b, 02.40. + m, 04.60. + n 

I. INTRODUCTION 

The task of computing determinants of second-order 
differential operators is a common one in quantum field the
ory. In the classical theory of a tensor field tc""c

m 
(x) the equa

tions of motion are obtained by varying the action functional 
S [tc, ... c

m
]; in the corresponding quantum field t~eory, the 

equations which determine the expectation value tc""c
m 

(x) of 
the field in the vacuum state are obtained by varying the 
effective action functional r [tc""c

m 
]. To first order in Ii, ris 

given by the expression I 

r [tc, ... c
m

] = SE [tc, ... c
m

] + pn det Sf[tc, ... c
m

], (1.1) 

where SE is the Euclideanized action functional, and Sf is 
the second functional derivative of SE with respect to 
tc, ... cjx). 

The formal expression In det Sf must be calculated by 
a suitable regularization procedure which assigns to this 
quantity a finite value. A convenient regularization proce
dure is the zeta-function method2: 

(1.2) 

where the generalized zeta function bsf(s) is defined as 

(1.3) 

The sum in (1.3) is taken over all distinct nonzero eigenvalues 
A/ of Sf; d/ is the degeneracy ofA/, i.e., the number oflinear
ly independent eigenfunctions associated with A/. [The actu
al summation in Eq. (1.3) is performed for values of the pa
rameter S large enough that the sum converges; the value of 
b se(s) for other values of s is determined by analytic continu-

2 

ation in s.] 
Sf is usually a second-order differential operator on 

tensor fields tC""c
m 

(x), and it often occurs that A/ and d/ may 
be simply determined from a knowledge of the eigenvalues 
and degeneracies of the covariant Laplacian VaVa acting on 
tensor fields of the type in question. In the case that the 
manifold on which the tensor fields are defined is an n-di
mensional sphere S" , or contains S" as a subspace, the com
putation of the effective action r requires a knowledge of the 
eigenvalues A/ and degeneracies D/ of the tensor spherical 
harmonics, i.e., tensor fields Tc""c

m 
(x) on S" satisfying 

(1.4) 

(Throughout this paper V a denotes the covariant derivative 
operator on S" .) 

If the quantum field theory under study involves the 
gravitational field, it is necessary to know the values of A/ 
and D/ for scalar fields, vector fields, and symmetric second
rank tensor fields,3.4 i.e., m = 0,1, and 2. For m = 0 theA/s 
and D/'s are associated with the usual (scalar) n-spherical 
harmonics and may be found in standard references.s For 
m = 1 they have been computed for arbitrary n in Ref. 6. 
However, to the best of our knowledge, the eigenvalues and 
degeneracies for second-rank symmetric tensor harmonics 
have only been computed7

•
8 for spheres of dimension <4. 

The calculation of quantum-gravitational effects in Kaluza
Klein theories in which the internal dimensions form an n
sphere9

•
10 requires the knowledge of A / and D/ for m = 2 and 

arbitrary n; this is the motivation behind the present work. 
This paper is organized as follows: In Sec. II we review 

the properties and construction of scalar harmonics on S" . 
In Sec. III we employ the methods of Refs. 3 and 8 to con
struct "canonical" sets of symmetric transverse traceless 
(ST2) tensor harmonics of arbitrary rank and compute the 
associated eigenvalues A/ [Eq. (3.9b)]. We demonstrate that 
these canonical tensors span the space of ST 2 tensors on S" . 
(Rank 1 and rank 2 tensors on compact spaces can always be 
decomposed in terms of scalars and ST 2 tensors4.11.12; there 
is no loss of generality in considering only ST 2 tensor har
monics. since from these the eigenvalues and degeneracies 
associated with non-ST2 harmonics can be obtained.4,13) In 
Sec, IV we demonstrate that the canonical tensors are eigen
functions of the quadratic Casimir operator of O(n + 1); us
ing this information, we compute the degeneracies D/ for 
ST 2 tensor harmonics of rank 1 and rank 2 [Eqs. (4.37a) and 
(4. 37b)]. 
II. SCALAR HARMONICS 

The eigenvalues A/(n,O) and degeneracies D/(n,O) of 
va Va acting on scalar functions on S" of radius r ares 

AIln,O) = 1(1 +; - 1) (2.1a) 

D (n 0) = (I + n - 2)! (21 + n - 1), 
/' l!(n - I)! 

1=0,1, .... 
(2.1b) 
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The associated eigenfunctions can be most easily con
structed if we imbed S" in (n + I )-dimensional Euclidean 
space R" + I . Denote the Cartesian coordinates on R" + I by 
xa. a = O.I •...• n. (Greek indices will always take on the n + I 
values O •...• n; bars over indices will always denote Cartesian 
components.) Let Cal ... at be a symmetric traceless rank-l ten
sor on R" + I whose components in the Cartesian coordinate 
system are constant. Then. for any such tensor Ca, ... at' the 
function 

(2.2) 

upon restriction to S" of radius r. is an eigenfunction of 
va Va corresponding to A/(n.O). 

We can see that the functions (2.2) include all eigenfunc
tions of the S" Laplacian. since the number of linearly inde
pendent symmetric traceless rank-l tensors in R" + I is pre
cisely Dr(n.0).14 To demonstrate that the T(I)'s are indeed 
eigenfunctions of va Va. we shall derive a formula. Eq. (2.9). 
which will also prove useful in the tensor case. 

We introduce spherical polar coordinates in R" + I: 

x" = (XO ,xa). a = I •...• n. 
(2.3a) 

XO = r = (xaXa )1/2. 

(Latin indices always take on the n values 1 •...• n.) The metric 
in these coordinates takes the form 

gaP = (~ r~aJ. (2.3b) 

where gab is the metric on the unit S" and is a function only 
of the n coordinates x a 

• The only nonzero Christoffel sym
bolst5 are 

r~b = - ,gab' 
r~b = r~O = (I1r)l5~. 
r"oc=F"oc. 

(2.4) 

where F"oc is the Christoffel symbol constructed out of gab' 
Let tr""r .. be a symmetric mth-rank tensor on R" + I 

which is also in the tangent space to S" . That is. the Carte
sian components tr, ... r .. satisfy 

(2.5a) 

and the only nonzero components oftr, ... r .. in spherical polar 
coordinates are those of the form 

tr""r .. = te""em (i.e .• none of the y's = 0). (2.5b) 

Working in spherical polar coordinates. and using (2.4). 
(2.5). and the symmetry of tr""r

m
' 
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where va is the covariant derivative operator on R" + I . We 
therefore obtain the following relation between the Lapla
cians on R n + I and S" acting on symmetric tensors satisfy
ing (2.5): 

va V t = [vav _ (i. + n - m) 
a c,"'Cm a a, r 

X (! - 7) + ~] te" .. em • 
(2.9) 

(This equation has been given in Ref. 3.) 
We now apply (2.9) to the rank-zero tensor TIl) given by 

(2.2).Since VaVa T(I) = Vii Vii TIl). we find that TIl) does in
deed satisfy 

va Va TIl) = A/(n.O)TII). 

with A/(n.O) as given in (2.1a). 

III. TENSOR HARMONICS: EIGENVALUES 

(2.10) 

In analogy with the scalar harmonics. ST 2 tensor har
monics of rank m can be constructed by restricting to S" 
tensors on R n + I • provided these tensors satisfy (2.5). The 
Cartesian components of these tensors are 

TIl) _ r-/C ~.B Bm a at-m 
rl"'r", - rISto··fm Pma,···7i1_ m AI···X ···X I···X , 

m = 0.1..... 1= m.m + 1 •.... (3.1) 

The quantity CrA .. at_m is an (I + m)th-rank tensor on 
R n + I whose Cartesian components are constant. and which 
has the following properties: it is symmetric in all the a; 
~ndices; it is antisymmetric under interchange of 1'; with the 
/3; to the right; it is traceless under contraction of any pair of 
indices; it is symmetric under interchange of any pair 1'·13· - ' , 
with any other pair 1'j ~. 

(The above ~o~ditions insure that T~~"'rm will be an ei
genfunction of va Va' Other authors3

,8 impose additional 
constraints on Cr,B, ... rmBma, ... at_m which insure that there 
will be precisely one linearly independent Cartesian tensor 
per linearly independent tensor harmonic. In principle. one 
can then. as in the scalar case. determine the degeneracy of 
each eigenvalue by counting the number oflinearly indepen
dent Cr, B""rm Bma, ... at_ m tensors satisfying all the conditions. 
In practice, this counting is quite difficult and is rendered 
unnecessary by the method of Sec. IV.) 

We first make use of Eq. (2.9) to demonstrate that the 
tensors (3.1) are eigenfunctions of Va Va' In employing (2.9) 
with m#O we must keep in mind that this equation is only 
valid in a coordinate system ofthe spherical polar sort (2.3). 
The term vaVate, ... e

m 
is. of course, covariant under arbitrary 

coordinate transformations in R n + I • and may be evaluated 
in any coordinate system (the natural choice being the Carte
sian system). However. the remaining terms are only covar
iant under coordinate transformations on S" ; that is. coordi
nate transformations which do not mix up the coordinate 
XO = rwith the angular coordinatesxa 

• So to make use ofEq. 
(2.9) we must first obtain the components of T~!"'r in a 
spherical polar coordinate system. m 

Pick a point :?l' on the sphere on radius r, and orient the 
(n + I)-dimensional Cartesian frame so that at :?l' the XO di
rection is normal to the sphere. The Xli directions will then be 
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tangent to the sphere at f!jJ. Choose coordinates x a in S" 
such that, at f!jJ, the coordinate axes are parallel to the x a 

axes and the metric is proportional to the Kronecker delta 

rgab = rg'/nDab , (3.2) 

where g = det gab' The square norm of a vector tangent to 
S" at f!jJ and pointing in the a' direction is 

va'va, = Va'va, (no summation) 

or 

(val = rglln(val 
using (2.3b) and (3.2); 

(3.3) 

(3.4) 

(3.5) 

But the components of a vector in two different coordinate 
systems are related by'S 

(3.6) 

Hence 

axa axo 
= rg'/2nD~, = O. (3.7) 

axa axa 

This gives us the components of the tensor harmonic (3.1) in 
a coordinate system of the form (2.3): 

Using (2.9), (3.1), and (3.8), we find that 

va Va T~,~ .. c~ = AI(n,m)T~,~ .. c~' 
AI(n,m) = - [1(1 + n - 1) - m]/r. 

(3.8) 

(3.9a) 

(3.9b) 

We now demonstrate that the set of all tensors of the form 
(3.1) spans the space of ST 2 tensors on S" . 

Let tY""Ym (x) be an arbitrary R n +' tensor tangent to S" 
[i.e., satisfying (2.5)]. Then if Vp is the jith Cartesian compo
nent of the ath linearly independent (covariant) vector tan
gent to the sphere (a = 1, ... ,n), 

But each vector Vp can be expressed as 

Vp(x) = cpp(x)(xP /r), 

(3.10) 

(3.11) 

where cpp(x) is antisymmetric in Y and /3. This can be easily 
seen by considering the position vector 

Any vector normal to this can be obtained by contracting;l 
with an n + 1 by n + 1 tensor of the form 

o 
(3.12) 

o 

The cpp(x)'s at other points xP on S" can be obtained from 
(3.12) by coordinate transformations which will, of course, 
preserve the antisymmetry in Y and /3. Group theoretically, 
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the cpp(x)'s are those generators ofSO(n + 1) which are not 
contained in that SO(n) subgroup ofSO(n + 1) which leaves 
the position vector x p unchanged. 

Using (3.11), (3.10) becomes 

(3.13) 

where 

ty, P".'Y~Pm (x)=ta,,,.a~(x)cp: p, (x)".c;:p~(x). (3.14) 

Expand each component of ty, P''''Ym pJx) in terms of scalar 
spherical harmonics (the index q distinguishes between dif
ferent harmonics corresponding to the same eigenvalue): 

t - - (x) - ~ '" cU,<Jl - TU,q)(x) 
)/, f3""YrnlJm - L...£..t YI P'''·Ym Pm ' (3.15a) 

1=0 q 

where the c~~' ... Ym Pm's are constants. Using (2.2), 

tY,P''''YmpJx) 

~ '" c(!,<Jl _ - r - IC (!,q) _ xG.'".xG., 
L ~ y,{J,,··ym 13m a,···a, 

1=0 q 

~ '" c(!'c:m ,'!) - r-iI-m)C(!-!!"q) xG.'''·xG.,-~. 
~ L y, f31"'Ym 13m a""ul_ Tn 

I=m q 

Using (3.15) and (3.14) in (3.13), and defining 

c(!,<Jl _ - _ _ =c(! -:,m.'!) - C (! - !!"ql 
YlfJl·"Ym13ma" .. a m - YIP,,··ym f317I al, .. a,_ m ' 

we obtain 

tY''''Ym(x) 

(3.15b) 

(3.16) 

(.3.17) 

Thus, an arbitrary mth-rank tensor tangent S" can be 
written as a linear combination of tensors of the form 

t (!) - (x) 
rIO"rm 

where the Rn + '-tensor with constant Cartesian compo

nents c~:P''''YmPmG., ... G.,_ ~ is antisymmetric in each Yi /3i pair, 
and symmetric and traceless in the a indices. In general, 
there will be more than one way to express a general tensor in 
terms of the tensors (3.18) if we add no further constraints on 
thec(!)- - - - - 'so 

YI Pt"'Ym f3mu""UI_ Tn 

A necessary and sufficient condition that t ~:"'Y~ be 

traceless is that c~,) P''''YmPmG.,,,.G.,_~ be traceless in the Y indices 
(hence traceless in all the Y and /3 indices, due to the antisym
metry under the Yi+-+/3i interchange). Imposing this con
straint, and taking the Rn + , -divergence of (3.18), we find 
that if t ~')"'Ym is traceless, a necessary and sufficient condition 

for a y,t ~: Y,".Ym to vanish is that c~, P''''Ym PmG.,,,.G.,_ m be totally 
traceless. However, using (2.4) it can be shown that a y,t ~:"'Ym 
- 0 . l' V-c, (/) - 0 d' ti t (I) - Imp les t c,c,'''Cm - ,an VIce versa, or any Y''''Ym 

tangent to S" . 
Thus, any transverse traceless tensor on S" can be ex

pressed as a linear combination of tensors of the form (3.18), 
where cy(!)p- ".y- Q a- ".a- satisfies all the constraints placed 

I I Tn IJm I 1_ Tn 

on the Cy, P'''.Ym PmG.,."G., _ m's of (3.1) except for the symmetry 
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under interchange of Yi Pi pairs, which constraint is clearly 
necessary and sufficient for t ~; ... y", to be symmetric. We con
clude that any ST 2 tensor can in fact be constructed out of 
the T~; ... y",'s defined in (3.1), though not necessarily in a 
unique manner. 

IV. TENSOR HARMONICS: DEGENERACIES 

UndertheactionofO(n + 1), the group of rotations and 
inversions about the origin in R" + 1 , each of the canonical 
tensor harmonics (3.1) transforms into another tensor of the 
same form; i.e., a tensor harmonic corresponding to the same 
values of I and m, but (in general) with a different Cy,{J, ... li , _ m' 

We shall show below that, for all n:> 3 and for m = a, 1, and 
2, the set of canonical tensors corresponding to a given I and 
m transforms irreducibly under the action of O(n + 1). We 
shall determine the irreducible representation (irrep) corre
sponding to a given I, m, and n; the degeneracy D/ (m,n) of the 
Laplacian eigenvalue A/(m,n) is then given by the well
known formulas for the dimensionalities of irreps of 
O(n + 1).17 

The simplest case is, naturally, m = a. We have already 
established, in Sec. II of this paper, an isomorphism between 
the scalar harmonics of degree Ion S" and constant symmet
ric traceless Cartesian tensors of rank 1 on R" + 1 . Such ten
sors are known to transform according to the irrep of 
O(n + 1) labeled by the dominant weight vector (/,a, ... ,a).18 
(The number of components of the weight vector is [in + 1)1 
2]=the integer part of (n + 1)12). The scalar harmonics, 
therefore, also transform according to this irrep. The dimen
sionality of this irrep is, in fact, equal to the scalar degener
acy (2.1b). 

We now tum to the transformation properties of the 
m #a harmonics. Each Cartesian component of a given ten
sor harmonic can be uniquely decomposed in terms of scalar 
harmonics: 

TI!.) - =" TI!.,q)- T(/,q)(x) 
r""?'m(X) k r,"'rm ' (4.1) 

q 

where T~;?!.y", is constant, and q labels distinct scalar har
monics corresponding to the same value of I. The discussion 
above shows that, if we keep the coordinates Xli fixed and 
choose a new Cartesian basis related to the old one by an 
O(n + 1) transformation, the quantities T~;?!.r", will trans
form according to the (m,a, ... ) irrep ofO(n + 1). Conversely, 
if we keep the basis vectors fixed and perform an O(n + 1) 
transformation on the Xii the TI/,q)(x) will transform accord
ing to the (/,a ... ) irrep. So, T~!"'Xm(X) transforms according to 
the direct product (/,a, ... ) ® (m,a, ... ). For I:>m and n:>3, this 
direct product decomposes into the following irreps,19,20 
each with multiplicity 1: 

(/,a, ... ,) ® (m,a, ... ) 

= (I + m,a, ... ) $ (I + m - 2,a, ... ) $ •.• $ (/- m,a, ... ) 

$(1 + m -1,1, ... )$(1 + m - 3,1, ... ) ... 

$(/- m + 1,1, ... ) 

$'" 

$ (/,m,a, ... ). (4.2) 
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In other words, T~,)",ym(X) can be written as a sum of 
tensors each of which transforms according to one of the 
irreps on the rhs of (4.2). Our goal is to show that, in fact, 
only one of the tensors in this sum is nonzero, and to identify 
the irrep to which it belongs. 

To accomplish this, we shall first show that each 
T~,)",ym(X) is an eigenfunction of the quadratic Casimir opera
tor C2 of O(n + 1), with an eigenvalue equal to the C2 eigen
value of the (/,m,a, ... ) irrep ofO(n + 1). We shall then show 
that, for m = 1 and m = 2 (the relevant cases in quantum 
gravity), none of the other irreps on the rhs of (4.2) has the 
same C2 eigenvalue, no matter what the value of I or n:>3. We 
shall thus have established that the T~')"'Ym(X)'s transform ac
cording to (/,m,a, ... ). 

The quadratic Casimir operator Cz is defined as21 

Cz = iiXi~' (4.3) 

Xi is the ith generator of the group, and ii is the group met
ric. The indices i andj in (4.3) are summed over all the gener
ators of the group. To determine the action of Cz on 
T~,)",ym (x), we require a representation of Xi as a differential 
operator on tensors. 

If a continuous group acts on a manifold to produce 
coordinate transformations, the action of the generator Xi 
on tensors on the manifold is that of.!£' 51' the Lie derivative 
operator in the direction of the Killing vector field S fix) cor
responding to Xi (see Refs. 22-24). The coordinate represen
tation of Cz is therefore 

(4.4) 

We have introduced the "textbook-dependent normali
zation constant" (liN) so that we may choose our normali
zation for ii and sf(x) in a manner which is convenient for 
our calculation25,z6: 

(4.5) 

whereg"b(x) is the (contravariant) metric tensor onS" (ii is, 
or course, independent of x a

). The result of C2(x) acting on 
scalars, which we already know to belong to (/,a, ... ), can then 
be used to fix ( liN) so as to agree with the conventions of any 
given author. 

When acting on a scalar, .!£'SI =sfaa. Furthermore, 
Lie differentiation leaves tensor character unchanged. 
Therefore, 

ii.!£' 51.!£' sjT(1) = iisfaasJab TIl) 

= [aoaa +iisf(aasJ)ab]T(1) (4.6) 

using (4.5) (ao g"bab). The covariant constancy of the metric 
yields 

a = Va ~ =ii[S~VaSJ + SJVaSn. (4.7) 

Equations (4.5) and (4.7), combined with the equation satis
fied by a Killing vector, 

vas~ + Vbsf = a, 
show that 

iisf(aasJ) = - r~c g"c. 
Therefore, 
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,.,ij.!f .!f T(/) = VaV T(I) 
5 5, 5j a 

= - [l (/ + n - 1)/r] T(I). (4.10) 

Making use of Ref. 27, we find that the C2 eigenvalue of the 
(p,q,O, ... ) irrep ofO(n + 1) is 

C2(p,q) = 2[ pip + n - 1) + q(q + n - 3)], (4.11) 

so the Cz eigenvalue of (/,0, ... ) is 

Cz(/,O) = 2/(1 + n - 1). 

Comparing (4.10) and (4.12), we conclude 

Cz(x) = -2rij.!f5,.!f5,. 

The Lie derivative of a covariant tensor of rank m is 

c!L? ,/el ... em = S ~aa tc",oem 

m 

(4.12) 

(4.13) 

+ I tc""cR_,acR+,···CmaCRS~· (4.14) 
R~I 

UsingZ8 (4.5), (4.14), and the symmetry of T~,~"cm (x), 

gij.!f 5i.!f 5j T~,~"cm 

= aaaa T~,~"cm + aa T~,~"cm ijs rabS; 

+ 2maa T~lc""cm_ ,1gijS~aICm)SJ 
(I) ij b a 

+ mT a(c,"'Cm_ ,Its iabalcm)S j 
(I) ij b a 

+ mT a(c, ... cm_,taCm)S ;abS j 
(I) ij (a b) +m(m-l)Tab(c,,,,cm_2g'-acm_,IS,alcm)Sj' (4.15) 

We now proceed to evaluate the various combinations of 
Killing vectors and their derivatives which appear on the rhs 
of (4.15). In addition to (4.5) and (4.8), the following for
mula, 16 derivable from (4.8), will prove useful: 

Va Vb Sic = - R ~beSid' 
Using these we obtain 

ijs\aabs]l = - r~ ~)d, 

and 

ijS~abacSJ 

= - 2r~cl ijS~alb)Sj + r~c i j
sfa.t1 

_ (a r d \,..ea + r e r d gfa 
b ecl5 be ef 

- r:br;c gfa - ~eR bce' 

(4.16) 

(4.17a) 

(4.17b) 

It will prove convenient to reexpress the quantities in the last 
two terms of (4. 15) using 

ija f:'a b_ ua f:'a f:'b _ ijt:aa a t: b 
t c~ iadSj -g'- c(~ iad~j) t~ i c d~j' (4.18) 

We require the antisymmetric part of g'js fabs j, in addition 
to the symmetric part (4.17a). It will simplify not only the 
calculation of this quantity but the rest of the calculation as 
well to employ "equatorial plane projection" (EPZ) coordi
nates on the sphere. In this coordinate system each point on 
S" is simply labeled by n of its n + 1 Cartesian coordinates in 
R n + 1 , say xG, a = 1, ... ,n. Such a system, of course, assigns 
one set of coordinates to two different points, one in the 
"northern hemisphere" and the other in the "southern hemi
sphere." [The "equator" in these coordinates is the (n - 1)
sphere which is the intersection of S" with the plane in R n 

+ 1 

xi) = O.J Since, however, we shall only be dealing with quan-

2892 J. Math. Phys., Vol. 25, No.1 0, October 1984 

tities defined at a single point on S" , rather than integrated 
quantities, this will not be a drawback. We shall denote the 
Epz coordinate system by hats over the indices: Xii, 
a = 1, ... n. 

The components of the Killing vectors on S" in the Ep2 

coordinates are given explicitly in Chap. 13 of Ref. 16. They 
are 

(4.19) 

(4.20) 

The quantities .q g and a; are both independent of Xii. the 

.q i's are matrix representations of the generators of SO(n); 

the Killing vectors (4.19) generate rotations of the sphere 
about the axis xG = 0, a = 1, ... n. The quantities a; are n lin
early independent tangent vectors to S" to Xii = 0. The Kill
ing vectors (4.20) correspond to the generators ofSO(n + 1) 
which do not leave the axis xQ = 0 fixed. From (4.19) and 
(4.20) we obtain the formula 

(4.21) 

The Christoffel symbols in the EP coordinate system are 

ric = (lIr).xilgk . (4.22) 

Since r is constant on S" , 

aJrge = (1/r) [81gk + XoaJgk]' (4.23) 

Let us evaluate all our quantites at the "north pole" of the 
coordinate system; denoting this point by "0," 

xillo = 0. (4.24) 

Equations (4.22) and (4.23) then give 

(4.25) 

(4.26) 

since the metric and its derivatives are nonsingular. Using 
(4.9), (4.17), (4.18), (4.21), and (4.24)-(4.26), the Xil indepen-

dence of the quantities 11 g, and the relation (valid at all 
I 

points in all coordinate systems) between the Riemann ten
sor and the metric on S" , 

Rabed = (lIr) [gbe gad - gac gbd]' (4.27) 

we obtain 

ijstai,s;lo = 0, 

ijstailaf,s;lo = - (lIr)gi, 

ijaaSfaf,S;lo = - [(n - 1)Ir]ta, 

.. (i, J) 1 ,.e(b,.d If 
g"aos i acs j 10 = r S S [goc gel - gje gea ]. 

From (4.15) and (4.28), we conclude that 

,.,ij.!f .!f T(I) I 
5 5i 5j C''''em 0 

= [aaaa - m(m + n - 1)Ir] T~.~ .. cJO' 
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(4.28b) 

(4.28c) 

(4.28d) 

(4.29) 
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Employing the usual rules of covariant differentiation 
and the values of the Christoffel symbols in the Ep2 coordi
nates we find that 

VaVa T~,~"cmlo = [aaaa - m/r] T~,~"cm 10' (4.30) 

(4.31) 

But this is a tensor equation with respect to coordinate trans
formations on S", and therefore is valid in all coordinate 
systems on S". Furthermore, Ep2 coordinates could have 
been chosen with the "north pole" at any point; therefore, at 
every point of S" , 

ijY Y T(l) K" 51 5j ct,··em 

_ -a- .2 (1) 
- [V Va - m(m + n - 2)/, ] T e, ... em ' (4.32) 

Using (3.9), (4.13), and (4.32), we find that T~,~ .. em is an eigen
function of C2(x): 

C2(x)T~,~ .. em = 2[1(1 + n - 1) + m(m + n - 3)]T~,~ .. em' 

(4.33) 

The C2 eigenvalue corresponding to T~,~ .. em is the same as 
that for the (l,m,O, ... ) irrep ofO(n + 1). [See Eq. (4.11).] This 
leaves two possibilities for the transformation properties of 

T~,~ .. em· 

(A) If, for a given set of values of I, m, and n (/>m, of 
course), the C2 eigenvalue of the (/,m,O ... ) irrep ofO(n + 1) 
does not equal the C2 eigenvalue of any of the other irreps on 
the rhs of(4.2), then the tensors T~,~ .. em transform irreducibly 
under (/,m,a, ... ), and the number of linearly independent 
such T~,~ .. em's is equal to the dimensionality ofthis irrep. 

(B) Some subset of the other irreps in (4.2) have the same 
C2 eigenvalue as (l,m,O, ... ). Then, without investigating the 
action of the higher-rank Casimir operators on T~,~ .. em' we 
can only conclude that T~,~ .. em can be expressed as a sum of 
tensors each of which transforms irreducibly according to 
one of the irreps which have this C2 eigenvalue in common. 

For the cases of greatest interest, m = 1 and m = 2, 
possibility (B) can be ruled out by explicit computation using 
the decomposition formula (4.2) and Eq. (4.11) for the C2 

eigenvalues. For m = 1 and m = 2 it turns out that, for all 
n>3 and all/>m, the C2 eigenvalue of (/,m,O, ... ) is distinct 
from the C2 eigenvalues of the other irreps in (4.11). 

Making use of Ref. 17, we find for all even n >4, 
D

r
(n,l) = 1(1 + n - 1)(2/ + n - 1) 

(n - 2)(n - 3) 

X 
nn/2 [(j + 1- 1)(n + 1 - j)] 
j= 3 (n - 1 - j)(j - 2) , 

D
r
(n,2) = (n + 1)(/- 1)(/ + n)(21 + n - 1) 

(n - l)(n - 2)(n - 3) 

(4. 34a) 

X Ii [(I + n - j)(j + I - I Y(n + I - J)] 
j= 3 (n - j)(n - I - J)(j - 1)(j - 2) , 

(4.34b) 

where the products are set equal to 1 when n = 4. For all odd 
n>5, 
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I (I + n - 1) (n + 1)12 [ (j + 1- l)(n + 1-J) ] 
Dr/n,l) = II .' 

(n-2) j=3 (n-I-JIU-2) 
(4.35a) 

D (n 2) = (/- 1)(/ + n) 
r , (n -2) 

(n + 1)/2 ((I + n - Jl(1 - 1 + jY(n + 1 - j)) 
X 113 (n - j)(n - 1 - j)(j - 1)(j - 2) . 

Forn = 3, 

Dr(n,I) = 2/(1 + 2), 

D r(n,2) = 2(/- 1)(1 + 3). 

(4.35b) 

(4.36a) 

(4.36b) 

Since m = ai = b lI(a - I)!, (4.34)-(4.36) may all be written as 

I·L(/~+_n_-~1)~(2/_+~n_-_1~)(/_+~n_-_3~)! Dr(n,l) = -
(n - 2)!(1 + I)! 

/4.37a) 

iVr(n 2) = (n + l)(n - 2)(1 + n)(/- 1)(21 + n - 1)(1 + n - 3)! 
r , 2(n - 1)!(1 + I)! 

1>2. (4.37b) 
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Differential equations satisfied by the cuspoid canonical integrals In (a) are obtained for arbitrary 
values ofn>2, where n - 1 is the codimension of the singularity and a = (a l,a2, ... ,an _ d. A set of 
linear coupled ordinary differential equations is derived for each step in the sequence In (0,0, ... ,0,0) 
-In(0,0, ... ,0,an_Il-In(0,0, ... ,an_2,an_1 )-... -In(0,a2,···,an_2,an_1 )-In(al,a2,···,an_2,an_I)· 
The initial conditions for a given step are obtained from the solutions of the previous step. As 
examples ofthe formalism, the differential equations for n = 2 (fold), n = 3 (cusp), n = 4 
(swallowtail), and n = 5 (butterfly) are given explicitly. In addition, iterative and algebraic 
methods are described for determining the parameters a that are required in the uniform 
asymptotic cuspoid approximation for oscillating integrals with many coalescing saddle points. 
The results in this paper unify and generalize previous researches on the properties of the cuspoid 
canonical integrals and their partial derivatives. 

PACS numbers: 02.30.Hq, 02.30.Bi, 03.80. + r 
I. INTRODUCTION 

There has been considerable interest recently in the 
properties of the cuspoid canonical integrals In (a). 1-9 The 
integralIn(a) is defined by2,10 

In(al,a2,···,an_l) = J: 00 exp[i(a1u + a2u2 + ... 

+an_IUn-l+un+I)]du, (1.1) 
where the coefficients aj are real and n is a positive integer 
with n>2. The name cuspoid canonical integral comes from 
catastrophe theory, where the polynomial in the exponent of 
Eq. (1.1) is the canonical form for the cuspoid catastrophes, 
with n - 1 the codimension of the singularity. 10-13 

The integral In (a), together with its partial derivatives 
aInlaa l, aInlaa2, ... ,aInlaan _I occur in the asymptotic 
analysis of many short wavelength scattering theories in
volving atoms, molecules, and nuclear heavy ions as well as 
in acoustic, electromagnetic, and water-wave propagation, 
and in other problems. References to a large number of rel
evant papers can be found in Refs. 4, 6, and 9. 

We have recently investigated4-6,8,9 the differential 
equations satisfied by In (a) and its partial derivatives for the 
special cases of n = 2 (fold), n = 3 (cusp), and n = 4 (swal
lowtail). For n = 2, Eq. (1.1) is proportional to Airy's inte
gral14 Ai(x) and the differential equation for Ai(x) is well 
known. 15 When n = 3, Eq. (1.1) is identical with Pearcey's 
integral P (x, y). 16-18 The differential equations for P (x, y) 
were first derived by Pearceyl7,18 and used by him to numeri
cally evaluate P (x, y). For the swallowtail canonical integral 
(n = 4), which is also written S (x, y, z), the relevant differen
tial equations have been obtained by ourselves and Farrelly8 
and used in numerical computations.8,9 

The purpose of the present paper is to derive the differ
ential equations satisfied by the cuspoid canonical integrals 

8) Permanent address. 
b) Present address: Marconi Space and Defense Systems Ltd., The Grove, 

Warren Lane, Stanmore, Middlesex HA 7 4L Y, England. 

for any value of n. Our treatment generalizes and unifies the 
previous work4-6,8,9,15,17,18 in which each value of n = 2,3,4 
was treated as a separate case. 

We derive the differential equations in Sec. II. The basic 
idea is to obtain a set of linear coupled ordinary differential 
equations for each step in the sequence In (0,0, ... ,0,0) 
-In (O,O, ... ,O,an _ 1 )-In (O,O, ... ,an _ 2 ,an - 1 )-, ... , 

-In (0,a2,· .. ,an _ 2 ,an -I )-In(a l,a2,· .. ,an _ 2 ,an _ I)' The solu-
tions of the differential equations for a given step provide the 
initial conditions for the next step, with the initial conditions 
at the origin (0,0, ... ,0,0) being obtained directly from Eq. 
(1.1). An advantage of this scheme is that it allows the nu
merical evaluation of the derivatives aInlaa l, 
aInlaa2,· .. ,aInlaan -I as well as In at a given value of a. 

Section III provides concrete examples of our formal
ism. We show for the special cases of n = 2,3,4 that our equa
tions are equivalent to those obtained earlier. We also give 
the differential equations for the butterfly canonical integral 
(n = 5), as they have not been reported in the literature be
fore. 

An important use of In and aInlaa l, 
aIn I aa2, ... ,aIn I aan _ 1 is in uniform asymptotic approxima
tions for one-dimensional oscillating integrals with many 
nearly coincident stationary phase or saddle points. 1,2,10,19-23 
In Section IV we show how the iterative and algebraic meth
ods of Ref. 9 for calculating the parameters a that are re
quired in In and its partial derivatives can be generalized 
from the case of n = 4 to the case of arbitrary n. Thus the 
techniques reported in this paper allow in principle the appli
cation of uniform asymptotic approximations for integrals 
with an arbitrary number of nearly coincident saddle points. 
Our conclusions are in Sec. V. 

II. DIFFERENTIAL EQUATIONS 

The integral representation (1.1) for In (a) is conditional
ly convergent. This has the disadvantage that repeated dif
ferentiation under the integral sign eventually produces a 
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divergent integral.8
•
24 To avoid this problem, we deform the 

contour of integration Cn so that it starts and ends in sectors 
of the complex u plane where the integrand is exponentially 
small. We can write 

In (a) = ( exp[iPn(u)]du, (2.1) 
)c. 

with 
n-I 

Pn(u) = un+ 1+ L aju j . (2.2) 
j=1 

When n is an even integer, we choose Cn to start on the ray 
arg u = 1T - !1T/(n + 1) and finish on the ray arg u = ~1TI 
(n + 1). For n odd, the contour arg u = 1T + !1T/(n + 1) to 
arg u = !1T I( n + 1) is an appropriate choice for C n • 

We now wish to derive a set of differential equations for 
the integration In (O,O, ... ,O,O)-In (a l,aZ,···,an _ z ,an _ I)' To 
accomplish this we use a sequence of steps In (0,0, ... ,0,0) 
-In (O,O, ... ,O,an _ I)-In (O,O, ... ,an _ z ,an - I ) 

-, ... ,-In(O,az, ... ,an_z,an_1 )-In(al,a2,···,an-z,an_I)' 
such that in each step k all the aj are constant except for ak • 

We derive the differential equation for the variable a l 

first. From Eq. (2.2) we have 
n-I 

P~(u) = (n + l)un + L jaju j - I . 
j= I 

(2.3) 

Now partial differentiation ofEq. (2.1) with respect to a l is 
equivalent to multiplication of the integrand by iu. It then 
follows from Bleistein20 that In (a) satisfies the differential 
equation 

p~( - i ~)In(al,az, ... ,an_l) = 0, (2.4) 
aa l 

because 

( P~(u)exp[iPn(u)]du = 0. 
)c. 

The operator in Eq. (2.4) is given explicitly by 

P ~ ( - i ~) = ( - inn + 1) ann 
aa l aa l 

n-I . aj-I 
+ L (-i)'-Jaj-a j_I' (2.5) 

j= I a l 

We then obtain from Eq. (2.4) the differential equation for 
In (a) in the variable al: 

anI n-I . aj-II 
_n + ~ (_i)j-n-I_i_ a. __ . _n =0. (2.6) 
aa7 /!-:I n + 1 J aa{- I 

To proceed further we introduce the functions I~P)(a) 
defined by 

( ) a PIn (a) 
1:(a)= ,p=O,l, ... 

aar 
(2.7) 

with the convention that 

I ~)(a)==In (a) 

and 

I ~P)(a)=O when p < ° . 
For n = 4 (swallowtail canonical integral), 1~) and I~) are 
the same as the functions Hand G, respectively, that were 
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introduced in Ref. 8. Our strategy now is to derive sets of 
coupled linear ordinary differential equations for each of the 
variables aZ,a3, ... ,an _I in which the I',;) are treated as inde
pendent functions. 

Differentiating Eq. (2.6)p times with respect to al with 
p = O,I, ... ,n - 2 gives 

anI~p) +n~l( ')j-n-I j aj-II~p) 
--- £.J -1 --a·----

aa7 j = I n + 1 J aa{ - I 

+(_i)-n n~1 I~P-I)=O, p=0,1, ... ,n-2.(2.8) 

Next we use differential identities satisfied by I~P) to change 
the integration variable from a l to the variable aj, 
j = 2,3, ... ,n - 1. 

From the integral representation (2.1) for In (a) we de
duce that 

I~P)(a) = iP i uP exp[iPn(u)]du, p = 0,1,... (2.9) 
c. 

and differentiation of this equation q times (q = 0,1,2, ... ) 
with respect to aj gives 

aqI(p) i . 
-----;- = iP +q u P+Jq exp[ iPn(u)]du, 

aaj c. 

p,q = 0,1, ... , j = 1,2, ... ,n - 1 . (2.10) 

If we change labels p_r, q_s,j_1 in Eq. (2.10) we have 

aSI(r) i 
--sn- = r+ s ur +ls exp[iPn(u)]du, 

aa l c. 

r,s = 0,1, ... , 1= 1,2, ... ,n - 1 . (2.11) 

It is now clear that if r is chosen to be 

r=p +jq -Is, 

then we obtain from Eqs. (2.10) and (2.11) the identity 

a qI(p) a'I(p +jq -Is) - ° 1 __ n __ ;q(I-Jl-s(I-I) n p,q,s- , , ... , 
-1 , . 

aaJ aa~ i,1 = 1,2, ... ,n - 1. 
(2.12) 

This relation lets us change from the variable aj on the left
hand side to the variable al on the right-hand side. For exam
ple for the case j = 1 required below we have 

a qI(p) a'I(p + q -Is) P q,s 0 1 
__ n_ = isjl-I) n , =, , ... , (2.13) 
aaj aa~' 1= 1,2, ... ,n - 1 . 

The relation (2.12) encompasses a large number of individual 
identities. For the swallowtail case n = 4 some of them are 
reported in Ref. 8. 

We next return to the differential equation (2.8) for 1',;) 
and set 

aj = ° for j <I with 1= 1,2, ... ,n - 1 . (2.14) 

In addition for each I we only keep terms which have 
p = 0,1, ... ,/ - 1. We obtain 
anI (p) n - I . a j - I I ~P) 
__ n_+ L (_i)j-n-I_i_ a. __ _ 

aa7 j=1 n + 1 J aa{-I 

+ (_ i)-n-P-I~p-I) = 0, 
n+l 

aj=O forj<l,p=0,1, ... ,1-1,1=1,2, ... ,n-l. 
(2.15) 
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We next wish to convert Eq. (2.15) into a set of differential 
equations with respect to a[ using the identity (2.13). How
ever, inspection ofEq. (2.13) shows that for fixed p,q,! there is 
still a choice to be made for s. We choose s so that the super
script k = p + q -Is on the right-hand side of Eq. (2.13) is 
zero or is the smallest possible integer for a givenp,q,l. We 
choose s in this way because it introduces the minimum 
number of independent functions I~k) into Eq. (2.15) when 
the identity (2.13) is used. Our choice for s is automatically 
satisfied iff or a given p,q,! we calculate it from the equation 

sq=int[(p+q)ll], (2.16) 

where int = integer part of. Note that Sq is also a function of 
p and I, but this has not been indicated explicitly in Eq. (2.16) 
in order to simplify the notation. 

With this choice for s, Eq. (2.13) becomes for q = n 

anI I pi '>'nIIP+n-lsnl 01 
n .snI1- liOn P = , , ... , 

--=1 aa7 aa~n' 1= 1,2, ... ,n - 1 , 
(2.17) 

where 

Sn = int(P ~ n) . (2.18) 

We now use the identity (2.17) to change variable from 
a l to al in Eq. (2.15) obtaining 

'>'nlln +P- Isnl n - I . 
a n + I lSJ-J-Sn)(l-I)+n+l-j_J_ 

aa~n j= I n + I 
a'J-'IU-1 +p-1Sj_" 

n x aj --..;;....----

aaj-J 

+ t-Snil-II_P_IIP-II = ° 
n + 1 " 

aj=O forj<l,p=0,1, ... ,/-I,I=I,2, ... ,n-l, 

and 
Sj_1 = int[(p + j - 1)11] . 

(2.19) 

(2.20) 

Equation (2.19) is the main result of this paper. It represents 
n - I sets of coupled ordinary linear differential equations. 
Each set involves only a single variable a 1 with the condition 
aj = ° for j < I. For each value of I, there are I equations 
(p = 0,1, ... ,/- 1) which contain I independent functions 
Il,f). 

Equation (2.19) represents sufficient equations to evalu
ate In and aI,,Iaal,alnlaa2, ... ,alnlaan_1 at any point 
(a l,a2, ... ,an _ I)' The procedure to accomplish this is as fol
lows 

(a) Set I = n - I in Eq. (2.19). This gives a set of n - 1 
differential equations in the variable an _ I with 
a l =a2 = .. ·=an _2 =0. 

(b) Evaluate I~PI at the origin (0,0, ... ,0) for all required 
values of p = O,I, ... ,n - I (see below). This supplies all the 
necessary initial conditions at the origin for Eq. (2.19) with 
I=n-l. 

(c) Integrate numerically from (0,0, ... ,0,0) to 
(O,O, ... ,O,an _ I ) using a standard integration routine for cou
pled ordinary linear differential equations. 

(d) Set 1= n - 2 in Eq. (2.19). This gives a set of n - 2 
differential equations in the variable an _ 2 with aj = ° for 
j<n -2. 
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(e) Use the identity (2.12) to transform the solutions at 
(O,O, ... ,O,an _ I ) obtained in step (c) into initial conditions for 
Eq. (2.19) with I = n - 2 [step (d)]. 

(t) Integrate from (O,O, ... ,O,O,an -I) to 
(O,O, ... ,O,an _ 2 ,an _ I)' 

(g) Repeat steps (d), (e), (t) for 1= n - 3,n - 4, ... ,3,2. We 
have now reached the point (0,a2,a3,· .. ,an _ 2 ,an _ I)' 

(h) Finally set 1=1 and integrate Eq. (2.19) [which is 
now equivalent to Eq. (2.6)] from (0,a2, .. ·,an _ I) to 
(a l ,a2, ... ,an _ I) using as initial conditions the solutions from 
the previous integration step together with Eq. (2.12). At 
(a l ,a2, ... ,an _.) we have now evaluated In' Its derivatives 
alnlaal,alnlaa2, ... ,alnlaan_1 are obtained from the solu
tions of Eq. (2.19) together with the identity (2.17). 

In step (bl, it is necessary to calculate the initial condi
tions atthe origin (0,0, ... ,0) for Eq. (2.19) with I = n - 1. The 
allowed values of p in this case are p = O,I, ... ,n - 2. If we 
evaluate the superscripts Sn' n + p - (n - l)sn, Sn _ 2' and 
n - 2 + P - (n - l)sn _ 2 in Eq. (2.19) then it is found that 
the set of differential equations for I = n - 1 consists of 
terms of the form 

al ipi 
__ n_, p = O,l, ... ,n - 2 
aan _ 1 

a 21 101 
and __ n _ 

2 ' aan _ 1 

(2.21) 

where the term of second order comes from p = n - 2. The 
initial conditions at the origin that we must calculate are 
therefore, of the form 

al iol 
I~PI, p = O,I, ... ,n - 2 and __ n_. (2.22) 

aan _ 1 

However Eqs. (2.1) and (2.9) show that 

al iol 
__ n_ = _ i- nI~n - II. (2.23) 
aan _ 1 

Hence, we can fix the initial conditions at the origin for Eq. 
(2.19) with I = n - 1 provided we can calculate 

I~PI(O,O, ... ,O), p = O,l, ... ,n - 1 . (2.24) 

Now Eq. (2.9) shows that 

I~PI(O,O, ... ,O) 

= i P J: "" uP exp(iu" + l)du, p = O,l, ... ,n - 1 , (2.25) 

which can be written in the alternative form 

I~PI(O,O, ... ,O) = i P I"" uP exp(iun + l)du 

+ (- lriP l"" uP exp(i( - It+ lU n + I)du, 

p=O,I, ... ,n -I. (2.26) 

The integrals in Eq. (2.26) can now be evaluated with the 
help of the results25

•
26 

L"" uP exp(iun + 1 )du 

= _1_ r (E.±..!.)exp[i !!.... [p + I]] , 
n+l n+l 2 n+l 

P = O,I, ... ,n - 1 , (2.27) 

and 
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LX> uP exp( - iu n + I)du 

= _1_ r [P + 1 ] exp[ _ i.!!.... [p + 1]] . (2.28) 
n+l n+l 2 n+l 

p=O,I, ... ,n-l. 

Consider first the case n = 2m = even positive integer. Ap
plying Eqs. (2.27) and (2.28) to Eq. (2.26) shows that 

I hPJ. (0,0, ... ,0) 

2 r [ p + 1] [1T [ P + 1 + ]] 
=2m+l 2m+l cos "2 2m+l p, 

m = 1,2, ... , P = 0,1, ... ,2m - 1 . (2.29) 

Next consider the case n = 2m + 1 = odd positive integer. 
If p = 2q + 1 = odd positive integer, then the integrand of 
Eq. (2.25) is an odd function of u and 

Ih2::.!- ~)(O,O, ... ,O) = 0, m = 1,2, ... , q = O,I, ... ,m - 1 . 
(2.30) 

Ifhowever,p = 2q = even integer, then Eqs. (2.26) and (2.27) 
give 

12q) ( 0) __ 1_ r [ 2q + 1 ] 1 2m + I 0,0, ... , -
m + 1 2m +2 

X exp[i.!!.... [ 2q + 1 + 2q]] , 
2 2m +2 

m = 1,2, ... , q = O,I, .. ,m . (2.31) 

An alternative way of deriving Eqs. (2.29)-(2.31) is from the 
exact series representation of In (a l,a2 , ... ,an _ I) obtained in 
Ref. 2. 

III. EXAMPLES 

In this section we consider in more detail the cases 
n = 2 (fold), n = 3 (cusp), n = 4 (swallowtail), and n = 5 
(butterfly). We verify that Eq. (2.19) is equivalent to known 
results for n = 2,3,4. The differential equations we derive for 
the butterfly canonical integral (n = 5) are new and have not 
been reported in the literature before. In order to write down 
explicitly the differential equations contained in Eq. (2.19) 
for a given value of n, we have written a simple symbolic 
algebraic computer program based on the FORMAT state
ments of FORTRAN. 

A. The fold canonical integral/z(a1) 

We have n = 2 so that / = 1, p = 0 and Eq. (2.19) be
comes 

d 2I (0
) 1 

__ 2 ___ a II hOi = 0 • 
dar 3 

(3.1) 

The fold integral 12(a I) is related to the Airy integral Ai(a I) by 

12(ad = (21T131/3)Ai(aI/31/3) , 

and if we set a l = x, Eq. (3.1) becomes 

d
2 

Ai(x) A'() - 0 dx2 -x IX - , 

which is a well-known result. 15 

B. The cusp canonical integraI/3(a1,a2) 

In this case n = 3 and either / = 2, p = 0,1 with a I = 0 
or / = l,p = O. The differential equations obtained from Eq. 
(2.19) are for / = 2,p = 0 

aI~I) . 1 II) 0 
--+I-aI = , al=O aa

2 
2 2 3 

(3.2) 

for I = 2, P = 1, 

a2I (0
) 1 aI IO ) 1 
3. 3 +. 110) 0 --2-+ I - a2 -- 1- 3 = , 

aaz 2 aaz 4 
(3.3) 

and for / = 1, P = 0 

a3I (0
) 1 1 aI IO ) 

3 • liD) 3 0 ---I-al 3 --a2 --= . 
aa l

3 4 2 aa l 
(3.4) 

The cusp canonical integral 13(a l ,a2 ) is the same as Pearcey's 
integraIP(x,y) provided wesetx = az,y = al andEqs. (3.2)
(3.4) are identical with Eqs. (2.12), (2.13), and (2.3), respec
tively, of Ref. 8. 

Note that Eqs. (3.2) and (3.3) for I~I) and I~O) are not 
coupled together. Because of this we can solve Eq. (3.2) for 
the boundary condition ap(O,y)lay = 0 at y = 0 [see Eq. 
(2.30)] obtaining 

ap(x,y) I = o. 
ay y~O 

(3.5) 

This result also follows immediately from Eq. (Ll). Equa
tion (3.5) is one of the initial conditions required for Eq. (3.4). 
The two remaining initial conditions can also be obtained 
explicitly from Eq. (3.3) in terms of Bess elf unctions of orders 
± ! and ± a and argument x 2/8 [see Eqs. (5) and (8) of Ref. 

5]. 

C. The swallowtail canonical integraI/4(a1,az,a3) 

When n = 4, we have the following possibilities 

/ = 3, p = 0,1,2 with al = az = 0, 

/ = 2, P = 0,1 with a l = 0, 

/=1, p=O. 

Equation (2.19) then yields the following differential equations: for / = 3 

(p=O) 

(p= 1) (3.6) 

(p=2) 
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forl = 2 

az.l~) . 2 III) . 3 al~) 0 
(p=O) --2-+I-a2 4 +1- a3--= , 

aa2 5 5 aa2 
(3.7) 

az.l~) 2 al~) . 3 al~) 1 1(0) 0 
(p= 1) --2---a2--+1-03---- 4 = , 

aa2 5 aa2 5 aa2 5 

and for I = l,p = 0 

ifl IO) 1 2 al IO) 3 a21 10) 
4 1(0)' 4 4 0 --4-+-al 4 -1-a2----a3 --2-= . 

aal 5 5 aO I 5 aa l 
(3.8) 

In previous work8•9•
27 the swallowtail canonical integral has been denoted S (x, y, z) so we must make the correspondences 

0 1 = z, a2 = Y, a3 = x. Equations (3.6H3.8) are equivalent to those reported in Sees. 3.2-3.5 of Ref. 8 if it is also noted that 
H =l~) and G =l~). 

D. The butterfly canonical integralls(a1,sz,a3,a4) 

We now have n = 5 and the possible values for I and pare 

1 = 4, P = 0,1,2,3 with al = O 2 = a3 = 0, 

1=3, p=0,1,2 with al =a2=0, 

1=2, P = 0,1 with a l = 0, 

1=1, p=O. 

From Eq. (2.19) we can obtain the following sets of differential equations: for 1 = 4 

(p=o) 
alii) 2 
_5 __ i _ a 1 (3 )=0 
aa

4 
3 4 5 , 

(p= 1) 
a1 12) 2 al IO) 1 
_5 ___ a

4 
_5 ___ 1~0) = 0 , 

aa4 3 aa4 6 

(3.9) 

(p=2) 
a1 (3 ) 2 alii) 1 
_5 ___ 0

4 
_5 ___ 1~1) = 0 , 

aa4 3 aa4 3 

(p=3) 
az.1 (0 ) 2 a1 (2 ) 1 
__ 5 __ i-a

4
- 5-- i-I~2) = 0, 

ao/ 3 a04 2 

forl = 3 

(p=O) 

(p= 1) (3.10) 

(p=2) 

forl= 2 

(p=o) 
a2I II ) 1 1 al IO) 2 al[ll) s III) 5. 5 
--;---z--02 s --03 --+1-04 --= 0, 
ua2 3 2 aa2 3 a02 

(3.11) 

(p= 1) 
~1(0) 1 al IO) 1 alii) 2 a21 10) 1 

5 5. 5. 5 (0) ----02--+I-a3--+1-0 ----I -0 
aa/ 3 a02 2 a02 3 4 ao/ 6 5 - , 
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and for I = 1, p = 0 
asI(O) 1 1 aI(O) 
--~- + i - al~O) + - a2 _s_ 
aa l 6 3 aa l 

. 1 a2I~0) 2 a3I~0) 
- 1 - a3 -- - - a4 -- = 0 . 

2 aa/ 3 aa l
3 (3.12) 

Equations (3.9)-(3.12) are new results for the butterfly ca
nonical integral. 

IV. UNIFORM ASYMPTOTIC CUSPOID 
APPROXIMATION FOR OSCILLATING INTEGRALS 

An important use of In and its derivatives alnlaa l , 

alnlaa2, ... , alnlaan -I is in the derivation of uniform 
asymptotic expansions l ,2,lO,19-23 for integrals of the form 

L"'", g(t)exp[if(a;t)/{iJdt, Ii--+O, (4.1) 

wheref(a;t) is assumed to be real for real values of t and to 
have n coalescing real or complex saddle points defined by 

af(a;t) . 
--= 0 for t = tj(a), J = 1,2,oo.,n . (4.2) 

at 

Note that the positions of the saddle points depend on a set of 
parameters a. 

A key step in the analysis is a local one-to-one uniform
ly analytic change of variables t~u(a;t) defined by 1,2,10,19-23 

n-I 
f(a;t)=u n+ l + L an_iun-i+A, (4.3) 

;=1 

where the new parameters I an _ i J and A depend on a but 
not on t. 

In practical applications of uniform approximations, it 
is necessary to devise methods for calculating Ian _ i J and A, 
The equations determining these quantities are l ,2,IO,19-23 

j = 1,2,oo.,n, (4.4) 

where the uj satisfy 
n-I 

(n + I)uj + L (n - i)an_iuj-i-I = 0, j = 1,2,oo.,n 
i= 1 

(4.5) 

and for notational convenience we have writtenfj = f(a;tj ). 
For n = 2 (fold) and n = 3 (cusp), explicit formulas exist 

for the new parameters4
,28-30 in terms of the Ifj J. For n>4, 

however, this is no longer true. To overcome this problem 
for the swallowtail case n = 4, we have developed iterative 
and algebraic techniques for the calculation of the param
eters.9 In this section we outline how these two techniques 
can be generalized from the case n = 4 to arbitrary values of 
n, thereby allowing the application of uniform asymptotic 
techniques to oscillating integrals with an arbitrary number 
of coalescing saddle points. 

A. Iterative method 

The iterative method9 is applicable when the I an - i J 
are not close to the caustic associated with the transforma
tion (4.3). On the caustic surface, two or more of the tj (and 
hence also thefj and uj ) have coalesced. 
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First we simplify Eq. (4.4). Multiplying Eq. (4.5) by uj 

shows that 
n-I 

n+l_ (+1)-1 ~ ( .) n-i· 12 uj - - U L n-lan_iuj , J= , ,oo.,n, 
i=1 

(4.6) 

and substituting Eq. (4.6) into Eq. (4.4) gives 

n-1i+l n-i . 
fj = L --an_iuj +A, J = 1,2,oo.,n. (4.7) 

i= 1 n + 1 
The tj and uj are either purely real or occur as complex 

conjugate pairs and it is important to consider how they are 
to be ordered. We order the tj and uj s~ that all complex 
conjugate pairs are next to each other and are before any 
purely real tj and uj . Next we construct the quantities 

and 

n-
1 i+l n-i n-i L -+ 1 an _ i (U 2k _ 1 - U2k ) =f2k-1 - f2k , 

i= 1 n 
k = 1,2,oo.,int(nI2) 

n-l i+ 1 n-i n-i n-i n-i L --an _ i (u 2k_l +U2k -U2k+l-U2k+2) 
i= 1 n + 1 

= hk - 1 + f2k - hk + 1 - f2k + 2 , 

k = 1,2,oo.,int(nI2) - 1 , 

(4.8) 

(4.9) 

where as before int = integer part of. When n is an odd in
teger, we also need the extra equation 

(4.10) 

Note there is always one real root of Eq. (4.5) when n is odd 
and in Eq. (4.10) we label this root to be Un' 

The left- and right-hand sides of Eqs. (4.8)-(4.10) are 
both either real or purely imaginary and so can always be 
written in a purely real form. For given values of I uj J and 
I/; J, Eqs, (4.8)-(4.10) represent n - 1 linear equations in the 
n - 1 variables an _ i with i = 1,2,oo.,n - 1. The iterative 
procedure to solve them is as follows 

(a) Make an initial guess for the vector aiD) 

= (a\O),aio',oo.,a~~ 1)' 
(b) Solve the polynomial Eq. (4.5) for its roots uj(aO) 

j= 1,2,oo.,n. 
(c) Order the uj in the same way as the saddle points 

tj of the function f(a;t), i.e., we have U = ur,,-.. t = tj for 
j= 1,2,oo.,n. 

(d) Solve the linear set of Eqs. (4.8)-(4.10) to obtain a 
new value for the vector of coefficients ail). 

(e) Return to (b) and iterate until convergence is 
achieved. 

(f) The remaining coefficient A can then be obtained 
from Eq. (4.7). 

Notice this iterative technique fails if two or more sad
dle points have coalesced, i.e., if they are on the caustic. In 
practice it is expected that the method will also become ill 
conditioned as the I an _ i J approach the caustic. 
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B. Algebraic method 

Unlike the iterative scheme, the algebraic method4,9,30 
is expected to be most useful for! an _; ] actually on the caus
tic. The basic idea is to obtain a set of simultaneous polyno
mial equations for the ! an _ ; ] . 

First, we define the elementary symmetric polynomi
als31 

n 

Td r;] = L r;, 
;=1 

n n 

T2Ir;] = L L r;rj , 
i>jj= I 

n n n 

T 3 lri ] = L L L rirjrk , 
i>jj>k k= I 

together with 
n 

Sm 1 r i ] = L r(' m = 1,2, .... 
;= 1 

(4.11) 

(4.12) 

Second, we introduce the following symmetric functions of 
the 1 h] 

11=(~)-ITdh] , 

12 = (~) - IT 21 h -11] , 

13 = (;) -IT3Ih -ld ' 
(4.13) 

where the (j) are binomial coefficients. Notice that the.7} are 
all real even if some of the h are complex. Since everything 
on the right-hand sides ofEq. (4.13) is assumed to be known, 
the 1.7}] are also known quantities. We now write each 
Tj 1 h -1] in terms of {Tj 1 h ]} and then in terms of 
(Sj 1 h ]}. We now use Eq. (4.7) to express thes.t.! h] in terms 
of {sm 1 U i ] }. At this point we have obtained! jj] in terms of 
(sm 1 Ui J ). The final step is to use Newton's formulas32 for 
the sums of powers of the roots of the polynomial Eq. (4.5) to 
write {sm 1 Ui J } and hence, 1.7} J in terms of 1 an _ i J. It should 
be noted that the algebraic steps just described involve a 
huge amount of manipulation for n>4 and it is only feasible 
to carry them out with the help of a symbolic algebraic com
puter program such as REDUCE or MACSYMA. 

The result of the operations outlined above is a set of 
n - 1 polynomial equations in the variables an _ j> 

i = 1,2, ... ,n - 1 and one equation in the 1 an _ i J and A. The 
solution of these equations for given input data 1 jj J then 
yields the desired values of 1 an _; 1 and A. 

The main advantage of the algebraic method is that it 
remains valid on the caustic. Indeed in this circumstance the 
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set of polynomial equations for the 1 an _ i ] andA are expect
ed to be easier to solve numerically than when the 1 an _ i ] are 
off the caustic. In addition, iff(a;t) has a special symmetry 
which results in some ofthe an _ i being identically zero, the 
set of polynomial equations will simplify and also be easier to 
solve. Thus in practice the iterative and algebraic methods 
for determining 1 an _ i 1 and A are expected to be comple
mentary. 

v. SUMMARY AND CONCLUSIONS 

In this paper we have derived the differential equations 
satisfied.by the cuspoid canonical integral In (a) and its par
tial derivatives for any value of n. Our method consists in 
finding a set of coupled linear ordinary differential equations 
for each step in the sequence In (0,0, ... ,0,0) 
--+In (O,O, ... ,O,an -I )--+In (O,O, ... ,an - 2 ,an -I) 
--+ ... --+In(0,a2, .. ·,an _ 2 ,an -I )--+In(a l ,a2, .. ·,an _ 2,an -I)' The 
results obtained in Sec. II provide everything that is required 
for the method (differential equations, transformations, and 
initial conditions). 

In practical implementations of this technique for the 
numerical evaluation of In (a) and its partial derivatives, it is 
also necessary to consider the stability of the differential 
equations when they are integrated. Previous calculations 
for n = 3 (cUSp)~,18 and n = 4 (swallowtail)8 indicate that 
the method will be numerically stable when all the saddle 
points of Pn(u) [see Eq. (2.2)] are real, because this condition 
implies that the independent solutions of the differential 
equations are then all of oscillatory type. It is important to 
note that the region of (a l ,a2, ... ,an _ I) space which corre
sponds to all real saddle points for Pn(u) is also the region 
where In (a) has the richest structure. Outside of this region 
the independent solutions of the differential equations will 
contain exponentially increasing solutions which will even
tually limit the accuracy to which In (a) can be computed. 

We have also considered the problem of determining 
the parameters a for use in the uniform asymptotic cuspoid 
approximation. We have shown how the iterative and alge
braic methods developed earlier9 for the special case of n = 4 
can be generalized to arbitrary values of n. 

Finally, we wish to emphasize that the treatment pre
sented in this paper has unified and generalized previous 
researches on the cuspoid canonical integrals, in which each 
value of n had been treated as a special case. 
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The discriminant..:i (k 2) of Hill's equation is shown to be related to the transmission coefficient 
T(k )ei9lkl of one period of the potential by ..:i (k 2) = [2/T(k )]COs[k1T + 0 (k I]. This result is used to 
find the boundaries of the stability bands. 

PACS numbers: 02.30.Hq 

I. INTRODUCTION 

Hill's equation is the following second-order ordinary 
differential equation, in which the potential Q (x) = Q (x + 1T) 
is periodic with period 1T: 

y"(x,k 2) + [k2_Q(X)]y(x,k2) =0. (1) 

The Ploquet exponents, which govern the behavior of solu
tions of this equation, are determined by the discriminant 
..:i (k 2) (see Ref. 1). We shall prove the following theorem, 
which relates..:i (k 2) to the transmission coefficient T (k )ei9lk 

I 

associated with one period of the potential. 
Theorem 1: For k 2 > 0, 

..:i(kZ)= [2/T(k)]cos [k1T+O(k)]. (2) 

The significance of this theorem is that information about 
either the discriminant or the transmission coefficient can 
shed light on the other. This will be illustrated by using it to 
find the boundaries of the stability bands. 

Proof of the theorem: The discriminant is defined by 
..:i (k 2) = Yl(1T,k 2) + y~ (1T,k 2)whereYl andJ2aretwosolutions 
of (1) satisfying the initial conditions 

YI(O,k 2) = 1, Y; (O,k 2) = 0; J2(O,k 2) = 0, y~ (O,k 2) = 1. 
(3) 

To define the transmission coefficient we mOdify (1) by 
setting Q (x) = 0 forx < 0 andx > 1T, keeping Q (x) unchanged 
for O";x"; 1T. Then we introduce a complex solutiony dx,k ) of 
the modified equation corresponding to a wave of unit am
plitude incident from the left. It is partially reflected with the 
complex reflection coefficient R (k )eiq>(k I and partially trans
mitted with the complex transmission coefficient T(k )ei9Ikl. 

Thus YL (x,k ) must have the form 

_ {eikx + R (k)eitplkle-ikx, x..; 0, 
YL(x,k)- T(k)ei9Ikleikx, X~1T. (4) 

In addition Y dX,k ) must satisfy (1) in the interval 0 < x < 1T 
and be continuous with a continuous derivative. These con
ditions uniquely determine the solution. They also uniqUely 
determine R, qJ, T, and 0 provided we require that both R 
and T be real and non-negative, and that qJ and 0 lie in the 
interval - 1T < qJ,O..; 1T. 

Next we introduce another complex solutionYR (x,k) of 
the modified equation, corresponding to a wave of unit am
plitude incident from the right. By using the constancy of the 
Wronskian ofYL andYR' it can be shown that both solutions 
have the same transmission coefficient. Furthermore, from 
the constancy of the Wronskian ofYL andYR' the complex 
conjugate of YR' it follows that the reflection coefficient inYR 
is - Rei(28 - tp I. Thus YR must have the form 

x..;O, (5) 
X~1T. 

The continuity ofYR andy~, together with (1) in the interval 
o < x < 1T, uniquely determine YR' 

Since YL andy R are linearly independent solutions of (1) 
in the interval 0 < x < 1T, we can express Y I and Yz as linear 
combinations of them in the closure of that interval. By using 
the initial conditions (3), we find the linear combinations to 
be 

YI(x,k 2) = ~YL(x,k) + _1_. (1 - Reitp lYR (x,k ), 
2 2 Te'8 

O";X";1T, (6) 

2 I 1 . 
Y2(x,k )=-YL(x,k)---. (1 + Re'tplYR(x,k), 

2ik 2ikTe'8 

OQ";~ m 
Finally we use (6) and (7) in the definition of..:i (k 2), and use 
thefactthat T2 + R 2 = 1, which follows from the constancy 
of the Wronskian ofYL andYL' The result is just (2), which 
proves the theorem. 

The left side of(2) is even in k, so the right side must also 
be even. This implies that T(k)=T(-k) and O(k) 
= - 0 ( - k ). This same conclusion follows from the obser

vation that YL (x, - k) = YL (x,k) since both of these func
tions are solutions of the same equation with the same inci
dent wave. 

II. APPLICATION TO STABILITY BOUNDARIES 

As an application of Theorem 1, we shall determine k n+ 

and k n- , the boundaries of the nth stability band. They are 
roots of the equations ..:i (k 2) = 2 and..:i (k 2) = - 2, respec
tively. Upon using (2) for..:i (k 2) in these two equations, we 
obtain cos [k1T + 0 (k)] = ± T(k). Now taking the inverse 
cosine yields 

k1T + 0 (k ) = cos -I [ ± T (k )] = (n + ~)1T - ( - 1)" 

X sin- 1 
[ ± T(k)] 

=(n+!)1T+(-I)n sin- IT(k). (8) 

In order to rewrite (8) in a more convenient form, we 
introduce the function F defined by 

F -I(k )==k1T + 0 (k ). (9) 

Then the left side of(8) can be inverted, i.e., solved for k, with 
the result 
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k: = F [In + ~)1T+ ( - 1)" sin-1T(k n±)]. (10) 

We have written k n± to emphasize the dependence of the 
solution on n and on the choice of sign. Of course sin -I T 
must be assigned its principal value. 

We can proceed further if 11k n±) is small, i.e., if 
IT(k ,,± )1<1. Thensin- I T= T + O(T 3

). UponexpandingF 
for T small, we get from (10) 

k,,± =F[(n + ~)1T] +( -1)"F'[(n + !)1T] 

(11 ) 

This result yields k ,,± in terms of two functions F and T, 
which are determined by the phase and amplitude of the 
transmission coefficient. Then the width IB" I of the nth sta
bility band is given by 

IB" I = Ik ,,+ - k ,,-I 
=2F'[(n+!)1T]T[F[(n+!)1T]j +O(T2). (12) 
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The results (11) and (12) can be made more explicit by 
asymptotic methods, such as the WKB method, to calculate 
Tand (). Certain asymptotic results which can be obtained in 
this way are given by Weinstein and Keller.2 
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We present various examples for the connection between Lax-pairs and recursion operators. 
From this connection a new method for constructing recursion operators is derived. As an 
application we find recursion operators to some integrable equations newly found by Wadati et of. 
[J. Phys.Soc. Jpn. Lett. 46, 1965 (1979); J. Phys. Soc. Jpn. 47,1698 (1979)]. 

PACS numbers: 02.30.Jr 

I. STATEMENT OF THE PROBLEM 

Let u = (u\. .. ,un f denote a vector valued function de
pending upon the space variable x and the time variable t. By 
u, =(u:, ... ,U~f,Uk =(uL ... ,u~)T,whereui =Dku l 

= (a'< laxk )(u l
), we denote the partial derivatives of u with 

respect to t and x. Finally the symbolf[u] is used for func
tions depending upon u and higher partial derivatives Uk up 
to arbitrary but finite order. 

The object of this paper is the evolution equation 

u, =K[u], K=(KI, ... ,Kn)T, (1) 

and its linearized version 

v, =A (K[u])v, v = (vl, ... ,Vn)T, (2) 

where the operator A (K [u]) is given by the matrix 

Aj/(K [u]) = a~j~u] Dk 
Uk 

(Dk = ak I axk). An evolution equation 

u,=M[u] 

is called a symmetry for (1) if 

A (K[u])M[u] -A (M[u])K[u] = 0, (3) 

for all solutions u of Eq. (1), holds. (See Ref. 1 for a motiva
tion of this notation.) We note that the equation 

gives a trivial symmetry for Eq. (1). 
Next, we shall consider the problem of generating sym

metries starting from the trivial one. This problem has been 
studied first within the algebra of polynomial functionsf[ u ]. I 
The following theorem has been obtained by Olver. I 

Theorem 1: Let 

R [u] = aP [u]D' + aP - I [u]U-1 + ... + aO[u] 

be an operator with polynomial coefficients. 
Assume that for all solutions of (1) the identity 

R [u], = [A (K [u]),R [u]] (4) 

holds. Then, for all n > 0 the evolution equations 

u, =(R[u]tu1 
will form symmetries of Eq. (1). 

Operators satisfying condition (4) are called recursion 
operators. 

In order to obtain interesting applications of the above 
theorem it is necessary to allow recursion operators that in-

volve the inverse derivative D - I. This requires the construc
tion of a suitable function space on which D -I is well de
fined. For a nice exposition of these constructions the reader 
may consult Ref. 2, where the concept of extended symme
tries is introduced. 

Now letM [u] bea function depending upon Uo, u1, ... ,up 

as well as uponu_ l , U_2' .•• 'U _ q, whereu'_ h meansD - lru2• 

The operator of linearization is given by 

Aj/(M [u]) = a~j~U]Dk, 
Uk 

where k now ranges from - q to p. Extended symmetries for 
Eq. (1) are then given by evolution equations 

u/ =M[u]; 

where condition (3) is satisfied for all solutions ofEq. (1). 
Extended symmetries thus are extensions ofLie-Back

lund symmetries. Now, the following theorem can be found 
in Ref. 2. 

Theorem 2: Let 

R [u] = ak [U]Dk + ak - 1 [U]Dk - 1 + ... + ao[u] 

+ a_l[u]D -I + ... + a -m[u]D-m 

be an operator defined on a suitable function space. Assume 
that for all solutions ofEq. (1) identity (4) holds. Then, for all 
n > 0 the evolution equations 

u, = (R [u]t U 1 

will form symmetries ofEq. (1). 
(We emphasize that the assumption of polynomial de

pendence of the functions f, M, air upon uo, u I, ... and u -I' 
u_ 2,.·.is dropped in Ref. 2.) 

The theory of recursion operators (also called strong 
symmetries) has been developed further by various auth
ors.3-6 In particular, the hereditary property of strong sym
metries has been studied. The hereditary property is a suffi
cient condition of the fact that all flows generated by a strong 
symmetry commute. 

Equation (4) possesses the shape of a Lax equation. Now 
let us assume that there exists a further Lax-pair for Eq. (1). 
Let us denote this by the following spectral problem: 

L (u,q?.A ) = 0, 

P(u,q?.A ) = q?" 

(5a) 

(5b) 
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where Land P are linear in q:; = (q:;', ... ,q:;n)T and A is con
stant. 

The interrelations between problems (4) and (5) have 
been revealed in Ref. 6 where, furthermore, a constructive 
approach for obtaining strong symmetries has been given. 
This approach proceeds by using solely the isospectral eigen
value problem (5a). The next step in this algorithm is the 
calculation of the gradient of the eigenvalue A with respect to 
the solution u. If one can then find the eigenvalue equation 
that the gradient satisfies, one obtains the recursion operator 
as the adjoint of the gradient. 

In this paper we shall attack the problem by a more 
direct approach. We shall demonstrate that for various 
equations there exists a transformation T (q:;,A ) mapping the 
eigenfunctions of(5) into eigenfunctions t/J = (t/JI, ... ,t/Jn f sa
tisfying the equations 

R [u]t/J = I(A )t/J, A (K [u])t/J = t/Jt· 

This motivates the following method for obtaining recursion 
operators. 

Let us be given an evolution equation (1) together with 
the Lax-pair (5). From Eq. (1) we immediately obtain its lin
earization. Suppose we can find a transformation T (q:;,A ) 
mapping eigenfunctions q:; of Eqs. (5) into solutions of the 
linearized equation 

A (K [u])t/J = t/Jt. 

Then we have to bring the eigenvalue equation 

L (u,T-'t/J,A) = 0 

into the form 

R [u]t/J =/(A )t/J. 

(6) 

(7) 

Since A was a constant eigenvalue, it follows from Eqs. (6) 
and (7) that Eq. (4) holds for all solutions u ofEq. (1). Hence, 
R [u] is a recursion operator for Eq. (1). 

II. INTRODUCTORY EXAMPLES 

In this section we shall consider first Burgers' equation 
for demonstrating the connection between Lax-pairs and re
cursion operators. Next, we shall consider KdV and Schro
dinger's equation, which both arise from the AKNS inverse 
scattering scheme. 

Burgers' equation is given by 

Ut =K[U]=U2+UUI' (8) 

A Lax-pair for Eq. (8) is formed by 

Dq:; + !uq:; = Aq:;, (9a) 

q:;t = D 2q:; + uDq:;. (9b) 

The linearization of Eq. (8) becomes 

t/Jt = A (K [u])t/J = D 2t/J + uDt/J + u,t/J. (10) 

Now it is easy to see that Eq. (9b) is carried over to Eq. (10) by 
the transformation 

t/J = Dq:;. 

If we insert q:; = D - It/J, Eq. (9a) takes the form 

t/J + ~uD -It/J = A.D - It/J. 

By differentiation, the equation 
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Dt/J + ~ut/J + ~u,D -It/J = A.t/J 

follows showing that 

R [u] = D +!u + (l/2)u ID- ' 
is a recursion operator for Eq. (8). 

Next, we consider the KdV equation 

Ut =K[u]=u3+uu l· 

The Lax-pair is given by 

D 2q:; + tuq:; = A.q:;, 

q:;t = 4D 3q:; + uDq:; + ~Ulq:;. 
Equation (11) is linearized by 

t/Jt = A (K [u])t/J = D 3t/J + uDt/J + ult/J. 

The transformation 

t/J = D (q:; 2) 

(11 ) 

(I2a) 

(I2b) 

( 13) 

maps solutions of Eqs. (12a) and (12b) into solutions ofEq. 
(13). Inserting q:; = (D -1t/J)1/2 into Eq. (12a) yields 

D 2t/J + jut/J + ju,D -It/J = 4A.t/J. 

Thus, we obtain the well-known recursion operator 

R [u 1 = D 2 + ~u + ju ,D - I. 

The final example in this section is the Schrodinger 
equation 

iqt = - q2 - 2JqJ2q, 

which must be treated as a two-component system 

ut=K[u], (14) 

where u = (U
I
,U

2
)T and 

( 
iui - 2i(U I)2U2 ) 

K [ul = 2 • 
- iu~ + 2iu l(U2) 

Obviously, Eq. (14) yields the scalar Schrodinger equation 
upon setting u2 = iii. 

The AKNS spectral problem 

Dq:; 1 _ ulq:; 2 = A.q:; 1, _ Dq:; 2 + u2q:; 1= Aq:; 2, (15) 

and 

q:;: = (2iA. 2 _ iU lu2)q:; I + (iu: + 2iAu ' )q:; 2, 
(16) 

q:;; = ( _ iui + 2iAu2 )q:; I _ (2iA 2 _ iU lu2)q:; 2 

give a Lax-pair for Eq. (14) if we eliminate the eigenvalue A. 
from Eq. (16). The transformation 

t/JI = (q:; 1)2. t/J2 = (q:; 2f 

now maps solutionsq:; ofEqs. (15) and (16) into solutions t/Jof 
the linearization ofEq. (14) given by 

t/Jt = A (K [u])t/J. 

where A (K [u]) is the matrix 

(
iD 2 - 4iu lu2 

+ 2i(U2)2 

(17) 

The role of the squared eigenfunctions for the determination 
of all equations integrable by the AKNS scheme has been 
stressed already in Ref. 7. There it is shown that the squared 
eigenfunctions satisfy the eigenvalue problem 
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R [u]'" = U"', 
where 

(
D - 2u lD -IUZ 

R [u] = 2u2D -IU2 

Thus R [u] forms a recursion operator. 

III. JAULENT-MIODEK EQUATIONS 

In Ref. 8 Jaulent and Miodek introduced a new class of 
equations being integrable by the inverse scattering method. 
The underlying isospectral eigenvalue problem differs from 
the AKNS scheme by the fact that the parameter A 2 appears 
in the eigenvalue equation. For convenience we restrict our
selves here to the following equation u, = K [u]: 

ul 
- lU2 UlU2 

lUi u2 u2, = - U
l
l - J2U2U21. (18) '-43- 1-21' 

Equations (18) appear as integrability conditions of the fol
lowing spectral problem: 

D2ep + (A 2 -Au2 - ul)ep = 0, (19a) 

(19b) 

Obviously, the scalar problem (19) can be cast into the form 
(5) by introducing the eigenvector (ep,Dep ). It is not necessary 
for us to use this form here. 

The equations of linearization now become 

"', = A (K [u])"', (20) 

where 

!D 3 _ ulD - (1/2)U I). 

~u2D - (3/2)uf 

The transformation 

",I = _ (u 2 _ A )D (ep )2 + !uf (ep )2, ~ = D (ep )2 

maps solutions of the spectral problem (19) into solutions of 
the equation of linearization (20). By setting 

ep = (D -1~)1/2, 

the eigenvalue equation (19a) becomes, upon integration, 

(-lD 2 + u l + !u:D -I)~ + (u2 + !ufD -I)~ =,.1, 2~. 

This is equivalent to the system of equations 

(
01 -lD2 + ul + !u:D -1)("'1) =,.1, (",I), 

u2 + !uf D -I ~ ~ 

since the relation 

",I = _ (u 2 -A + !ufD -I)~ 

holds. Therefore, we obtain the operator 

(
0 -lD2 + ul + !u:D -I) 

R [u] = 1 
u2 + ~ufD-I 

as recursion operator for Eq. (18). This result has been de
rived by using different methods in Refs. 8 and 9. 

IV. WADATI-KONNo-ICHIKAWA SPECTRAL 
PROBLEMS 

We now tum to generalized versions of the AKNS 
scheme which are known in the literature as Wadati-
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Konno-Ichikawa spectral problems. The idea is to consider 
the following eigenvalue problem: 

Dep 1+ F(A)ep 1= G (A )ulep 2, 

Dep 2 _ F(A )ep 2 = G (A )u2ep I. 

(See Ref. 10.) In a more special version this idea already ap
pears in Ref. 11 where Kaup and Newell solve the inverse 
scattering problem for a derivative Schrodinger equation. 

Let us consider first Dym's equation 

u, +K[u]=2D3[(I+u)-1/2). (21) 

The reader may consult Refs. 12 and 13 for an explanation as 
to how this equation arises from the Wadati-Konno
Ichikawa scheme. In Ref. 12 the following scalar spectral 
problem is stated: 

D 2ep + (1 + u)A. 2ep = 0, (22a) 

ep, = 4(1 + u)-1/2A 2Dep - 2D [(1 + u)-1/2)A 2ep. (22b) 

By simple manipulations Eqs. (22) can be written as 

-(I+u)-ID 2ep=A 2ep, (23a) 

ept = -4(1 + U)-3/2D 3ep_2D [(1 +U)-3/2)D2ep, (23b) 

so that we have a classical Lax-pair for Eq. (21). 
The linearized equation "', = A (K [u])'" can be conve

niently written in the form 

tP, = -D 3[(1 +U)-3/2",). (24) 

Solutions of the spectral problem (23) are mapped into solu
tions of the linearized equation (24) by the transformation 

"'=D3(epf 

The inverse transformation ep = (D -3tP)(1/2) yields 

[2(1 + u)D -2 + ulD -3)", = _ (1/U 2)"" 

by inserting into Eq. (23a). Therefore, we obtain the recur
sion operator 

R [u] = 2(1 + u)D -2 + up -3, 

which can also be found in Ref. 2. 
Next, we shall use the algorithm developed in Sec. I for 

finding a recursion operator of the following equation 
Ut =K[u]: 

u: = iD2(U IV- I), 

(25) 
u; = _iD 2(U2V- I), V = (1 _ UIU2)1/2. 

Ifwe set u2 = - iiI, Eq. (25) becomes the Schrodinger-type 
equation 

u: =iD2[ul(1 + lu I 12)-1/2J. 

Equation (25) is the integrability condition for the fol
lowing Wadati-Konno-Ichikawa spectral problem (see Ref. 
13): 

and 

Dep I + iAep 1= Aulep 2, Dep 2 - iAep 2 = Au2ep I, (26a) 

ep: = - 2iv- IA 2ep 1+ [2u lv- IA 2 + iD (Ulv-l)A. Jep 2, 
(26b) 

ep; = [2u 2v- IA 2 _ iD (U 2v- l)A. )ep I + 2iv-IA 2ep 2. 

Let us briefly demonstrate the steps for obtaining a re
cursion operator. First of all, we write Eqs. (26) as 
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v-2(Dtp 1+ iulDtp 2) = _ iAtp I, 

v-2(Dtp 2 _ iu2Dtp 2) = iAtp 2, 

and 
tp: = 2iv- ID {v- 2(Dtp 1+ iulDtp 2)J 

+ D(UIV- I)V-2(Dtp 2 _ iu2Dtp I), 

tp; = - 2iv- ID {v- 2(Dtp2 - iu2Dtp I)J 

+ D (U2V- I )V- 2(Dtp 1 + iulDtp 2), 

yielding a Lax-pair for Eq. (25). 

(27a) 

(27b) 

The linearized equation t/J, = A (K [u))t/J can be written 
as 

t/J: =iD 2{(V- 1 +!U IU2V- 3)t/JIJ +iD2[!(UI)2V-3~J, 

tP; = -iD 2{ !(U2)2V-3t/JI J - iD 2{ (v- I + !UIU2V-3)~ J. 
The transformation 

t/JI = D (tp 1)2, ~ = D (tp 2)2 

(28) 

maps solutions of the spectral problem (27) into solutions of 
the linearized equation (28). Now, the recursion operator is 
found by inserting tpl = (D -1t/JI)I/2, tp 2 = (D -1~)1/2 into 
the eigenequation (27a). This yields 

R [u)t/J = (1/A )t/J, 

where R [u) is given by the matrix 

( 
_ 2iD -I + ulD -1(iu2v-2/(1 + UIU2V- 2)) 

u2D -1(iu2v-2/(1 + UIU2V- 2 )) 

_ ulD -1(iu l v- 2/(1 + UIU2V- 2)) ) 
_ 2iD -I _ u2D -1(iu lv-2/(1 + UIU2V- 2 )) • 

Thus R [u) constitutes a recursion operator for Eq. (25). 
Our final example is the derivative Schrooinger equa

tion 

iu, = -D 2u+iD(luI 2u) 

(see Ref. 11), which can be written as a system u, = K [u]: 

u: =iD 2ul +D((U I)2U2), 
(29) 

u; = - iD 2U2 + D (U I (U2)2), 

where u2 = iii. In Ref. 11 the following spectral problem of 
the Wadati-Konno-Ichikawa type is stated for Eq. (29): 

Dtp 1+ iA 2tp 1= U1Atp 2, Dtp 2 _ iA 2tp 2 = U2Atp 
(30a) 

and 

(30b) 

I 
where 

A = U 4 +A 2U 1U2, 

B = 2iA 3U l - AU: + iA (U 1)2U2, 

C = 2iA 3U2 + Aui + iAU I(u2f 
Performing the algorithm for obtaining a recursion op

erator for Eq. (29) we obtain the following results. The solu
tions tp of the spectral problem (30) are transformed into 
solutions t/J to the linearized equation t/J, = A (K [u))t/J under 
the transformation 

t/JI = D(tp 1)2, ~ = - D(tp 2f. 

Furthermore, from Eq. (30a) it follows that t/J satisfies 
the equation 

R [u)t/J = (1/A 2)t/J, 

where 

_ 2u lD -1(uID -I) ) 
_ 2iD -I + 2u2D -1(uID -I) . 

Therefore, R [u) is a recursion operator for Eq. (29). 

V. CONCLUDING REMARKS 

The equations u, = K [u], which we have considered 
thus far, are completely integrable systems. A common fea
ture of those equations is the integrability by the inverse scat
tering method as well as the existence of infinitely many 
commuting symmetries. The latter property is related to the 
Hamiltonian structure of the equations. Commuting sym
metries are connected to involutive conserved densities by 
the Hamiltonian structure. 

Given an isospectral eigenvalue problem 

L (u,tp,A. ) = 0, 

there are in general different hierarchies of time evolution 
equations for the eigenfunctions 

P(u,tp,A. ) = tp, 

leading to hierarchies of integrable equations. Within one 
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I 
hierarchy all equations represent symmetries for each other, 
i.e., they generate commuting flows. 

The equations of Secs. II and III are basic equations of 
their respective hierarchies, i.e., they are of lowest order in 
the derivatives. Ifwedenote such a hierarchy by u, = Kn[u), 
where Kn [u) depends only upon u and derivatives of u, then 
the hierarchy is obtained recursively as K n [u) = R [u ] nu I' 
This fact is remarkable sinceR [u) involves the inverse opera
tor D -I. 

The equations with underlying eigenvalue problem of 
the Wadati-Konno-Ichikawa type do not share this proper
ty. They possess infinitely many symmetries u, = K n [u] , 
whereKn [u] depends only upon u and derivatives ofu (see 
Ref. 13). However, these symmetries cannot be constructed 
by using recursion operators. The recursion operators that 
we have obtained are leading to extended symmetries for the 
equations in the respective hierarchy. For instance, consider 
Dym'sequationu, = 2D 3(1 + U)-1/2. The Hamiltonian for
mulation is u, = D 3(5!~u)H with the Hamiltonian 
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H = 411 + U)I/2. In Ref. 13 infinitely many conserved densi
tiesp[u] depending upon u and its derivatives are construct
ed. By Noether's theorem the densities yield symmetries U t 

= D 3(M6u)P. The recursion operator R [u] = 2(1 + u)D -2 

+ u ID - 3 now generates extended symmetries for the Dym 
equation, for example, R [u]u 1 = 2(1 + U)U_l + U 1U- 2• 
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We prove that it is possible to define the self-adjoint operator which gives sense to the merely 
formal expression -.J -l:yELA8(. - y) (whereL isacertainlatticeofR3) as thelimitwhenE-G 
in the resolvent sense of the net HE = -.J + l:yEL A (E)E- 2 V(. - Y/E) A (E) being a real-valued7 
COO [0,1] function with A (0) = 1 and VEL 00 is such that supp Vis contained in the Wigner-Seitz 
cell. By using the direct integral decomposition, we reduce the problem to the convergence of the 
reduced Hamiltonian HE(O) = -.Jo + A (E)E- 2 V('/E). In order to find the limit when E-G+ of 
[ HE (0) - E ] -I, we also study the properties of its integral kernel. 

PACS numbers: 02.30.Tb, 03.65.Nk 

I. INTRODUCTION 

In this paper we give an alternative proof of a theorem, 
due to Grossman, H0egh-Khron, and Mebkout,1 about 
Schrodinger Hamiltonians with periodic point interactions 
in the three-dimensional case. 

In Ref. 1 the authors define the Hamiltonian 
.. -.J - l:yELA8 (. - y)" (whereL is a certain latticeofR3) as 
the strong limit (in the resolvent sense) of the net ofHamilto

~ans H; = p2 -l:y<iL ItP;> (tP;1 when w~oo and II I~oo, 
L being a finite subset of Land tP; = (21T)-3/2[A (w)P/2 
X w (p )eiYP

( X w is the characteristic function of the ball of radi
us w in the momentum space). 

They show that if A (w) is chosen suitably infinitesimal, 
such a limit exists. Subsequently they exploit the direct inte
gral decomposition, that is the typical decomposition for 
Hamiltonians with periodic potentials in order to get the 
spectral analysis of the limit operator. 

In our way of proceeding the direct integral decomposi
tion plays a more important role; we take as approximating 
net HE = -.J + l:YELA (E)VE(' - Y)(EE(O,I]) where 
VE = E- 2 V(X/E), VEJLOO being such that supp Vec (Cis the 
Wigner-Seitz cell), and A (E)EC 00 [0, 1] is a real-valued func
tion with A (0) = 1. 

We exploit the direct integral decomposition in order to 
reduce the convergence of the net HE to the convergence of 
the reduced Hamiltonians HE (0) = -.J 0 + A (E) VE as oper
ators in the space JL2(C;d 3x). 

The proof of the convergence of the resolvents 
[HE(O)- E] -I is not very different from proving the con
vergence of the resolvents [ -.J + A (E) VE - E ] -I in the 
space L 2(R3;d 2X); this statement is based on the fact that the 
integral kernel of the resolvent of the free Hamiltonian with 
O-boundary conditions ( -.Jo) may be written as the sum of 
G.[E(x - y) (the free Green function) and a term Go(x,y;E), 

which is a C 00 function. Once we have computed the limit of 
the net [HE(O) - E ] -I and proved that this limit is again a 
resolvent of a self-adjoint operator Ha (0), we use the direct 
integral decomposition in order to define the self-adjoint op
erator Ha which has Ha(O) as its fibers. Here Ha is an un
bounded self-adjoint operator in the space 

r?( [0,21T)3 ,d 30/(21Tf;JL 2(C;d 3X )) 

=H= JL2(C,d 3x)_, I'" d3() 

(O.21T)' (21T)3 

and it defines, by the unitary equivalence between Hand 
JL2(R3, d 3X ), a self-adjoint operator Ha in the space 
r?(R3, d 3X ), which is just the limit of the net HE' 

The spectral analysis of the operator Ha follows direct
ly from the expression of [Ha(O) - E] -I. 

II.THE INTEGRAL KERNEL OF ( -..10 + A, V - £)-1 

We begin by recalling that in the three-dimensional case 
it is not possible to define a self-adjoint operator, which gives 
sense to the purely formal expression " -..1 + l:)'EL 
A8(· - y)", by the KLMN theorem. 

Therefore it is quite natural, in order to solve our prob
lem, to make use of the techniques of convergence for un
bounded operators. Let HE be the net as described in the 
introduction. By the direct integral decomposition we get 

UHEU- 1 = ('" HE(O) d3~, (2.1) 
)(O,21T)' (21T) 

where U is the unitary equivalence between JL 2(K3 ,d 3X ) and H 
defined in Ref. 2, XIII. 16 (Theorem XIII.97). Here HE(O) 
= -.Jo + A (E)VE(X), the reduced Hamiltonian, is self-ad-

joint on D ( - .J 0)' by the Kato-Rellich theorem. 
Therefore, by (2.1), it is sufficient to study the conver

gence of the netHE(O). We first note that the Green function 
of - ..10, i.e., the integral kernel of( -.Jo - E)-I, may be 
written in the following way: 

Go (x,y;.[ff) = G.[E(x,y) + Go (x,y;.[ff) 
(2.2) 

(V EECI [0, + 00) with Im/E > 0,x,yEC, and 9E[ 0,21Tf), 

where G.[E(x,y) = (41T)-leiJE1x- YI /lx - yl is the free Green 

function and Go (x,y.[ff) is a function such that VfEC o(C) 
the function 
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satisfies the equation ( -..d - E)t/J = ° on C [obviously the 0 
dependence is defined by ( -..de - E )-IjElJ ( -..de), 
'VfEL2(C;d 3X)]. 

By making use of the "image charges" method, 

Ge (x,y;$) may be expressed as a uniformly convergent se

ries in the region Im$ > 0: 

- rF ~ exp(i$lx - y + ~~ = I miai I) _ im.e 
Ge(x,y;\lE) = £.. 3 e, 

mEZ' 41Tlx - y + ~i= Imiail 
m#O 

(2.3) 

where { ai J ~ = I is a basis for L [obviously Ge (x,y;$) is inde
pendent of the basis chosen]. 

So we see that the operators V 1/2( -..de - E) - I V «12, 
(-..de - E)-IV I1

12, and V1I2( -..de - E)-I (here we use 
Simon's notation in Ref. 3) belong to the J2 class. In fact we 

have 'V EEe'\ [0,00 ) with Im$ > ° and 'VOE[0,21T)3: 

IW1/2( -..de -E)-IVr211;2 

= LLI V(x)IIGe(x,y;$WI V(y)ld 3x d 3y 

<2 Lf) V(x)IUGff(x,yW 

+ IGe(x,y;$W)1 V(Y)ld 3x d 3y, (2.4) 

and since Vis obviously a R6llnik function, (2.4) is bounded 
by 

2( II VII: + f f W(x)IIGe(x,y;$WW(Y)ld 3x d3y). 
(41T) JcJc 

Furthermore, one easily verifies 

IIGe($)lIoo < L exp(-lm$llm.l-diamCIl 
meL 41Tllml - dlam CI 
m#O 

so that 

IW1/2( -..de -E)-IV I1
/2 11;2 

<2{ II VII~/(41Tf + [F($)PII VIii), (2.5) 

for 1m E 1/2>0. 
In the same way we can evaluate the J2 norm of 

( -..de - E)-I V 1112 and V1I2( -..de - E)-I: 

II( -..de - E)-I V«12 11;2 

< 2( L LIG ff(x,yWI V(Y)ld 3X d 3y 

+ LLIGe(X,y;$WI V(y)ld 3x d 3y) 

<2UIIGff I
2

*1 Villi 

+ IWIII(vol C)[F($)P 

<21Wlld IIGffll~ + [F($)P(vol C)), (2.6) 

where we have exploited Young's inequality in order to esti
mate the L I norm of the convolution (see Ref. 4, IX.4). 

Furthermore, we get by the dominated convergence 
theorem 

IW1/2( -..de -E)-IVr211;2 

<2{ II Vil2GffVr211;2 

+ [F($)PIWlliJ - 0, (2.7) 
Im,fE ~oo 

'VOE[0,21T)\ Im$ > 0. 

The last property guarantees that one can find K> ° so 
that the Born series is uniformly convergent for Im$ > K; 
we can then write 

(-..de +AV-E)-I 

=(-..de -E)-I-A(-..de -E)- IV r 2 

X( Ito [ _AVI/2( -..do -E)-IVI1/21')VI/2( -..de -E)-I 

=(-..de -E)-I-A(-..de -E)-IV«/2 

X [1 +AVI/2( -..do _E)-IV«/2]-IVI/2( -..de -E)-I. 
(2.8) 

We see also, setting $ = w, that the map 
w_VI/2( -..de - ( 2)-1 V«/2 from the half-plane 1m w > ° 
into theJ2 [L2(C,d 3x)]-space is analytic in theJ2 norm. Then, 
by the analytic Fredholm theory (see Ref. 5, VI.5 and Ref. 2, 
XIII.4), we obtain that [1 + AV1/2( -..do - ( 2)-1 V«/2]-1 
is meromorphic in D == { WEe I 1m W > ° J, analytic in D '\Se' 
where Se is a discrete subset of D (Se is contained in the axis 
Re W = 0, -..de + AV being self-adjoint); the residues at 
the poles are finite rank operators and if wESe it follows that 
3t/J(9)EI?(C;d 3X) such that 

(2.9) 

By the map w-w2
, we get a 1-1 correspondence 

between the poles of [1 + AV1/2( -..de - ( 2)-1 Vr2] -I 
and the negative eigenvalues of -..do + AV and the corre
spondence preserves the multiplicity. In fact, if 
¢ (0) = ( -..de - ( 2)-1 Vr2t/J(0), we get 

( -..de + AV)¢ (9) = w2¢ (0). 

[Note that 'Vt/J(0)EL2(C,d3X),VI1/2t/J(0)EL2(C,d3X), Vbeing a 
bounded function with supp VC C; so ¢ (O)ElJ ( -..de) 
-D ( -..de + AV), -..de + AV being defined by Rellich's 
theorem.] 

III.THE LIMIT OF [HA9) - E]-1 

After having summarized the main properties of the 
Hamiltonian -..de + AV and of its resolvent, we pass to 
study the convergence ofthe net Be(9). 

From the second resolvent equation we have, for 
Imw>O and Rew#O, 

[Be(O) - w2] -I = ( -..de - ( 2)-1 - A (E)( -..de - (2)- IVe( -..de _ ( 2)-1 

+A2(E)( -..de -(2)-IVe( -..de -(2)-IVe( -..de _(2)-I_A 3(E)( -..de -(2)-IVe( -..de _(2)-1 

X V!~2 [1 + A (E)V!/2( -..de - ( 2
)-1 V!~2] -I V!/2( -..de - ( 2)-1 Ve( -..de _ ( 2)-1 (3.1) 
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(we have used the expression of [HE(O) - 6/] -I given by (2.8) in writing the third term and the fourth one). 
The second term in the rhs of (3.1) converges to zero in the J 1 norm uniformly in O. Indeed, 

II( - Lio - ( 2)-1 VEl - Lio - ( 2)-III,. <Ill - Lio - ( 2)-1 V!i?II.72 

<21IVElldIIGwll~ + [F(wW(voIC)j =2EllVlldIIGwll~ + [F(wW(voIC)] -+ 0, 
£ . ...0+ 

where we have exploited the estimate (2.6). (3.2) 
Also the third term converges to zero in the J 1 norm uniformly in 0: 

II [( - Lio - (2)-IV!~2] [V!/2( - Lio - (2)-IV!~2] [V!/2( - Lio - ( 2)-I] 11'1 

<II( -Lio _(2)-IV!~211.7211V!/2( -Li9 _(2)-IV!~211'2 

(3.3) 

where we have used the estimates (2.5) and (2.6) and the fact that the series on the rhs of(2.3) converges uniformly inx,YECand 
OE[0,21Tt 

Now we turn to study the fourth term. 
By (2.7) we see that VEE(0,1]3w(E) > 0 such that 

11V!12( - Lio - ( 2)-1 V!~211.72 <2[ IIV I /2GEW Vr211.7, + E2[F(wWllVlln < 1, 

for all w with 1m w > W(E). SO in the region 1m w > W(E), the fourth term is represented by the operator having as its integral 
kernel 

i [- A (E)]' r ... r G9 (x,X I;W)VE(Xt!G9 (X I,X2;W)··· VE(x,) Go (x"y;w)d 3XI .··d 3X, 
'=3 Jc Jc 

x V(X'_I)[GEW(X'_I'X,) + EG9(EX,_I,EX,;W)] V(x,) Go(Ex"y:w)d 3x l ···d
3x, 

= E[ -A (EW[G9(·,E.;W)Vr2] [VI/2[GElU + EGO (E·,E·;W)] V11/2] 

XC~o [-A(E)]'[V I /2[GEW +EG9(E.,E.;W)]VrZ]')[VI/2[GEW +EGo(E.,E.;W)]VrZ] [Vt!2 Go(E.,.;W)], (3.4) 

where we have represented the integral operators with their kernels. Let A ~ (w), B ~ (w), C ~ (w) be the J2 [lL 2( C,d 3X)] operators 
with integral kernels 

A :(x,y;w) = G9(X,Ey;w)VII12(y), 

B:(x,y;w) = V I12(X)[GEW (x,y) 

+ EGO (EX,ry;W)] V ,I12(y), 

C:(x,y;w) = VI/2(X) Go (EX,y;W). 

We begin by studying the limit of the net B :(w). For 
V WEe with 1m w > 0 we have 

liB ~(w)II'2 < IIVI/2GoVr211'2 + [F(w)] IIV III' (3.5) 

So B ~(w) is uniformly bounded and by dominated conver-

" gence we get that B:(w) -+ Vt!2GoVrz uniformly in O. 
E--.()+ 

Furthermore for each fixed E, the map w-+B :(w) from 
D ==[ wEq 1m w > 0] into the spaceJ2[lL2(C,d 3X )] is analytic 
with respect to the J2 norm; hence by the analytic Fredholm 
theory [ 1 + A (E)B :(w)] -I is meromorphic in D, analytic in 
D \SE(O), where SE(O) is a discrete subset of D and the resi
dues at the poles are finite rank operators. 

In this way we can define the operator on the right-hand 
side of(2.4) in all the half-plane 1m w > 0 exceptSE(O) and we 
write it as 
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'2 
We have already seen that B ~(w) -+ V t! 2GO V 11/2; we now 

E--.()+ 

turn to find the limit ofC:(w). 
We first note that C~(w) is (II 1I'2)-bounded uniformly in 

E and 0, since we have 

IIC~(w)II.72 

= LL lV(x)IIGo(Ex,y;wWd
3
xd 3y 

<211V1IdIIGwlI~ + [F(wW(voIC)]. 

We also note that V/ElL2(C,d 3x), [ Go(w)*I] 

(3.6) 

ED ( - Lio) C CO(C). Hence by dominated convergence we 
have 

IIVI/2[ Go(w) *1] (E·) - VI/2[ Go(w)*/](O)II~ 

< L IV (X) I 11([ Go (w) *1] (EX) 

- [ Go (w) *1] (0)/1: d 3X -+ 0, 
E--.()+ 

S. Fassari 
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VfEL2(C,d 3X), V6E[O,21T)\ and 1m liJ > 0. 
s 

Hence we have shown that C:(liJ) -+ V 1I2(Ge(liJ),.) and 
.---+0+ 

with the same arguments one proves that [A :(liJ)] * 
s w 

-+ V~/2(Ge (liJ),.), which implies that A :(liJ) -+ Ge (liJ) 
E-+O+ E--o+ 

(V~/2,.). 
We now prove that all these convergences are actually 

in the J2 norm. 
We first note that V 1I2(Ge(liJ),.) = C~(liJ) 

= s -limE---.o+ C:(liJ) belongs to theJ2 class, since C~(liJ) is a 
finite rank operator. 

Furthermore, by (3.6) we have 

IIC:(liJ)II]2 ..;;IWIIIIIGe(liJlIl~ = IIC~(liJ)II]2' (3.8) 

and in the same way 

IIA :liJlI]2";; IIA ~(liJ)II]2' (3.9) 

Hence, by dominated convergence, we get 

IIC:(liJ)II]2 

= LLIGe(EX,y;liJW 

XW(x)ld 3xd 3y -+ IlIGe(o,y;liJW 
E---+O+ c C 

X W(x)ld 3x d 3y = IIC~(liJ)II]2' (3.10) 

and similarly IIA :(liJ)ll; -+ IIA ~(liJ)ll] . 
2 ---+0 2 

Let (o,o)J2 be the inn;rp;oduct ofJ2[L2(C,d 2X)] regarded 
as a Hilbert space. For each fixed BEJ2 we have 

00 

< L I (tP1.B *A :(liJ)<P/) I 
1= I 

« I~I IIBtPdl~ ) 112 ( I~I IIA :(liJ)<Pdli y/2 

= liB IIJ211A :(liJlIIJ2 < liB IIJ211A ~ (liJlIIJ2' (3.11) 

for any orthonormal bases ItP/li= I ofL2(C,d 3x). Since 
w 

A :(liJ) -+ A ~(liJ)EJ2' we have that (tPl.B *A :(liJ)tP/) -+ 
£-.0 + £-.0+ 

(tP1.B *A ~(liJ)<P/) for each fixed BEJ2, i.e., the net ofsucces
sions 

If:(/) l i= I = IItPl.B * A : (liJ)<P1 ) l;:, I E/I(N), VEE(O,I] 

converges pointwisely to If~ (I) l i= I 
= IItPl.B *A ~(liJ)<P/)} i= I E/I(N). 

Hence, by dominated convergence, we get, for each 
fixedBEJ2, 

I(B,A :(liJ)!J2 - (B,A ~(liJ)!J21 
00 

..;; L I (tP1.B *A :(liJ)tPl) - (tP1.B *A ~(liJ)tP/)1 -+ 0, 
1= 1 £---+0+ 

for 1m liJ > 0, V6E[O,21Tt 

By taking B = A ~(liJ), we get (A ~(liJ),A :(liJ))J2 -+ 
.---+0+ 

IIA ~(liJ)II]2' which implies 
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IIA ~(liJ) - A :(liJ)II]2 

= IIA ~(liJlIl;2 + IIA :(liJ)II;2 - (A ~(liJ),A :(liJ)!J2 

- (A :(liJ),A ~(liJ))J2 -+ 0, (3.12) 
.---+0+ 

exploiting the fact that IIA :(liJ)ll; -+ IIA ~(liJlIl] . 
2 £---+0+ 2 

Hence we have shown that 

II IIJ2 

A :(liJ) -+ A ~(liJ), 
.---+0+ 

and in the same way 

II IIJ2 

C:(liJ) -+ C~(liJ), 
,---+0+ 

for 1m liJ > ° and VOE[O,21T)3. 
It remains to determine the limit of the net 

E[ 1 + A (E)B :(liJ)] -I. Following the steps in the proof of 
Lemma 3.1 in Ref. 6 adapted to our space L2(C,d 3X), one 
obtains the following norm convergent Laurent expansion 
around E = 0: 

00 

(V 1/2GoVr2+ 1 +E)-I =E-IE(_I) + L (-EtTm+t, 
m=O 

(3.13) 

where E( _ I) is the projector onto the N-dimensional eigen
space of V1I2GOV~/2 to the eigenvalue - 1, 

E - - (21Ti)-lf dz(V 1I2G V 112 -z)-I (-I) - 0 II 
F( -I) 

= f ~j") tPj' (3.14) 
j= I (tPj,tPj) 

where N = dim [E( _1)L2(C,d 3x)] and r( _I) surrounds in 
the usual way only the isolated eigenvalue - 1 of 
V1I2GVr2. The ItPj If= I are such that 

V I/2G VI/2A. - A. o II 'f'j - - 'f'j' 

¢j = (sgn V)tPj' (¢i>tPj ) = 0, Vi#j. 

Here, T is a bounded operator given by 

T = (21Ti)-d dz(z + 1)-1(V1/2GOV~/2 - Z)-I 
Jr(-I) 

= II 11- lim (V 1I2GOV11/2 + 1 + E)-I(1 - E( _I))' 
,---.0+ 

(3.15) 

(We recall that these operators are in L [L2(C,d 3X)], while in 
Ref. 6 they were in L [L2(R3,d 3X )].) 

By the II IIJ2 - analyticity of A (E)B :(liJ) for 1m liJ > 0, we 
obtain the following expansion for any 6E[O,21T)3: 

A (E)! V 1/2 [ G ,., + EGe (E.,E·;liJ)] V r2 l 
= V 1I2GOV IV2 + EIA '(0+)V1/2GoVr2 + [iliJ/41T 

+ Ge(O;liJ)]!V1/2)(VII/2Il +O(c). (3.16) 

In the case that - 1 is not an eigenvalue of VI/2GoVr2 
(for example, when V;;;.O) we have E( _ I) = 0, which implies 
that the II II limit of E [1 + A (E)B : (liJ)] -I is zero. 

If - 1 is a simple eigenvalue of VI/2GOV~/2, which im
plies that E( _ I) = tP (¢,-)I(¢,tP), and if (V~/2,tP )#0, by re
peating the proof of the Theorem 3.2. of Ref. 6 adapted to 
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our space L [][}(C,d 3X )], one proves 

II /I -lim€[1 +A(€)B:(W)]-I 
E--<l+ 

= I [iW/41T + Go (O;w)] 1(V1112,~ W 
- A '(O+)(¢,~ ) l-I(¢,.)~, 

V'OE[0,21T)3 and for 1m w > O. 

(3.17) 

Now let - 1 be an eigenvalue of multiplicity N (obvi
ously N < 00, since V 1IzGo V rz is Hilbert-Schmidt). 

As in Ref. 6 we have the following cases: (i) 

(Vrz'~j) = 0, V'j = 1, ... N(I<N < 00 )¢>VrzEIE( -I) 
XLz(C,d 3xW; and (ii) (Vrz'~jo)#O for somejo. Both the 
cases can in tum be divided into (a) A '(0+)#0, and (b) 
A '(0+) = O. 

The simplest one is the case (ii) (a). Here we have noth
ing else to do but to repeat the steps for finding (3.17) with the 
matrical notation due to the fact that I E( _ I) LZ(C,d 3X ) I isN
dimensional. One obtains 

/I /I - lim €[1 +A (€)B:(W)]-I 
E--<l+ 

.f ([ 4
iW + Go(O;W)](¢j,VI/Z)(VIt12'~I) 

J.l= I 1T 

- A '(O+)(¢j'~l) - I(¢l")~j' (3.18) 

where [ ] -I denotes the inverse of the N X N matrix 

([iw/41T+ Go(0;w)](¢j,V1IZ)(Vrz,~d -A '(O+)(¢j'~l))' [We 
see that in the case A '(0 +) = 0, the matrix would not be inver
tible, having the jth line and the jth column equal to zero if 

(V11/2'~j) = 0.] By (3.18), we obtain in the case (i)(a), 

/I /I - lim €[1 +A(€)B:(w)]-1 
E--+O+ 

N 

= L [-A '(O+)(¢j,~d] -I(¢l")~j 
j,/= I 

= - [A '(0+)] -I f ~¢j") ~j' 
j= I (~j'~j) 

(3.19) 

In the other two cases (i) (b) and (ii)(b), theL [LZ(C,d 3X )]_ 

valued function €[1 + A (€)B :(W)]-I has norm convergent 
Laurent expansions around € = 0, which are quite similar to 
the correspondent ones obtained in Ref. 6 [(3.43) and (3.59), 
respectively]. In fact we have to transfer all the expressions 
in our space L [LZ(C,d 3X )] and to replace the coefficients of 
the Taylor series of A (€)VI/ZGEW Vrz with those ones of 

A (€)[ V 1IZGEW VIVz + €V I /2Go(€·,€·;w)VrZ
] = A (€)B:(w), 

i.e., we have to add the k th coefficient of the expansion of 
€A (€) V 1IzGo (€·,€.;w) Vrz to the k th coefficient of the expan

sion of A (€)V 1IZGEW vt. (We have already written the first
order coefficient [A (€)B :(w)] I = IA '(0+)V 1I2GOVII(Z 
+ [iw/41T + Go (O;w)] I V1I2) (VirZI J; the second-order one 

is, for example, 

[A (€)B :(w) lz 
=!lA "(0+)V 1/2GoVrZ + 2 [iW/41T + Go (O;w)] 

XA '(0+)1V 1I2) (V IV
21 + 2 [WZC + Co (w)] J, 

where C and Co (w) are theJ2-[L Z( C,d 3X )] operators, with ker
nels given by 
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Co (x,y;w) = V 1IZ(X)(.!!.... Go [€(x - Y);W]) 
d€ E=O 

X Vlvz(y).) 

At this point we can compute the limit of the net 

- €A 3(€)A :(w)B :(w) [ 1 + A (€)B :(w)] -IB :(w)C :(w), 

which, in its tum, will provide us with the limit of 
[HE(O) - wz] -I. When - 1 is not an eigenvalue of 
V1I2GOVt, we obtain that 

/I /I - lim - €A 3(€)A :(w)B :(w) 
E--<l+ 

X [1 + A (€)B :(w)] -IB :(w)C:(w) = 0, (3.20) 

V' WEC with Re w # 0 and 1m w > 0, V'OE[0,21Tt Then using 
(3.1)-(3.3) and (3.20), we get 

/I /I - lim [HE(O) - WZ] -I = ( -..:10 - WZ)-I, (3.21) 
E--<l+ 

V'WEC with Re w#O, 1m w > 0, and V'OE[0,21T)3. By setting 
E = wZ(lm E lIZ> 0), this is equivalent to saying 

/I /I-lim [HE(O)-E]-I=(-..:1o _E)-I, (3.22) 
E--<l. 

V' EEC\R and V'OE[0,21Tf, i.e., HE(O) converges in the norm 
resolvent sense to -..:10 for any OE[0,21Tt 

We get the same result in the case (i) (a). In fact 

X [1 + A (€)B :(w)] -IB :(w)C:(w) 

= + [A'(0+)]-IIGo(w)(V,1121V1IzGo 

X VrZ(E(_I))V I/zGoV,I121 V1/2) (Go(w)1 

= + [A '(O+)]-Ictl l(Vrz'~jw)(¢j'~j)-1 
X (Go (w),.)Go(w) = 0, (3.23) 

(VrZ'~j) = 0 being V'j = 1, ... ,N. 
Hence also in case (i) (a) HE(O) converges in the norm 

resolvent sense to -..:10 for any OE[0,21Tf· 
We now consider the case when - 1 is a simple eigen

value of V 1IzGoVrz and (V1t/z,~) = (¢,VI/Z)#O. Here we 
have obtained 

/I /I - lim - €A 3(€)A :(w)B :(w) 
E--<l+ 

X [1 + A (€)B :(w)] -IB :(w)C:(w) 

= _ (.!!:!..- + G (O'w) _ A '(O+)(¢,~) ) - I 
41T 0, l(Vr2,~ W 

X (Go (w),.)Go (w), (3.24) 

V'WEC with Re w#O, 1m w > 0, and V'OE[0,21Tt Hence, 

/I /I - lim [HE(O) - W2]-1 
E--<l+ 

= (-..:10 - W2)-1 - [iW/41T + Go (O;w) - a]-I 

X (Go (w),.)Go (w), (3.25) 

V'WEC with Re w#O, 1m w > 0, V'OE[0,21T)3, and 
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a = A. '(o+)(¢,tP )/I(V~/2,tP W. By settingE = w2(lm E 1/2> 0), 
this is equivalent to saying 

II 11- lim [HE(O)-E]-I 
E---+O+ 

= ( -.1e - E)-I - [i$/41T + 6e(0;$) - a]-I 

X (Ge (.,jE),)Ge (.,jE), (3.26) 

VEEC\.lR and VOE[0,21T)3. 

We now note that 

Ker[( -.1e - E)-I - [i.,jE/41T + 6e(0;.,jE) - a]-I 

X(Ge(.,jE),)Ge(.,jE)1 = [01, 

since there is no L2(C,d 3X) function satisfying 

( -.1e - E)-1 = Ge(E 1/2)*f = const Ge(.,jE). Hence we 
are in the hypotheses of the Trotter-Kato theorem (see Ref. 
5, Theorem VIII.22), and by exploiting it, we get that the rhs 
of (3.26) is the resolvent of a self-adjoint operator Ha (0), 
which is the limit in the norm resolvent (n.r.) convergence of 
the net [HE(O)IEE(o.[1> VOE[0,21Tf. 

Case (ii) (a) is quite similar, since we have 

II II - lim - €,1, 3(€)A :(w)B :(w) 
E--+O+ 

X [I +,1, (€)B:(w)] -IB:(w)C:(w) 

= - [iw/41T + 6e (O;w) - a] -I(GO (w),)Ge (w), (3.27) 

where a is given by A. '(0+) P:f= 11(V~/2,tPjW/(¢j,tPj)] -I. 
Hence also in this case we obtain that HE(O) converges 

in the n.r. sense to a self-adjoint operator Ha (0), with resol
vent given by the rhs of (3.26) with a = A. '(0 +) [~f= I I 
(VV2,tPj W/(¢j,tPj)] -1,VOE[0,21Tf· 

We now have to deal with the most delicate cases, i.e., (i) 
(b) and (ii) (b), where limE--+o+ €[ 1 + A. (€)B :(w)] -I does not 
exist, because of the nonanalyticity oftheL [L 2(C,d 3X)] func
tion €[I + A. (€)B :(wl] -I at € = 0. 

We only discuss case (ii) (b), case (i) (b) being quite simi
lar. We have seen that in this case € [ 1 + A. (€)B :(w)] -I has a 
norm convergent Laurent expansion around € = ° given by 

€[I +,1, (€)B:(w)] -I = (l/€)D_I(O) + Do(O) + o (€), 
(3.28) 

VOE[0,21T)3, where D -I is of the type 
F(O)[ E( _ I) - (V~/2,E( -I) V1I2)-I(E~_I) V~/2,.) 
E( _ I) VI/2], so that we get 

D_I(0)VI/2 = F(O)[ E(_I) V 112 - (VV2,E, -I) V1/2)-1 

X(E* V 1I2 VI/2)E VI/2] - ° (3.29) (-I) II ' (-I) -

[which implies D ~ I (0)VV2 = 0.] Furthermore we have 

(VIV2,Do(0)VI/2) = [iW/41T + 60 (O;w)] -1, VOE[0,21T)3, 
(3.30) 

and 

2915 

(VI/2GoVII/2)D_I(0)(VI/2GoVV2) = D_I(O), 

(V 1/2GOVV2)Do(0)(V I 12GoV IV2) = Do(O), 

VOE[0,21T)3. 
For anyfandg in L2(C,d 3x), we have 
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(3.31) 

- A. 3(€)(f,A : (w)B :(w)[ € [ 1 + A. (€)B :(w)] -I I 
XB :(w)C:(w)g) 

= - A. 3(€)(f,A : (w)B :(w) [(l/€)D -1(0)] 

XB :(w)C:(w)g) - A. 3(€)(f,A :(w)B :(w) 

XDo(O)B:(w)C:(w)g) + o (€), 

VWEC with Re w#O, 1m w > 0, and VOE[0,21T)3. 

(3.32) 

We now study the limit of the second term on the rhs of 
(3.32): 

- A. 3(€)(f,A : (w)B : (w)Do(O)B :(w)C : (w)g) 

- - (f,A ~(W)(V1I2GOVV2)Do(0) 
E---+O+ 

X (V 1/2GOV~/2)C~(W)g) 

= -([A~(w)]*J,Do(O)C~(w)g) 

= - if,Ge (w))(VIV2,Do(0)V1/2)(Ge (w),g) 

= - [iW/41T + 6e(0;w)] -1if,Ge (w))(Ge (w),g). (3.33) 

Hence we have to compute the limit of the first term on the 
rhs of (3.32). 

From the expansion, 

BO(w) = V I12G V 112 + €V I/2G (€. €"w)V 1I2 
E EW II 0 " II 

= V 1I2GOV~/2 + €[ iw/41T + 6e (O;w)] 

X JV1I2) (V11/21 + o (e), 

we get 

- A. 3(€) [(l/€)(f,A :(w)B :(w)D -I(O)B :(w)C:(w)g)] 

= - (l/€)(f,A :(w)D_I!O)C:(w)g) + o (€), (3.34) 

where we have exploited the fact that 

(VI/2G V1I2)D (0)(V1I2 ,)V 1I2 - ° o II -I II' -, 

by (3.29), and the first equality of (3.31). 

(3.35) 

NowwenotethatVfEL2(C,d 3x), [Ge(w)*f] (€x)isaC I 

function, belonging to D ( -.10)' So we may write 

[GO (w)*f] (€x) = [Ge(w)*f](O) 

+ €(! [Ge(w)*f] (€X))E=O + o (e), 

(3.36) 
and this implies 

V1I2(X) [GO (w)*f] (€x) 

= V1I2[ [Go(w)*f](o)J + €[x·V[Ge(w)*f] 101 

X VI/2(X) + Ole), (3.37) 

i.e., 

C:(wif = JV1I2) (Ge(w)lf) 

+ €[x'V[Go(w)*f] 10] V 112 + Ole). (3.38) 

In the same way, 

[A :(w)]*f = JV IV2) (Go (w)lf) 

+ €[x·V[Go(w)*f] 10] vr2 + o (e). 
(3.39) 

By expanding the matrix element in (3.34) we get 
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- (lIE)(f,A :(w)B ~1I)(w)D _I(O)B :(w)C : (w)g) 

= - (lIE)(f,GII(W))(Vr2,D_I(OWI/Z)(GII(W),g) 

- (lxoV[GII(w)*f] 10J VrZ,D_I(OWI/Z) 

X (Gil (W),g) - (f,GII(W))(VIIIZ,D_I(OW1I2 

X (xoV[GO(W)*g] loll + o (E) = o (E), (3.40) 

sinceD_ I(0)V I/2 = 0. Hence we have shown that 
Vf,gElL,z(C,d 3X), 

- A 3(E)(f,A :(w)B :(w) {E[1 + A (E)B :(w)] -I J 

XB:(w)C:(w)g) --+ - [iw/41T+Go(0;W)]-1 
E-->O+ 

X (f,Go(w))(Go(w),g), (3.41) 

V WEC with 1m w > 0, Re w # 0, and VOE[0,21Tt 

By setting E = w2(lm,JE > 0), (3.41) implies 

[HE(O) - E]-I 

-: ( -.do - E)-I - [i,JE /41T + Go (O;,JE)] -I 
E-->O+ 

XGo(,JE)(Go(,JE),.), (3.42) 

VEEC\lR and VOE[0,21T)3. 
By noting that the w limit is the resolvent of the self

adjoint operator Ha (0) with a = 0, defined by (3.26), we have 

s 

--+ (-.do -E)-I- [i,JE/41T+ Go (O;,JE)] -I 
E-->O+ 

X Go (,JE)(Go(,JE),.). (3.43) 

When case (i) (b) holds, we find 

s 

[HE(O)-E]-I --+ (-.do _E)-I. 
E-->O+ 

Hence we have proved that in all the cases the net of the 
reduced Hamiltonians converges in the resolvent sense to a 
self-adjoint operator. We summarize what we have proved in 
a theorem. 

Theorem 3.1: Let VEV"(C,d 3X) have compact support 
such that supp VC C,Cbeing the Wigner-Seitz cell. Let A (E) 
be a Coo [0, 1]-real valued function with A (0) = 1. 

We distinguish four cases. 
(a) - 1 is not an eigenvalue for the J2 [lL. Z( C,d 3X)] opera

tor V1I2GoVrz, with integral kernel given by V1I2(xWrZ(y)/ 
41Tlx - yi. 

(b) -1 is a simple eigenvalue of VI/2GoVrZ and 

(V11112,rp) = (rp, VI72)#O, rp being such that 
V I12GVr2rp = - rp [¢ = (sgn V)rp]. 

(c) - 1 is an eigenvalue of multiplicity N;;.1 (obviously 
N< 00) for Vl/2GoV~/zand V~12E{E(_I)lL.2(C,d3XW· 

(d) - 1 is an eigenvalue of multiplicity N;;.2 for 
V1I2GoVrz and V~12Ef{E(_I)lL.2(C,d3XW· 

IrA '(0+)#0, the net of the reduced Hamiltonians 
HE(O) = -.do + A (E)E- 2V(X/E) converges in the norm re
solvent sense when E-D + to a self-adjoint operator, which is 
VOE[0,21T)3: (1) -.do in cases (a) and (c); and (2) Ha(O), i.e., 
the operator with resolvent given by 
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[Ha(O)-E]-1 

=(-.do -E)-I- (i,JE/41T+Go(0;,JE)-a]-1 

X Go (,JEHGo (,JE),.), 

with a = A '(O+)(¢,rp )/1 (VIV2,rp W in case (b) and 
a = A '(O+H~;"~ I 1(V1112,rp;)1 2/(¢;.rp;))-1 in case (d), (rpi J;"~ I 

being an orthogonal basis for the spectral subspace E1 _ I) 

lL.2(C,d 3x). 
When A '(0+) = 0, we find the same limits, but in cases 

(c) and (d), norm resolvent convergence has to be replaced by 
a strong one. [We note that -.do = H 00 (0).] 

IV.THE LIMIT OF [HE - E] -1 

After having proved the convergence in the resolvent 
sense of the reduced Hamiltonians -.do + A (E)E- 2 V(X/ 
E), VOE[0,21T)3, it is immediate to define the limit of the net 
HE = -.d + ~ydA (E)E- 2 V(. - Y/E), L being the lattice in 
R3 having C as its Wigner-Seitz cell. 

Exploiting the direct integral decomposition theory, we 
define a self-adjoint operator Ha (H 00 = -.d) in lL.2(R3,d 3X ) 

by setting 

UHaU-1 = (Gl Ha(O) d
3
0
3
. (4.1) 

J[O.Z1T)' (21T) 

Obviously we have, VEEC\lR, 

U[Ha -E]-IU- I = (Gl [Ha(O)-E]-1 d
3
03 . 

J[O.h)' (21T) 
(4.2) 

We show thatHa is the limit, in the strong resolvent conver
gence, of the net HE' In fact, VfElL.Z(R3,d 3x), 

II(Ha - E)-If - (HE - E)-lflli'(R'.d'x) 

= IIU[Ha -E]-IU-I(Uf) 

- U[HE -E]-IU- I(Uf)lit 

= L.Z1T)' II [Ha (0) - E ] -iI Uf)o 

- [HE(O) - E ] -1(Uf)olli'IC.d,x)d 30/(21T)3, (4.3) 

VEEC\R. 
Now, [HE (·) - E ] -1(Uf)I') converges pointwisely to 

[Ha(·) - E] -1(Uf)I') when E-D+ (by Theorem 3.1); the 
limit belongs to lL.2([0,21T)3,d 30/(21T)3;lL. 2(C,d 3X)), since 

i II[Ha(0)-E]-I(uf)0Iii'lc,d3X) d3~ <llmEI- 2
, 

(O.Z1T)' (21T) 

1 Z d 30 
II( Uf)oIiL'(c,d'x) (2 )3 

(O,Z1T)' 1T 

= 11m E 1-2Ilflii'(R',d3x)' (4.4) 

Therefore, by the dominated convergence theorem, 

L,Z1T)' II [HE(O) - E] -1(Uf)o 

- [Ha(0)-E]-I(uf)01Ii'IC.d3x)d30/(21T)3 --+ 0. 
E-->O+ 

(4.5) 

Let us recall that, in order to prove norm resolvent con
vergence of HE to Ha from norm resolvent convergence of 
HE (0) to Ha (0), it is necessary to show that 
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[H
E

(.) - E] -I _ [Ha (.) - E] -I in lL OO ([0,21Tf,d 30/ 
E--->O+ 

(21T)3;lL2(C,d 3X)), i.e., we have to prove 

which, by (3.2) and (3.3), is equivalent to 

sup II [i$ /41T + Go (0;$) - a] -IGO ($) 
OE[O;21T)' 

X (Go ($),.) - A 3(E)A : ($)B :($) 

X!E[l +A(E)B:($)]-I}B:($)C:($)II- O. 
E--->O+ 

(4.7) 
II IIJ2 

We have seen that B :($) _ V lf2GoVI!2 uniformly 
E--->O+ 

in 0; furthermore, also A :($) and C:($) converge in the 

J 2 norm uniformly in 0 to their limits A g($) and cg($), 
as it follows by using the uniform convergence of the series 
on the rhs of (2.3) and dominated convergence. 

Hence, in order to prove (4.7), one needs to show that 

the convergence of E [ 1 + A (E)B :($) ] -lis uniform with 
respect to O. For example, in the case that - 1 is a simple 
eigenvalue of Vlf 2Go V~/2 and V I1

/2E1:! E( _ I)lL2(C,d 3X )}\ we 
have to show 

sup II! [i$ /41T + Go (0;$)) 1(V~/2,cp W 
oE[O,21T)' 

- A '(O+H¢,cp) }-I(¢,.)cp - E[ 1 + A (E) 

XB:($))-I II - 0, 
E--->O+ 

(4.8) 

which is equivalent to proving that the first-order coefficient 

of the Taylor expansion of E [ 1 + A (E)B :($)] -I is uni
formly bounded in 0; one can easily verify this by writing the 
expression corresponding to (3.37) in Ref. 6. Hence in the 
cases where we had norm resolvent convergence of HE(O) to 
Ha(O) for E---+O+, we have, VEEC'\R, 

II(Ha - E)-I - (HE - E)-IIIL(L2(R'.d'x)) 

=1I[Ha(·)-E]-I- [HEH 

So we have completely proved the following theorem. 

(4.9) 

Theorem 4.1: Let L be a lattice ofR3 and C its Wigner
Seitz cell. Let V(x) be a lL OO(R3;d 3X ) function such that 
supp vec. Furthermore letA (E) be a C ""[O,I]-real valued 
function with A (0 +) = 1. Then the net of Hamiltonians 
HE = -..:1 +~yE1.A(E)E-2V(·-Y/E)convergesintheresol
vent sense to the self-adjoint 'unbounded operator given by 

The convergence is in the norm resolvent sense in all the 
cases where by Theorem 3.1, the net of the reduced Hamilto
nians HE(O) converges in the norm resolvent sense to Ha(O) 
when E---+O, and in the strong one otherwise. 

Remark: The operator we have obtained is actually the same one of Theorem 5.2 (Ref. 1) since 

_ exp(i f£1~3 Im.a·l) . 
Go (0;$) = L 'iL 3 r~ r r e- rm'O 

mEZ' 41TI~i~lmiail 
mi"O 

1· )3(" 1 i d 3
p 

) = 1m (21T £.. ---
Q)--+oo IEL" II+kI 2 -E Ipl<wp2-E 

II + kl<w 

= hm (21T)- £.. - 1TUJ - --, . 3(" 1 4) i$ 
Q)--+oo IEL" II+kI 2 -E 41T 

II+kl<w 

where L • is the dual lattice. By substituting into the expression of [Ha(O) - E ] -I, we have 

[Ha(O) - E] -I = (-..:10 - E)-I - [gE(O;k) - a] -I(GO ($),.)Go ($), 

where 
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Conditions for the global reductions of a dynamical system defined on foliated manifold Mare 
given. They are expressed by a local condition on the topology of one single leaf and a global 
condition on the transverse bundle to the foliation. The link of this condition is shown with the 
existence of a normalizer of the Lie algebra of the vector fields tangent to the foliation in the Lie 
algebra of all the vector fields of M. This normalizer contains all the derivations of the functions 
constant on the leaves. 

PACS numbers: 02.40. + m 

I. INTRODUCTION 

In this paper we consider the following global problem: 
If Y is a dynamical system defined on a foliated manifold 
(M,.7), under what conditions on the vector field Y, on the 
topology of the leaves and of the manifold M, is M /.7 a 
differentiable Hausdorffmanifold so that the dynamical sys
tem Y can be globally reduced to a system on the manifold 
M/.7? 

The space of the leaves is studied through the properties 
of the transverse bundle of the foliation and by a systematic 
use of a connection introduced in a previous paper of 1969,1.2 
which allows a transport of the transverse bundle of the foli
ation along the foliation itself. This connection is a global 
operator in an "almost parallelizable manifold and, in the 
particular case of foliated manifold, it gives the connection 
introduced by Bott. 3 As this operator can be useful in other 
contexts where there are vector fields intrinsically linked to 
the problem, we shall collect several facts that have been 
obtained using it. (Sec. II). In Sec. IV we define "almost regu
lar foliations" in a connected smooth manifold and we prove 
that under a global condition on the transverse bundle of the 
foliation and a local condition on the topology of one single 
leaf, M /.7 is a Hausdorff, smooth manifold (Theorem 4.3). 
The separability property of M /.7 is necessary to ensure the 
uniqueness of the integral curves of the projected vector 
fields. If, in addition, the parallel frames are complete, the 
manifold M is a fiber bundle with the leaves as fibers. In Sec. 
V we prove that if Y is parallel along the leaves and if the 
foliation and the transverse bundle satisfy the conditions of 
Theorem 4.3, then the dynamical system Y can be globally 
reduced on M /.7 (Theorem 5.2). Finally, in Sec. VI we give 
an interpretation of this theorem in terms of the existence of 
a transitive normalizer of the Lie algebra of the vector fields 
tangent to the foliation in the infinite-dimensional algebra of 
all the vector fields tangent to M and we point out that this 
normalizer contains all the derivations of the functions con
stant on the leaves. 

It appears to us that we are using the most natural and 
simple building blocks for the study of M /.7. We remark 
that independent of the problem of the reduction, Theorem 
4.3 may have an interest in many physical situations in 
which foliations arise naturally in state manifold and we 
want to "quotient out" the leaves: in general relativity for 
instance or in problems of observability in control theory. 

II. TOTAL LIE DIFFERENTIAL (TLD) OR LIE 
CONNECTION 

Let M be a smooth manifold of dimension n, F (M) the 
ring of smooth functions on M, and J¥'(M) the F-module of 
smooth vector fields on M. A linear connection associates to 
each piecewise smooth path (T: I = (0,1 )-+M a linear map of 
tangent spaces in aiO) and ail) depending on (T. From an 
algebraic point of view a linear connection can equivalently 
be defined as a rule which assigns to each X EJ¥'(M) a map V 
of J¥'(M) into itself called covariant differentiation satisfying 
the following axioms: 

(i) Vx(Y' + Y") = VxY' + VxY", 

(ii) VxiY=X}Y+./VxY, 

(iii) VjX+gzY =./Vx Y +gVzY, 

withX, Y, ZEJ¥'(M) andf,geF(M). 
If X is a vector field of M, we shall indicate withL (X) the 

Lie derivative associated to X. It is classically known that the 
Lie derivative is not a connection operator as it does not 
satisfy (iii). In fact we have 

L (jX)Y =/L (X)Y - (Yf)·X, (1) 

namely the map X -+L (X) is not linear over the functions. 
Now consider a field offrames {Xi} (i = 1, ... ,n) on an 

open set U of M. For any vector field Z = Z" Xr(r = 1, ... n) 
we defined the operator 

def 

(2) 

which satisfies all the axioms of a connection operator. We 
have called it the total Lie differential (TLD) or Lie connec
tion. 

The Lie connection associated to a frame field (Xi I 
does not change if the frame field changes with a transforma
tion with constant coefficients. The operator Dz is then a 
global operator on an almost parallelizable manifold, name
ly a manifold such that the structure group of the tangent 
bundle can be reduced to a discrete group. The advantages of 
the TLD are the following. 

(1) If on M there are some vector fields with particular 
geometrical or physical meanings, for instance, symplectic 
automorphism on a symplectic manifold or isometric vector 
fields on Riemannian manifold or vector fields tangent to a 
foliation on a foliated manifold, then this operator can be 
intrinsically linked to them. 
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(2) It is possible to define a covariant derivative of a 
connection with respect to a TLD, a notion which is not 
defined with respect to any other connection. 

We shall recall here some results4 that have been ob
tained using the TLD: (a) a sufficient condition is given for 
the Euler characteristic of a reductive homogeneous space 
(in particular a compact homogeneous space) to be null; and 
(b) for the p-sectional curvature and Pontrjagin classes to be 
null; (c) a proof that Darboux's theorem is valid globally in a 
symplectic manifold which admits a symplectic connection 
with curvature and torsion zero; and finally (d) the charac
terization of simple connected manifolds with connection (i) 
which can have a structure of homogeneous reductive spaces 
with respect to a Lie group of (i)-affine transformations. 

III. PARALLEL TRANSVERSE BUNDLE 

Let (M,Y) be a smooth connected manifold, foliated 
with a smooth foliation Y. Let n be the dimension of M and 
q the codimension of the foliation.5

,6 M is the union of dis
joint connected submanifolds [Li J of dimension n - q and 
every point of M has a neighborhood U with a system oflocal 
coordinates (x4) = (Xl , ... ,x" ):U-+R" (A = 1, ... ,n) such that 
the connected components of LnU which are called local 
leaves are described by equations 

X,. -q+ 1 = const, ... ,x" = const. (3) 

If xEUin~ and if (xl', ... ,x"') are the local coordinates in ~, 
the changes of coordinates are given by 

a,b = 1,2, ... ,n - q, 
(4) 

xa' = h2(Xa), a,/J = n - q + 1, ... ,n. 

Coordinates for which x a = const on the leaves are said to 
be distinguished coordinates or adapted to the foliation Y. 

Definition 3.1: A differentiable map of the manifold 
(M,Y) to a manifold N is said to be distinguished if it is 
constant on the leaves. The stalk of germs of distinguished 
functions is the structural stalk of the foliated structure. 

Considernowthefiberbundles T (M ),E, Q,R (Q ) having 
the same base manifold M. T (M) is the tangent bundle of M, 
E is the (n - q)-dimensional integrable sub-bundle of T (M) 
consisting of the vectors tangent to the leaves of the foliation 
Y. Q is the quotient bundle Q = T (M )IE and is said to be a 
transverse bundle to Y. Finally R (Q) is the principal 
GL(q,R )bundleassociatedtoQ. Weshallindicatewithr(E) 
and r (Q ) the spaces of smooth sections of the vector bundles 
E,Q. 

Choose now a selected splitting T (M) = E e Q and let 
(Xa J and [Xa I be local trivializations of the fiber bundles E 
and Q over an open set UCM. Then if D is the total Lie 
differential we have for any ZEE fU and YEQ fU 

DzY =ZaL(Xa)(Y"Xa) 

= za({L (xa(yaXa)}E + {L (Xa(Y" Xall Q ). (5) 

Let [Y] be the equivalence class of Yin the quotient bundle 
Q. We have then 

def 

[DzY] =za(L(Xa)Y)Q. (6) 

Remark 3.2: As we project over Q and we transport 
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along the leaves, we see from formula (1) that the Lie deriva
tive satisfies, in that case, the property oflinearity over func
tions, so that we have 

[Dz Y] = (L (Z)Y)Q' (7) 

For the transport of the transverse Q-projections of the 
bundle along the leaves, the TLD coincides then with the Lie 
derivatives. It follows that the TLD is globally defined on the 
leaves without any further assumption on the leaves (to be 
almost parallelizable). We obtain then the Bott's connection 
as a particular case of our TLD. 

Definition 3.3: The transverse bundle Q is parallel along 
the leaves 7 if there is a frame field [Xa} of Q such that 

[DzXa ] = 0, 'dZEFE. (8) 

Definition 3.4: We say that the structural group of Q is 
reducible to a discrete distinguished group if the transition 
functions of Q 

gij:Uin~-GL(q,R) (9) 

are functions constant along the connected components of 
the intersections of Uin~ with each leaf. 

Proposition 3.5: Let (M,Y) be a foliated manifold. If Q is 
the transverse bundle, then Q is parallel along Y iff the 
structural group of Q can be reduced to a discrete distin
guished group. 

Proof: Let {Xa I be a trivialization of Q with parallel 
frames. YEF (Q) is parallel along Y if 

[L (Z )Y] = 0, i.e., [(ZY")Xa + Y" L (Z)Xu] = 0, 

'd ZEF(E). (10) 

As by assumption [L (Z)Xa ] = 0, it follows that 

ZY" = 0. (11) 

Thus, if we change the frame [Xa ) ER (Q) in a frame (Ya J 
parallel along the leaves, the components of the vectors of 
the new frame are functions constant along the leaves. The 
structural group of Q, can then be reduced to a distinguished 
discrete group. 

Conversely, choose locally a parallel frame [Xa J. As by 
hypothesis the structural group of the transverse fiber bun
dle can be reduced to a discrete distinguished group, then the 
parallel frame can be globally defined on the leaves and Q is 
parallel along Y. 

Definition 3.6: We say that the foliation satisfies the 
property of K-transitivity (K,T) if there exists aKER+ such 
that for any two points x i= y belonging to the same leaf L if 
fP,x and fP,y are the integral curves of any transverse vector 
field passing through the points x and y for t = 0, the points 
fP"x and fP"ybelong to the same leaf for any tl<K. 

IV. MANIFOLD OF THE LEAVES' 

Definition 4.1: We say that a foliation Y on the differ
entiable manifold (M,Y) is almost regular (a.r.) if: (i) the local 
submersions which describe the local leaves are proper; (ii) 
for any neighborhood U of an arbitrary point pEM, 'd LEY, if 
UnL i= ° then UnL consists of a finite number oflocalleaves. 

Theorem 4.2: If M is a connected, smooth manifold and 
Y is a foliation on M of codimension q, the foliation Y is 
almost regular iff: (1) Y contains a locally closed leaf; (2) the 
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structure group of the transverse bundle Q can be reduced to 
a finite distinguished group. 

Proof Let U be an open set with adapted coordinates 
such that the local leaves are given by Eq. (3). These local 
leaves are level sets of the local submersions f U~Rq with 
/( p) = (xn - q+ I( p), ... ,xn (p)) (pEU). As it is assumed that M 
is almost regular these local leaves are closed in M. 

Consider now the universal cover I of a leaf L and a 
homomorphism rp of the fundamental group 1T1(L ) of L in 
Diff (Rq). The trivialfoliation I X Rq goes in the localleaves 
of M if we consider the action of 1T I (L ) on I and of rp on Rq, 
namely if we consider equivalent (x,Y)_(XI,y') withxeL and 
yeRq when there exists a gE1TI(L) such that 
x' = gx,y' = rp (glY. For instance, in the Mobius band S I = R 
and rp:1T I (S I )~Diff R gives the homomorphism Z~Z2' Re
mark now that this group is the holonomy group9 of the 
connection D which transports the transverse bundle Q or 
R (Q) parallel along the leaves. As it is supposed that the 
number oflocalleaves, for any L, is finite, the group rp (L ) is 
finite. The structure group of Q can therefore be reduced to a 
finite distinguished group. 

Conversely, let (Xa )EFR (Q) be a transverse frame field 
parallel along the leaves, and let V = JI<' Xa be any trans
verse vector such that the integral curve tP(t ) of V passes for 
t = 0 through the point x. The map 
Rq ~M:(V I, ••• , V'1 )~xp(V)==:¢( I) in a sufficiently small 
neighborhood of the point OERq defines a diffeomorphism 
between the q-disk D; transverse to the foliation and cen
tered in x and a neighborhood U of x in M. As the vectors of 
D; are vectors of Q, D; can be transported by parallelism 
along the leaves, and in particular along the leaf L which is 
supposed locally close. A diffeomorphism can then be de
fined between the leaves in a neighborhood of L. As L is 
locally closed, we deduce that every leaf is locally closed, so 
that condition (1) is satisfied. Condition (2) is a consequence 
of the fact that, as the structural group of R (Q) is distin
guished finite, the holonomy of D along the leaves is finite. 
The number oflocalleaves is then finite. 

Theorem 4.3: Let (M, Y) be a connected, smooth mani
fold foliated with an a.r. foliation satisfying the property of 
K-transitivity. Then the space of the leaves M / Y is Haus
dorff and has the structure of a differentiable V-manifold. 

Proof As Y is a.r., for any xEM, any LEY, and any 
adapted neighborhood of x, the intersection of UnL is given 
by a finite number oflocalleaves, and as the leaves are locally 
closed (Theorem 4.2) and Y satisfies the property (K,T), we 
can find a q-disk D; (with xEL ) so small that D; nL = x and 
D;nL I = 0foranyL I ¥L.Consequently,foranytwopoints 
x and x', we can define two neighborhoods on M / Y such 
that UxnVx' = 0. 

Moreover M / Y can be endowed with a structure of 
differentiable V-manifold; in fact the disk D; with xEL can 
be parallel transported along L to any other point y of L. The 
diskD; iny [denoted asD ;(y)] intersects the same leaves as 
the disk D ; . In a sufficiently small neighbborhood of the leaf 
L, we obtain thus a diffeomorphism between the open sets 
Ux = exp D; and Uy = exp D; (.v). The canonical map 
1T:M~M / Y is then an open map. 

By the action of the finite group rpEDiff Rq , we identify 
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the local open sets ofRq which correspond to an open set U 
of M /Y. As rp is acting properly discontinuously, a local 
uniformizing system of open sets can be introduced in the 
Hausdorff space M / Y and a structure of a V-manifold can 
be defined on M / Y. If rp is the identity we have the usual 
differentiable structure. V-manifold has been introduced by 
Satake.1O Satake proved that differential forms, integration, 
and de Rham theorems can be generalized to these mani
folds. 

In the case where M is compact and rp is the identity we 
have a well-known result that M is a fiber bundle. 

Theorem 4.4: If M is compact and the structural group 
of the transverse bundle Q can be reduced to the identity then 
all the leaves are diffeomorphic, M is a fiber bundle, M / Y is 
the base space, and the leaves are the fibers. 

Proof If M is compact the transverse fields {Xa J 
EF R (Q ) are complete and if rp 13 (t ) is the flow generated by the 
field Xp then ((rpp)t ).Ex = E(<Pf3I,x' The distribution Ex is 
then invariant by the flow (rpp)t generated by the vector field 
Xp. If x and y belong to the same leaf Lo and rpp(Olx = x, 
rpp(O)y = y, then for any tER,rpp(t lx and rpp (t lY belong to the 
same leaf L I' From the differentiability of the solutions 
rpp(t,xo) with respect to the initial valuesxo,to we see that the 
flows {rpa J generated by the (Xa J define a diffeomorphism 
between the leaves of the foliation. 

Corollary 4.3: M / Y is an almost parallelizable mani
fold. 

Proof The frames of R (Q) transported by parallelism 
along the leaves give, through the canonical projection, glo
bal frame fields over M / Y. 

v. REDUCTION OF A DYNAMICAL SYSTEM 

Consider now on M / Y a dynamical system given in a 
local system of coordinates by the differential equation 
X= Y(x). 

The problem of reducing locally a dynamical system 
with respect to a foliation has been treated recently in this 
Journal in a paper by Marmo et al. II 

Definition 5.1: A vector field in a foliated manifold 
(M,Y) is projectable with respect to the foliation, if it trans
forms distinguished functions in distinguished functions, 
namely if/is a function constant on the leaves, Y /must be a 
function constant on the leaves. From the classical relation 
L (X)L (Y)/-L (Y)L (X)/= L [X,Y]f, we have if/is con
stant on the leaves and XEF (E) 

L(X)L(Y)/= O¢}L [X,Y]/=O, (12) 

it follows that Yis projectable iff [X,Y]EF(E)'dXEF(E). 
We now extend the action of the operator Dx and De

finition 3.3 of parallelism to any YeK(M). 
Definition 5.2: We say that a vector field Yon (M,Y) is 

parallel along the leaves if 

[Dx Y]Q = 0, i.e., [L (X)YJ Q = 0, 'dXEF(E). (13) 

Proposition 5.3: A vector field Yon a foliated manifold 
(M,Y) is projectable with respect to a foliation iffit is paral
lel along the leaves. We obtain then the following. 

Theorem 5.4: Let Ybe a dynamical system on a smooth 
connected manifold (M,Y) foliated with a (K,T) foliation of 
codimension q. If the foliation has one single leaf locally 
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closed and if the structural group of the transverse bundle Q, 
can be reduced to a finite distinguished group, and Yis paral
lel along the leaves, then the given system can be globally 
reduced to a system on M / Y. 

Proof From Theorems 4.2 and 4.3, M / Y is a smooth 
Hausdorff manifold. From Proposition 5.3 Y is projectable 
on M / Y. The system can thus be globally reduced to a sys
tem on the V-manifold M / Y. Remark that if YeF (E), the 
projected vector field is the null vector of the reduced system 
onM/Y. 

We can thus conclude that under the given assumption 
the system can be always globally reduced and that by inte
grating the reduced dynamical system one determines the 
given flow modulo the movement along the leaves or one can 
reduce the given system to a system on the leaves. 

VI. ASSOCIATED TRANSITIVE NORMALIZER 

We shall now give an interpretation to the previous re
sults in terms of Lie algebras. We recall the following. 

Definition 6.1: The normalizer Ng (L ) of a subalgebra L 
of a Lie algebra g is defined by 

Ng(L) = !XEg,[X,L ]CL }. (14) 

The normalizer of L contains L as an ideal, and, from Jaco
bi's identity it is easily proved that it is a Lie algebra. 

Let (M,Y) be a foliated manifold with a foliation of 
codimension q. Let JY (M) be the Lie algebra of the vector 
fields of M, L the Lie algebra of the vector fields tangent to E, 
and L ' the normalizer of L in JY(M). 

Proposition 6.2: The normalizer of L in JY(M) consists 
of the vectors parallel along the leaves with respect to the 
TLDDx'VXeF(E). 

Proposition 6.3: The normalizer represents the set of the 
derivations of the functions constant along the leaves. It is 
then of fundamental importance in the study of the manifold 
of the leaves and in the problems of reduction of a dynamical 
system. 

Naturally this set of derivations must be "large" 
enough, namely its dimension over R must be n. In an equi
valent way we say that the normalizer must be transitive on 
M. 
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Each supermanifold can be considered as equivalent to a certain family of real manifolds. The 
Haar integral of a Lie supergroup is defined using this equivalence. A useful general formula is 
derived together with explicit construction methods of the simple Lie supergroups of types 
SPL(nlm;EL ), OSP(nI2r;EL ), and B (n;EL ), and the extended Poincare group. 
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I. INTRODUCTION 

The mathematical theory of supermanifolds and super
groups has been developed by many authors following basi
cally two approaches. 

(1) The sheaf of algebras of C ao functions over a differ
entiable manifold locally homeomorphic to Rn is extended 
to a Z2-graded sheaf of algebras such that the algebra con
tains both commuting and anticommuting functions. This 
line of argument has been pursued by Berezin and Kac, 1 

Berezin and Leites,2 and Kostant. 3 Berezin has in fact con
sidered this and (2). 

(2) Commuting and anticommuting coordinates are in
troduced in the base manifold by making the coordinates 
copies of either the even or odd parts of a Grassmann algebra. 
There are many variations in this development, mainly in 
respect of the topology endowed on the coordinates. 

We shall follow the latest development in this second 
approach that was initiated by Rogers.4

,5 (See these articles 
for references to earlier work and the relationship between 
the various approaches. See also the review by Berezin.6

) 

Integration on supermanifolds has, up to now, followed 
the heuristic6 scheme proposed by Berezin 7 in the context of 
path integral quantization. This has been taken to be the 
correct method of integration on supermanifolds construct
ed as in scheme (2) and is widely used in the physics litera
ture. (See the review by Nieuwenhuizen. 8

) 

The topology endowed on supermanifolds by Rogers4 

gives us the opportunity to construct a theory of integration 
based on the normal measure theoretic approach. That is, as 
for complex and quaternionic manifolds, we view the mani
fold as a differentiable manifold locally homeomorphic to 
Rn with additional Grassmann analytic structure. 

The plan of this article is as follows. In Sec. II we con· 
sider measure and integration on supermanifolds. In Sec. III 
we extend this discussion to cover Lie supergroups. In Secs. 
IV, V, and VI expressions are obtained for the invariant inte
grals on the supergroups SPL(nlm;EL ), OSP(nI2r;EL ), and 
B (n;EL ), respectively. Section VII contains a derivation of 
the invariant integral for the extended Poincare groups and 
for superspace defined as a coset space. In Sec. VIII we give a 
short discussion of the Berezin integration theory. Our nota
tion is collected, for convenience, in an appendix. 

II. MEASURE AND INTEGRATION ON SUPERSPACE 
AND SUPERMANIFOLDS 

Using the topology endowed on superspace E 'E,n and 
consequently on supermanifolds, Rogers5 was able to estab
lish the fact that to each real supermanifold M and given 
value for L there is a topologically equivalent real differen
tiable manifold vii L' It is convenient therefore to define the 
topological homeomorphisms I 'E'n as follows. 

Definition 2.1: (a) For each L let IL be the topological 
homeomorphismIL :EL _R2V. (b) ForeachL letI'E,nbe the 
topological homeomorphism I 'E,n:E 'E.n _RV(m + n). Clearly 
we can define the inverses (I 'E,n) - I. 

The mappings I 'E,n are displayed be 

fP j- 10I'E,no¢j 

ILm,n 
RcV(m+n) ..... i--~--.....:;:---E ,!:,n 

In this figure M is any real supermanifold, vii L the equiva
lent real manifold (for fixed L ), CZr j is a coordinate neighbor
hood in vii L corresponding to the Grassmann coordinate 
neighborhood Uj with ¢j, fPj' respectively, their coordinate 
charts. 

To avoid cumbersome notation we will write simply IL 
instead of I,!:,n, where it is clear to do so, and also IL instead 
of fP j- 101 'E,nO¢j' We can then regard I L as the map I L :M 
_vii L' for which the inverse ILl is defined (since vii L was 
constructed from M), 

Now to each open subset A CE ,!:,n there corresponds an 
open subset d = h (A ) C Rff'(m + n). In terms of measure the
ory (cf. Cohn9

) the open subsets of RVlm + n) generate the 
Borel sets of RV(m + n), so that we can construct an equiv
alence relation between the Borel sets of E ,!:,n and the Borel 
sets of RJV(m + n). It is then natural to define the measure of 
any subset of E ,!:,n as the Lebesgue measure of the corre
sponding subset ofRcV(m + n). For every functionfE 'E.n -E L 
we have the functions fOIL 1 :RJV(m + n)_E L , I L 0fE 'E,n 
_RJV and IL Of 01 L- I:RJV(m + n)_R~V, which we can regard 
as alternative descriptions of the original function! It is 
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natural. therefore. to define the integral ofl to be the integral 
of the components of /L 010/ L 1 rewritten as an element of 
E L' Formally the definitions are as follows. 

Definition 2.2: (a) The measure Ji of a set of ACE ,;,n is 
defined to be the Lebesgue measure Ji L of the set / L (A ) 
CRvYim + n). i.e .• 

Ji(A ) = Ji £1/ L (A )lER. 

(b) The integral of a functionfE ';'"-+R is defined to be 
the real number obtained in evaluating the integral of 
1°/ L 1 :RvYlm + n)-+R. That is 

f I dJi = f 1°/ L 1 dJi L E R. 

(c) Let P;.qj be the projection functions. 

pj:EL-+R, qj:EL-+R, i=O,I, ... ,...;Y -1, j= 1,2 .... ,...;Y 

such that pj (resp., qj) projects the component in the direc
tion ej (resp., 1;), so that Pk (x + fJ) = Pk (xjej + fJlj ) = Xk 

and q/(x + fJ) = q/(xjej + fJlj) = fJ/. Then the integral of a 
function g:E ,;,n -+E L is defined to be 

f v 1 f vY f gdJi = j~O ej pjogdJi + j~1 fj qjogdJi, 

so that 

f gdJi = o~ol ej f pjogo/ L 1 dJiL 

+ j~1 fj f qjogo/ L 1 dJiL' 

The definition of measure and integration for functions 
h:E ,;,n -+E if.q is a straightforward extension of the definition 
above and need not be given separately. In keeping with the 
standard coordinate representation on Rn in which for xjER, 
~ = 1,2, .... n, we have dJi = II j dxj we will write dx = dJi or 
dfJ = dJi for the line element in E LO and EL 1, respectively, 
the volume element in E ,;,n can then be written 

"mAn A ,.. 

d x dfJ = II dxl" II dfJ" = II II dxf II II dfJ j, 
p, v J1- i v j 

where i = 0, 1, ... ,...;Y - l,j = 1,2, ... ,...;Y, Ji = 1,2, ... ,m, and 
V= 1.2, ... ,n. 

We see that the integral. as defined, provides a positive 
integral on E ,;,n (i.e.,,!>O implies that s.!>o) and that the set 
of integrable functions on E ,;,n can be constructed from the 
set of Lebesgue integrable functions on RvYlm + n). We will 
denote this set by ,iPl(E,;,n,EL)' It is clear that we can con
struct the spaces ,iP PIE ,;,n ,Ed for p> 1 modeled on the £P 
spaces of normal integration theory. We now give the defini
tion of measure and integration on supermanifolds. 

Definition 2.3: LetMbe a Gex> supermanifold over E ,;,n, 
let J( L = / L (M) be the related manifold over RvYlm + n) and 
let dJi L (J( L) be a volume form on J( L' Then (a) the integral 
of a functionfM-+R is given by 

J I dJi(M) = J 1°/ L 1 dJi L (J( L) 

for all 10/ LIE ,iPl(J( L,R). If/o/ LIE ,iPl(J( L.R) then 
IE ,iP 1 (M,R), where ,iP 1(J( L ,R) is the set of integrable func
tions defined on J( l- etc. 
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(b) The integral of a function g:M-+E L is given by 

f g dJi(M) = ~ ej f pjogo/ L-
1 
dJiL(J( L) 

+ ~1; f qjogo/L-ldJiL(J(L)' 

Now if {xJ1.,fJ ") are coordinate functions on an open set Uk 

CM, then {x~,fJ n are coordinate functions ofId Uk) = ~ k 

CJ( L and the volume form can be written 

(2.1) 
J-L.i v,j 

where h (x;.fJj):/L oU-+R. This is conveniently abbreviated 
to give 

,.. m ... n 

dJi(M) = h (x,fJ)d x d fJ, 

with h (x,fJ ): U-+R. and such that 

h (x,fJ) = h (x;.fJj ). 

(2,2) 

(2.3) 

Note that h must be a real valued function since we have 
defined a real valued measure. 

Given a set of I-forms 
.f-I m 

t/J~ = L L 1~~(xk,fJ/)dx1 
j=O J1.= 1 

2V-l m+n 

+ L / L 1~~(xk,fJ/)dfJ1~t;~ g 
1=01 J1.=m+ 1 

for a = 1,2, ... ,m + n; s = 0, 1, ... ,2JV - 1 and/~~ :RL·flm + n) 

-+R on an open subset ~ a of J( L that are linearly indepen
dent, a real-valued volume form on ~ a can be constructed 
as 

p,i v,j 

(2.4) 

where/~~ is in the (a,s) row and (Ji,i) column of the 
(m + n)./VX (m + n)./V matrix of coefficients of the one 
forms. The function Idet[/~~(xk,fJ/)] I will be called the 
weight function on ~ a (or Ua ). 

We now have to consider what happens when we need 
several coordinate charts to cover M. As in normal manifold 
theory we need simply to insist that the Jacobian of the coor
dinate change on each ~ jn ~ j is equal to 1 so that there is no 
"change of scale" over the manifold. The Jacobian here, be
ing the one for the charts of J( L' It is not the "Super Jacobi
an" for M. We assume that we are dealing with orientable 
manifolds. This means that we define a supermanifold M to 
be orientable if J( L is orientable. All Lie supergroups are 
therefore orientable together with super coset spaces, which 
are defined in an analogous way to normal coset spaces. 

III. INVARIANT INTEGRALS FOR LIE SUPERGROUPS 

The theory of invariant (Haar) integrals for topological 
groups is well known. (See Nachbin 10 or Hewitt and Ross. 11) 

Since every Lie supergroup G is equivalent to a Lie group 
~ L (for givenL ) we are thus able, following Sec. II, to define 
the invariant integral over a Lie supergroup G as equal to 
that over its related Lie group ~ L (for given L ). In this way 

D. Williams and J. F. Cornwell 2923 



                                                                                                                                    

the existence of an invariant integral for each supergroup is 
guaranteed. 

Our problem, then, is to learn how to evaluate invariant 
integrals for this class of Lie group. We will see that for the 
simple Lie supergroups SPL(nlm;EL), OSP(nI2r;EL), 
B (n;EL) and certain of their real forms this can be expressed 
in a very convenient way (see Secs. V, VI, and VII) in terms of 
the (known) Haar integrals over the simple Lie groups. In 
this section we examine techniques for evaluating Haar inte
grals over Lie supergroups in general. 

Definition 3.1: IfG is a Lie supergroup,fE ,2"1(G,EL) 
and U, V E G the left translation Uf E ,2" I( G,E L) is defined by 
Uf( V) = f( U -I V). Similarly the right translation is defined 
byf(V)U =f(VU). Clearly if e is the identity ofG then 
ef=f=fe. Also U(Vf) = UV(f),(fV)V= (f)UVand (Uf) 
V = U(fV) for each U,VE G. 

Definition 3.2: (a) A positive integral on a Lie super
group G is said to be left invariant if for every fE ,2"1(G,EL) 
and U, V E G we have 

f f(U-IV)dp(V) = f f(V)dp(V). (3.1) 

(b) Similarly a positive integral is right invariant if 

f f(VU)dp(V) = f f(V)dp(V). (3.2) 

(c) A supergroup for which the left and right invariant 
integrals are equal is said to be unimodular. 

In particular we note that if a subset A eGis measura
ble and p(A ) is left and right invariant then, 

p(UA) = p(A) = p(AV) E R+ (3.3) 

for all U,VE G. 
Definition 3.3: A semisimple Lie supergroup is a Lie 

supergroup with a semisimple Lie superalgebra (see KacI2
). 

Proposition 3.4: The left and right invariant integrals 
over a semisimple Lie supergroup are identical for each L. 

Proof If a Lie supergroup Gis semisimple it is equal to 
its closed commutator subgroup. It follows that this is true 
for each related Lie group [1 L' Then by Proposition 15 of 
Ref. 10 (p. 83), [1 L is unimodular. Hence G is unimodular. 

We can also see that any connected Lie supergroup con
sidered as a Lie group is the semidirect product of two com
ponents, one of which corresponds to the Lie subalgebra of 
the Lie superalgebra the other being a connected nilpotent 
group. By Proposition 1.4 of Helgason (Ref. 13, p. 366), the 
nilpotent part is always unimodular. Now a semidirect pro
duct of two groups is unimodular ifboth groups are separate
ly unimodular. [See Hewitt and Rossll p. 210, Sec. (15.29). 
The fact that the functional /j (h ) is equal to 1 is most easily 
seen from the statement in Sec. (15.23) of the same book.] 
Thus a Lie supergroup is unimodular if the Lie group corre
sponding to the Lie subalgebra (,2" 0) of its Lie superalgebra is 
unimodular. In particular, since the Poincare group is uni
modular, the extended Poincare group is also unimodular. 
(It also coincides with its closed commutator subgroup.) 

We note that since the Lebesgue integral is a Haar inte
gral for the additive group Rn (see Nachbin lO

) we already 
have one example of an invariant integral for a supergroup, 
i.e., the additive group E ,;.n. 
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We now narrow our attention to linear Lie supergroups 
which are defined as follows. 

Definition 3.5: An (mln)-dimensionalIinear Lie super
group G is defined to be a Lie supergroup with a faithful 
representation by matrices from M (Plq;EL) depending on m 
even and n odd parameters. The group operation is given by 
matrix multiplication. 

Since x E ELO(O E EL I) can be written x = xiei(O 
= Oj~) and the e i 's(~ 's) can be manipulated as matrices (ma

trix representations obeying normal matrix mUltiplication 
can in fact be constructed for each L ), we can deduce that, if 
G is a linear Lie supergroup then [1 L is a linear Lie group for 
each L. One can therefore consider the matrix representa
tion of G as a "coded" matrix representation of [1 L' 

As with linear Lie groups we do not insist that a linear 
Lie supergroup requires only one chart. We require simply 
that if several charts are required then each chart can be 
expressed as a set of matrices. 

Now we further restrict our attention to left invariant 
integrals. It is possible to carry through the following proce
dure for right invariant integrals but all groups of interest are 
unimodular so that this is unnecessary. 

In Sec. II, we stated how the weight function is obtained 
from a linearly independent set of I-forms on a manifold. 
There is a well-known prescription for finding left invariant 
I-forms (sometimes called Maurer-Cartan I-forms) on a lin
ear Lie group (cf. ChevalleyI4), which is conveniently ex
pressed in the following lemma. 

Lemma 3. 6: Let ~ be a matrix representation of a chart 
containing the identity e of a linear Lie group [1 parame
trized by [xl' J, xl' E R. Let aU = (a~ lax,,),. Evaluate the 
matrix elements A ~ from the equations 

(]), -I a~ _ A I' U - 1 2 -u -- - U a, p - , , ... 
axl' 

(3.4) 

The left invariant I-forms w I' are then given by wi' 

= A ~ dxu in the chart ~, and a left invariant weight func
tion is given by 1 det[ A ~ ] I· 

Theorem 3.7: Let G be an (mln)-dimensionallinear Lie 
group and let U be a matrix representation of a chart con
taining the identity e E G expressed in terms of the param
eters [xl',OT LetaI' = (aU laxl') , and/3" = (au laO"),. 
Suppose further that if Ua' a = 1,2, ... , is an atlas for G the 
Jacobian of coordinate change on each UanUp is equal to 
one. The left invariant weight function 1r G can then be ob
tained from the equations 

and 

as 

U - I au - U b P /3 - -al'au + I' P 
axl' 

1r G = 1 (det [ po(a; (xb ,0)) ] det [Po(d ~ (xb ,0)) H"'l 
Proof Consider first the equation 

U - Iau 
u +b P /3 - = al'au I' p' 

axl' 
Multiply by ei on the left, then recall from the Appendix that 
aX= (- 1)la llXIXa fora EEL,XEM(plq;EL)toobtainfor 
each i 
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U - I au - q bP f3P ej - - aJlejaq + Jlej • 

ax'" 

Now expand a; and b~ in terms of the projection functions 
Pk and q[ [see Definition 2.2(c)] noting that by construction 

lal = 0 and Ib I = 1, and l5 that eMU lax"') = (au lax'/') to 
obtain 

U - 1 au ( q) ( q) - = Po aJl ejaq + Pk aJl ekeiaq 
ax'/' 

+ qj(b~)fjei f3p, 

with k = 1,2, ... ,A/ - 1 andj = 1,2, ... ,A/. 
Ifwe now consider the Taylor expansion of a; in all the 

real variables x7, () f, i i= ° it is clear that po(a: (x,() )) 
= po(a; (xo,O)) so that 

U- I au = po(a;(xO,O))eiaq + Pk(a;)ekeiaq 
ax'/' 

+ qj(b~)~ei f3p. (3.5) 

By a similar calculation we obtain 

U -I au = - q[(c~)flfpq + Po(d ~(xo,O))~ f3p a(); 
(3.6) 

Suppose the left invariant I-forms on ~ L written as a matrix 
equation take the form 

[W:] = [P Q] [dX:] 
LUj R S d() [ 

with the indices ordered such that 

[dx~,d()r]' = [dx6, ... ,dx';,dxl , ... ,dx,[" ... ,dx',Y _ I ,d() I , ... ,d() 7 ,d() ~, ... ,d() ff ]' 
and the indices in the matrix [wr,LUj] I having the same ordering. A comparison of Lemma 3.5 with Eqs. (3.5) and (3.6) 
(assuming the same index ordering) then shows that the left invariant weight function for G can be written as 

P11 P12 I q11 ql2 

° P22 P23 Pij ° q22 qij 

° P33 I ° 
° ° 

° ° 
° ° ° 

° ° ° 
° P.YJV' ° qJV'.Y 

Y G = Idet I ' 
° r l2 rl3 Sl1 S12 

0 723 7ij ° S22 Sij 

° ° 
° ° 

° ° 
° ° ° ° 

° 7 JV' - I ,.A'" ° 
° ° S.Y.Y 

wherepij,qij,7ij' andsij are mXn, nXn, mXn, and nXm submatrices, such that 

(Pii); = po(a;(xo,O)), i = O, ... ,A/ - 1; CT# = 1, ... ,m, 

(s;; Y: = Po(d ~ (xo,O)), i = 1, ... ,A/; p,p, = 1, ... ,n, 

and where Pij,qij,sij are zero for i>j and tij is zero for i>j. The values of the elements of the other submatrices are irrelevant, 
since with this structure Y G = I (ll ~ 0 I det Pii)(ll:::' 1 det Si;) I. 

Thus, 

To extend this to a Lie supergroup G containing several 
charts there are two cases to consider: (1) G is one connected 
component, (2) G has several components. 

In the first case, the answer for real manifolds is to 
choose the Jacobian determinant on the overlapping regions 
to have value 1. We can achieve this in the case of a Lie 

2925 J. Math. Phys., Vol. 25, No. 10, October 1984 

supergroup by insisting that det [ po(a(xJl,() '')Ia(yq,t/J P))] = 1 
on each Ua nUtJ, where (a(x'" ,() '')I a(Y",t/J P)) denotes the super 
Jacobian matrix. The weight function is then the same in 
each chart, that is, for each Ua , Y U

a 
= Y G((x"',() V)a)' 

Note that requiring that the superdeterminant of the coordi
nate change is equal to 1 does not achieve this result. 

In the second case, it is clear that each component of a 
many component group is a topological copy of the compo
nent connected to the identity. So that wejust need to use 
this fact to obtain an integral over the whole group. 
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IV. LEFT INVARIANT INTEGRAL FOR THE LIE 
SUPERGROUP SPL(nlm;EL ) 

It is clear from the work of Rogers5 that Lie super
groups can be constructed by starting with a real Lie superal
gebra L = Lo Gl L I and forming the "graded tensor product" 
ELO ® Lo Gl EL I ®L I , whereLo,L I are the even, respectively, 
odd parts of the superalgebra. This then forms a Lie module 
and thus defines a Lie supergroup (or possibly several Lie 
supergroups). This procedure was proposed by Rittenberg 
and Scheunert, 16 as a formal algebraic construction. That is 
they defined the "group" as the exponential of the algebra 
and did not impose any topology on the resulting "group." 
(Note that the supergroups in this paper that use the conju
gation operations are not Lie supergroups according to the 
definition of Rogers.) 

.To carry out this construction we need to use the expo
nential function for G. This is straightforward to obtain from 
the exponential function defined on f§ L' and it does, in fact, 
satisfy all the properties endowed on it in the literature so 
that we will not detail it here. 

The simple Lie superalgebras have been classified (see 
Kac l2 and Scheunert l7

) and their real forms determined by 
Kac, 12 and by Parker I 8 who gives construction methods. It is 
thus straightforward to define real simple Lie supergroups, 
and since we can always construct faithful matrix represen
tations for the superalgebras which obey the commutator 
[X,Y] =XY - (- l),xIIYI YX (noting that in some cases it is 
necessary to use the adjoint representation for this, e.g., 
spl(n I n)l 1 2n ), it is clear that these will be linear Lie super
groups. 

For terminology for the superalgebras, we follow 
Scheunert so that we can consistently use small latin letters 
to denote the algebras and Lie modules, and large latin let
ters for the corresponding groups. The Lie module obtained 
from a Lie superalgebra will be denoted as above, i.e., 
spl(n Im;R) is a real superalgebra for which spl(n Im;EL) is the 
corresponding Lie module. 

The supergroup SPL(nlm;EL) is defined by 

SPL(nlm;EL)= {u= [~ ~], sdetU= I} (4.1) 

and its Lie module is 

spl(nlm;EL) = {X= [: !], strx=o}. (4.2) 

Here A,a are n X n matrices with entries from ELO ; B,b 
are n Xm matrices with entries from EL I ;C,c are m Xn ma
trices with entries from ELI; and D,d are m X m matrices 
with entries from E L o. sdet and str have their usual defini
tions if we make the identification Erp = e I = 1 E R. 

It is well known that spl(n Im;R) and hence, spl(n Im;EL ) 

also has a Z grading such that we can write 

X =X_ I GlXOGlXI 

Clearly eachXj> i = - 1,0,1 is a submodule of spl(nIm;EL). 
The supergroup SPL(nlm;EL ) can be decomposed in a 

similar way to give 
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(4.3) 

where the last line is simply a reparametrization. We can 
now identify the subgroups U _ I' Uo, UI , with the submodules 
X -1,xO,xI' respectively, and so construct the supergroup in 
a very straightforward way. Note that X -I,xl are abelian 
and exp(X;) = I + X; = Uj ' i = - 1,1. 

Now recall that the subgroup Uo has a one-dimensional 
invariant subgroup which for our purposes is best factored 
out to give 

U = [~ ~] [~ ~] [e/~In e/~IJ [~~] (4.4) 

with det A = det D = 1, so that 

U- 1 = [ I 0] [e-Y1nln 

-C I ° 
X [A -I 0] [I - B] 

OD-IO I' 
(4.5) 

In this form the block matricesA,B,C,D depend on dis
joint sets of parameters andy E ELO ' Ifn = m then the super
group is no longer simple, the invariant subgroup of Uo is a 
multiple of the identity and hence an invariant subgroup of 
the whole supergroup. It is normal practice in this case to 
factor it out to obtain a simple supergroup. But this leads to a 
group composition rule also involving the factorization un
less the adjoint representation is constructed. To find a Haar 
integral in this case it is better to leave the ideal in, then 
construct the required supergroup as a coset space. This de
composition can be carried out for the real forms of 
spl(nlm;C) with Lo = su*(n) Gl su*(m) Gl R but not for those 
with real form Lo = suI p,q) Gl su(r,s) GlIR. 

Denote the parameters of the matrix blocksA,B,C,Dby 
XU ,()f3,() Y,xo, respectively. Consider first a parameter from 
the set I XU J. We then have 

U- I ;~ = [_:~~~~A :], 
axu 

similarly, 

u- I au = a()f3 
[ 

A-l~DC 

a()f3 _ CA -\ aB 
ae f3 

U -\ au = [a~ 0] 
a()Y -- 0' a() Y 

and 

[
D _lOaD C 

axo 

A-I~D ] a()f3 
_ CA -\ aB D ' 

a() {3 
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U -I ~~ = [I~ I:]' 
Now applying Theorem 3.7, the weight function of 
G = SPL(njm;EL) is given by 

7rG = (Idet [{A -I ::a} (Xg,O)] det [{D- I ;~} (Xg,O)] 

X det [{ :~r } (0,0)] 

Xdet [{A -I ::13 D }(Xg,xg,O)] I tV 
= 7rA 7rD 7rc (Idet [{A -I ::13 D} (Xg,Xg,O)] Ir/, 

where we have written 7rA = 7r[~ ~l etc. and the expres

sion (A -1(aA / axa)J means the matrix of coefficients ob
tained when A -1(aA / axa) is expanded in terms of the super
algebra of A, etc. 

Clearly we can choose a parametrization such that 
7rc = 1 and 7r A' 7r B are the weight functions for SL(n;E L) 
and SL(m;E L)' respectively, i.e., the Lie supergroups ob
tained by extending the domain of the parameters ofSL(n;lR) 
from lR to ELO and 7rsL(nA) = (7rsL(n.R)r~. Now B is an 
arbitrary matrix with entries from ELI so that we can choose 
its parametrization to be such that [B]ij = eij, for 
i = I, ... ,n,j = 1, .. ,m, and e ij E EL I' Then aB /aeij is inde
pendent of the position it is evaluated at and it is a routine 
calculation to show that j det[ (A - l(aB / afJl3)D J] j = I. The 
weight function for SPL(njm;EL) can then be written 

v 
7rSPL (nlm;ELi = (7rsL(n;R) 7rSL(m;R)f • 

V. LEFT INVARIANT INTEGRAL FOR THE 
LlESUPERGROUP OSP(nI2r,EL ). 

This section closely follows the previous one. The Lie 
superalgebra has a 1: grading into three subsets only in the 

I 

special case of osp(2[2r;lR). We treat the general case in which 
there is a decomposition into five subsets (cf. Kac lz) as 
X = X_z EllX_ I EllXoEllXI EllX2 such that (X-z EllX_d, 
(XoJ, and (XI EllX2 J are subalgebras. 

Our definition of osp(n [2r;lR) is given by 

osp(n[2r;lR) = (X E spl(n[2r;lR),xsth + (- 1)IXlhX = 0)(5.1) 

The Lie module is then defined by 

osp(n[2r;EL) = (XE spl(n[2r;EL),xs'h + ( - 1)IXlhX = OJ, 
(5.2) 

o 
o 

and J is any symmetric, non singular matrix. 
Our definition of supertranspose is given by 

s, = [A B]S' = [A' ( - 1)IXIC'] . 
X C D (_I)lxl+IB' D' 

(5.3) 

These definitions differ from those often given.16.19.zo We 
formulate them in this way to allow consistency throughout 
the supermatrix algebra, in which we follow Leites,21 Eq. 
(5.2) above is also immediately applicable to the whole of the 
Lie supermodule. 

If we put J = In' a general element of osp(n 12r;E L) can 
be written 

X= [ ;,; ; 1 
y' d -b' 

(5.4) 

with a E so(n;EL ), bE gl(r;EL ), c and d symmetric with en
tries from E La and y and z having entries from ELI' We then 
have the decomposition 

o 
o 
d 

~l Ell [~ 
o y' 

y 

o 
o 

~lEll[~ ~ ~lEll[-~' ~ ~lEll[~ ~ ~l 
o 0 0 -b' 0 0 0 0 0 0 

(5.5) 

with the sets (X -z Ell X -IJ, (XoJ, and (XI EllXzJ as subalgebras. We can exponentiate each of these separately and construct 
a group element 

U = exp[X_z EllX_dexp[Xo]exp[XI EllXz] 

= [I~ ~ ~] [A E so~n;ELo) 
Y' D+ Y'Y/2 Ir 0 

o 
o ] [ In o Z' 

(B')-I 0 
(5.6) 

o 

o 
We note that 

r 0 -Z 

U-
I

= ~' Ir - C-Z'Z/2 

0 Ir 
] [ 

A 00-IBo~1 B~' 1 [ ~ 
Y'-D+ Y'Y/2 

(5.7) 

Here Z and Yare conveniently parametrized by a different odd parameter (e V) in each position and C and D are parametrized 
by a different even parameter (.xl") at each position. GLe (r;E L) is the component of GL(r;E L) connected to the identity. 
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This construction certainly meets the condition normally given for the orthosymplectic group 16 [see Eq. (5.9) below], and 
in fact meets the more restrictive definition 

SOSP(nI2r;Ed = ! U E SPL(nI2r;EL ),UsthU = h). (5.8) 

It is clear that the only element in common between the three subgroups is the identity so that the representation is faithful and 
that the product of any two matrices of this form can again be decomposed into this form; so we can deduce that this 
construction does give us the whole group, provided we choose a suitable parametrization for the even parts. 

The definition often given 16,19,20 for the orthosymplectic groups 

OSP(nI2r;EL) = ! UEPL (nI2r;EL ),UsthU = h) (5.9) 

is clearly obtained from the above by replacing SO(n;EL) by O(n;EL) and GLe(r;EL) by GL(r;EL ). 
Now denote the parameters of the blocksA, B, C, D, Y, and Zby xa

, xfJ, xY, x8
, e s, and e t;, respectively, and using the pro

cedures of the previous section we obtain 

with 

2928 

u- I au = 
axa 

u- I au = 
axfl 

U- I au = 
axY 

A -I aA 
axa 

0 A -I aA Z 
axa 

-Z'A _laA 
axa 

0 -Z'A -I aA Z 
axa 

0 0 o 

0 0 
a(B')-1 

-ZB'-'--'-
axfl 

B-1 aB Z' B- laB 
axfl axfl 

B -I aB (c + Z 'Z) 
axfJ 2 

+ -C+ - B ( 
Z'Z) , a(B')-1 

2 axfl 
B,a(B')-1 

axfl 
0 0 

[: 

0 

~l 0 

0 

-ZB' aDBZ ' 
ax8 

( _ C+ Z'Z)B' aD BZ' 
2 ax8 

U- I au = [::: 
ae s 

a31 

-ZB' ay' A +A -I ay AZ+ZB'(~ ay _ ay' ~)BZ" 
ae s ae s 2 ae s ae s 2 

a =A -I ay B-ZB'(l:: ay _ ay' ~)B' 
12 ae s 2 aes ae s 2 

a = -ZB' ay' AZ+A -I ay B(C+ Z'Z) 
13 ae s aes 2 

-ZB'(~ ay _ ay' ~)B(C+ Z'Z), 
2 ae s ae s 2 2 
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a =-(-c Z'Z)B,aY'A_Z'A-IaYBZ' 
21 + 2 aos aos 

( _ c Z'Z) B' (~ ay _ aY' ~) BZ', 
+ + 2 2 ao s ao s 2 

a = -Z'A -I ay B (-C+ Z'Z)B'(~ ay _ ayt ~)B, 22 ao 5 + 2 2 ao 5 ao 5 2 

a = _ (-C Z'Z)B' ay' AZ-ZtA -I ay B(C+ Z'Z) 
23 + 2 aos aos 2 

+ (-C+ Z~Z)B,(~t :; _ ~~; ~)B(C+ Z~Z). 

a = -B' ay' A +B'(~ ay _ ayt 
~)BZt, 

31 ao s 2 aos aos 2 

( Y' ay ayt Y) 
a32 = B t 2 ao 5 - ao 5"2 B, and 

a = -B' ay' AZ+B'(l: ay _ ay ~)B(C+ Z'Z), 
33 ao 5 2 ao 5 ao 5 2 2 

0 0 
az 
ao; 

and u- I au = az' 0 
zt az az t Z ao; --+--ao; 2 ao; ao; 2 

0 0 0 

The fact that each of these can be expressed in tenns of the Lie superalgebra is readily checked. 
Now as for SPL(nlm;Ed we can use Theorem 3.7 to obtain for G = SOSP(nlm;EL ) 

Y G = (Idet [{A -I :~}(Xg,O)] det [{B -I :~}(xg,O)] 

Xdet [{B' ;~ B } (xg,xg ,0)] det [{A -I :; B } (Xg,xg,O)] IY
Y 

= Y A Y B (Idet [{B' ;~ B } (xg,xg ,0)] det [{A -I :; B }(Xg,xg,O)] I)ff, 

where Y A is the weight function for SO(n;EL) and 'lrB is 
the weight function for GLe (r;E L)' Now let us insist that the 
parametrization of the matrices D and Yis such that aD / ax6 

and ay / ao 5 are constant on G. It is then a matter of routine 
manipulation to obtain 

'lrG = Y A 'lrB(ldet[ B(xg,0)]Y(2r+ II. 
A parametrization that is often used for GL(n,R) is 

VI. LEFT INVARIANT INTEGRAL FOR THE LIE 
SUPERGROUP B{n;£L) 

The Lie superalgebra b (n;C) is defined byl7 

b(n;C) = !XE spl(nln;C),XP = - (- I)IXIX J. 

Here if 

X= [: ~], 
then 

XP= [ d
t 

( _1)IXlct 
_ (_1)IX1b t]. 

a' 

(5.10) 

Xij E R, det[X] # O. If we insist that det[X] > 0 then we are 
able to use this parametrization here for GLe (n;E L) (with the 
obvious extension of the domain of the parameters). The 
weight function for GL(n,R) parametrized in this way is (1/ 
[det X])r. We now have 

The defining condition restricts the matrix X to the 
fonn 

(5.11) 
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with b ' = band c' = - c so that there is a Z grading of the 
algebra such that 
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The real form b (n;R) gives us the Lie module 

b(n;EL) = {XEspl(nln;EL),XP= -Xl (6.1) 

and since exp(X P) = (exp X Y' for IX I = 0 we can define the 
supergroup B(n;EL) as 

B(n;Ed= {UESPL(nln;EL),UUP = 1}. (6.2) 

This supergroup has been previously defined by Ne'emanl9 

and Rittenberg20 [who call it Pin - 1)]. Now since every 
U E B(n;EL) is invertible we can write it in the form 

U=[~ ~][~ ~][~~] 
and use the definition (6.2) to determine that C = - C ', 
B = B I, andD = (A ')-I,A E SL(n;EL). We can thus identify 
the group decomposition with that of the algebra. We note 
that 

U -I = [ 1 0] [A -I 0 ] [1 - B] 
-C 10 At 0 l' 

It is now easy to evaluate the weight function ?P" B(n;ELI sim
ply by examining the result for SPL(n I m;E L)' We find 

?P" B(n;ELI = ?P"SLln;ELI' (6.3) 

There is one other real form of B(n;C) which exists only for 
even n with Lo = su*(n). This can be treated by exactly the 
same procedure. 

VII. INVARIANT INTEGRAL FOR THE SUPER POINCARE 
GROUPS AND SUPERSPACE 

We consider a slight generalization of the super Poin
care group with four odd generators (extension to any num
ber is straightforward) as given for instance by Salam and 
Str~thdee. 22 

The super Poincare group can be considered as the se
midirect produce of the Lorentz group (over E L 0) with the 
supertranslation group (defined below). In terms of the Lor
entz generators (M.uv ) translations (P .. ) and supersymmetry 
generators (Q a) which we take to be the generators of a real 
superalgebra, we have 

{M.uvl®{p .. ,Qal· 

Now the M.uv can be taken to generate the Lie supergroup 
SL(2, ICE L) considered as a six parameter real Lie super
group, and the translations and supertranslation generators 
give a supertranslation group defined by 

(x",e V)o()f',¢ V) = (xl' +)f' + a~ue v¢ u,e V + ¢ V), 

with a~u E ELO ' This is more general than the group normal
ly given22 since the weight function, as we will see, is inde
pendent of the coefficients. 

For this supergroup we use a different technique to that 
of the previous three sections. We obtain the weight function 
for the supersymmetry group and then combine the result 
with that for SL(2,CEL ). 

We thus refer to example (e) [Sec. (15.17) p. 199] of 
Hewitt and ROSSll using their terminology. The associated 
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Lie group meets the laid down conditions and the left invar
iant integral is thus given by 

f I d;d8, 
IJ (u1x,YI) I 

where J (u1x, YI) is the Jacobian determinant of left transla
tions in the group. It is easy to see that this is 1 since the 
Jacobian matrix is upper triangular with l's along the diag
onal. We note that since the group is connected and nilpotent 
it is unimodular. 

Now if we choose a parametrization for SL(2,CEL ) as 

[z~' z6z7;6:e - r ] 

with z" = xl' + i)f', Jl = 5, ... ,7; x.u,)f' E ELO , we can use 
Theorem 3.6 to obtain 

?P"SLI2,CELI = exp{4.ffx6 l. 
Now by Proposition 29 (p. 1(0) of Nachbin, 10 the left 

invariant integral for a semidirect product is given by 

f /(X)dx = f Itv,x) dy dz, 
oH(az ) 

with G = H®K, dy the left invariant integral on H, dz that on 
K and dx that on G. By Proposition 28 (p. 99) of Nachbin, 
o H (a z ) = 1 since the super Poincare, super Lorentz and su
pertranslation groups are each unimodular. We can thus 
write the invariant integral for the super Poincare group as 

f lexp{ 4vYx6 ld~ d;dO. 
We note that the extension to any number of odd generators 
will not affect this result and neither will the inclusion of 
"central charges" since in this case the group considered is 
(super Poincare group)® (an abelian group generated by the 
central charges in the superalgebra). 

To finish this section we note that the superspace used 
in many theories is constructed as a coset space G / H 
= (super Poincare)/(super Lorentz). But this is just the su

pertranslation group given above. Now since G / H is again a 
group, the G invariant integral on G / His precisely the invar
iant integral on G / H. (See Hewitt and Ross lip. 206.) 

VIII. BEREZIN INTEGRATION 

The theory we have developed has been based, in a natu
ral way, on the topology of E x·n. This is closely analogous to 
integration on complex manifolds. This gives results that are 
very different from the theory normally used in the physics 
literature, i.e., (1) integration is not the "inverse" of differen
tiation (or even the same as differentiation!). Of course, 
neither is the Lebesgue integral. 

(2) The Jacobian used for transformations is that for the 
components (x),e J) not the "super Jacobian" or Berezin 
function. 

(3) The result of integration is an element of EL , i.e., 
Sf~EL for/E gl(M,EL), not a real number. 

The Berezin theory for supermanifolds is based on the 
"sheaf' definition mentioned in the Introduction (see 
Leites21 for a full exposition and Rogers4 for the relationship 
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between the alternatives). It is sufficient for our purposes to 
consider a superdomain. That is, consider a region R of Rn 

parametrized by ! uP , P = 1,2, ... ,n j, a set of elements of a 
Grassmann algebra !S;.i = 1,2, ... ,L J and the set offunc-
tions 

H = {flf(UP,Sj) =fo(uP) + jtl/;(UP)Sj 

L 

+ L /;j(UP)Sif\j + ... + f12 ... L(UP)Sl/\2/\ ... /\L, 
i.j= I 

(8.1) 

A superdomain is then the region R together with the set of 
functions (sheaf) H, it is denoted by S n,L and is said to have 
coordinate system (u,s). 

The Berezin integral of a functionf E H is then defined 
by21 

IB f= (- 1)I-LIL-I)/2+Ln) LfI2"'L(UP)d~. (8.2) 

Note that the sign on the rhs of (8.2) does not appear in 
earlier articles (cf. Ref. 6). Apart from the sign, this is as used 
in the physics literature. It is easy to see that fB:H---.R. Leites 
defines the transformation of coordinates to be given by the 
"super Jacobian" of the coordinate change. 

It was shown by Rogers4 that a Goo -supermanifold can 
be constructed from a sheaf supermanifold, but unfortunate
ly the Berezin integral cannot be transferred to give a notion 
of measure on a GOO -supermanifold. 

It is clear that Berezin integration is a linear functional 
defined on H, that is little more than a projection map. It is 
stated in Ref. 6 that invariant integrals can be constructed 
with fB and that the result for SPL(plq;R) (U(p,q)) is zero. 

APPENDIX: NOTATIONS AND CONVENTIONS 

Our conventions follow Rogers4
,5 very closely, with 

some influence from Leites21 and some from personal prefer
ence. 

A. Grassman algebra and superspace 

Let L be a positive integer and denote the basis elements 
ofRLbYEi(i = 1,2, ... ,L). LetEL denote the Grassmann alge
bra over RL with antisymmetric product given by 1\. Then 
EL has basis EO,Ej,Ei/\j, ... ,Ej/\j/\k, ... ,Ei/\j/\k/\ ... /\/' where Eo is 
the unit element of E L' For notational convenience we have 
defined Ei /\j = Ei 1\ Ej etc. so that 

Ej/\j/\ ... /\k/\//\ ... /\m = - Ej/\j/\ ... /\//\k/\ ... /\m 

(of course Eo 1\ Ei = Ei etc.). 

EL has a natural ';[. grading in which (for l = 1,2, ... ,L) 
the homogeneous part E~) consists of all real linear combi
nations of basis elements Ei /\j /\ ... /\ k involving I indices, with 
E ~ = [REo J. Elements of E~) will be said to be oflevell, 
denoted by l (x) = I if x E E~). This induces a ';[.2 grading EL 
= ELO E9ELl , withELO = [E~), levenJ andEL I = !E~), I 

odd J. Then E L o,E L I ,E L are vector spaces over R with dim 
ELO =dimELI =2L- I =ffand dim EL =2ff. 
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The degree or parity of a homogeneous ';[.2 graded ele
ment x E ELa is defined by Ixl = a, a E ! 0, 1 J. It will be said 
that x is "even" if Ix I = 0, and is "odd" if Ix I = I. 

It is convenient to denote the basis elements of E L 0 by 
ei, i = 0,1, ... / - 1 and correspondingly the basis elements 
of EL I by fj,j = 1,2, ... / with the assignment eo = Eo, and 
the restrictions that if i < k then I (ej )<1 (ek) and 1 (f; )<1 (fk)' 
(Where a specific basis is needed it is better to revert to the E 
basis rather than have complicated index assignments.) 

A typical element of ELO will be denoted by x = xjei 
(summation implied) i = 0,1, ... / - 1, Xi E R, and a typical 
element of EL I will be denoted by 0 = 0lj (summation im
plied)j = 1,2, ... /,Oj E R. We will write an element of EL as 
x+O. 

We define a norm on EL by 

IIx + 0 II = C~I (xY + j~1 (oy)1I2 

and the corresponding distance function as 
d (x + O,x' + 0 ') = Ilx - x' + 0 - 0 'II.EL is then a topologi
cal vector space with a Hausdortftopology. The basis vec
tors in E L (e i ,fj , or equivalently Ej /\j /\ ... /\ d are defined to be 
orthonormal. The complex Grassmann space is defined by 
f..E L = E L E9 iE L . 

Supers pace is defined as E ';:-n = E 'l'.o X Ell 
= ELO X· .. XELO xEL I X .. · xEL I' i.e., the Cartesian pro

duct of m copies of E LO and n copies of ELI' A typical ele
ment of E'l'.,n is then of the form (xl,x2, ... ,xm,0 1,02, ... on), 

h P · .. vV' - I P P R d 0 V .... A' 0 Vf 0 v E R w erex =~j=o xiej,Xj E an =~j=1 jj' j . 
This will be written (x,O ) unless we wish to consider explicitly 
the real variables x: and 0; in which case we will write 
(x"Oj)' That is, the Greek indices which appear as super
scripts distinguish the various copies of ELO or EL I' while 
the Latin indices which appear as subscripts indicate the 
component "within" ELO or EL I' Summation is assumed 
over all repeated indices including those that are suppressed, 
e.g., 

m m .1 

apxP = L apxiei = L I apxiei' 
p=1 p=I,=O 

B.Analysis 

Differentiation is defined as by Rogers4 (see also Boyer 
and Gitter l5 for a full discussion of this). We prefer to denote 
it in the normal way, i.e., a laxp

, or a lao v. Differentiation 
with respect to the components xi and 0; is also defined in 
the normal way and is denoted by a I axi and a lao j. Func
tionsfE'l'.,n---.EL will be said to be G I if they are once differ
entiable with respect to xP,O v for all p, v and Goo if they are 
infinitely differentiable, 

C. Differential geometry 

We denote manifolds over E'l'.,n by large Latin letters, 
e.g" M, and the corresponding manifolds over Rff(m + n) by 
script letters JI L' the SUbscript being a reminder that we are 
in fact considering a whole family of manifolds (one for each 
value of L ). The dimension of M is denoted by (min). The 
space of vector fields on M is denoted by D I(M) and admits a 
gradingD I(M) = D I(M)o E9 D I(M) (see Rogers4). The "tan
gent" space at a point p of Mis denoted by STp (M), and again 
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is graded, the even part, which "corresponds" to the tangent 
space of .J,( L' being denoted by Tp (M). 

Lie supergroups are denoted by large latin letters, e.g., 
G, and their corresponding Lie groups by large script letters, 
e.g., f1 L' The "tangent" space at the identity is denoted by 
STe(G) and forms a "Lie super module" (or "Lie left BL -
module" in the terminology of Rogers4

). The even part of 
STe (G) is denoted by Te (G) and called a "Lie module." The 
basis of the Lie supermodule of a Lie supergroup G of dimen
sion(mln) is denoted by {aft'.B,,} with I aft I =0, I.B"I = 1, 
Il = 1,2, ... ,m and v = 1,2, ... ,n. A basis ofthe Lie algebra of 
f1 L is then given by {ejaft ,fj .B" }. 

D. Super matrix algebra 

For an extensive review of this subject see Leites.21 
Super matrices are partitioned in block form 

M= [~ ~]. The setM(plq;EL ) is defined to be such that A 
ispXp andD is qXq with entries from Ew, whileB and C 
have dimensions p X q and q Xp and have entries from ELI . 
ThesetM(plq;EL ) is defined to be such that A ispXp andD 
is q X q with entries from ELI and Band Care p X q and q Xp 
and have entries from ELl' We define M (p Iq;E L) 
= M (p I q;E L) E!) M (p I q;E L ). Parity of matrices is defined by 
IMI = OifMeM(plq;EL ) and IMI = 1 ifMeM(plq;EL )· 
Multiplication by parameters, from E L is defined by 

aX = [a~ (_ l~alaIJ [~ ~] 
for a e ELa,a e {O,l} this then satisfies aX = ( - 1)la11x IXa. 

Matrix supergroups are subsets of M(plq;EL ) so that 
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every group element is even. The "tangent" space STe(G) 
consists of both odd and even matrices with Te (G ) even. 
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A novel class of Bessel function integrals 
M. L. Glasser 
Department 0/ Mathematics and Computer Science, Clarkson College o/Technology, Potsdam, New York 
13676 

(Received 12 October 1983; accepted for publication 16 February 1984) 

A number of definite integrals over the unit interval involving Bessel functions with argument 
[a2x- 1 + /3 2(1 - X)-lP/2 are evaluated in closed form. 

PACS numbers: 02.90. + p, 02.30. + g 

I. INTRODUCTION 

The integrals to be discussed in this paper have arisen in 
a calculation of the screening properties of a charged impuri
ty located inside and near the surface of a metal subjected to 
a magnetic field. Their unusual nature and the surprise that 
they could be evaluated at all, thus avoiding a tedious nu
merical analysis, suggested that there might be sufficient in
terest to justify publishing this short paper. 

The integrals are 

tPv(a,/3) = f(UU')-3/2to-VJv(to)dU, (1) 

(2) 

and 

(3) 

For completeness, although they are of a simpler nature, I 
include 

Av = f(UU')(3-V)I2Jv(A(UU')-1/2)dU, v=0,1,2 (4) 

and 

Eo = fUl/2(U')-3/2JO(A (UU')-1/2)du. (5) 

The notation is 

u' = 1 - u, to = I a~ + ~ , (6) 
\j u U 

where a and /3 are positive constants and Re v> - 1, unless 
otherwise specified. 

II. EVALUATION 

Let sP p and sP t- 1 denote the Laplace transform and its 
inverse. 1 Then we have the integral representation2 

t -vJv(t)=rsPi/41{p-V-le-t2/P) (Rev> -1) (7) 

so, since the interchange of the order of integration causes no 
problems, 

tPv(a,/J) = 2V sPi/}{ p-V- 1f(UU')-3/2 

The substitution x = (U')-I - 1 reduces the inner integral to 

exp[ - p-l(a2 + /3 2
)] L'" (x- 1/2 + x-3/2) 

Xexp{ - p-l(a2x +/3 2x- I)}dx 

which is a tabulated Laplace transform. 3 Thus, 

tPv(a,/J) = [2vl7lI2(a + /3 )la/3 ] sP i/41 { P - (v - 112) - I 

(9) 

Xexp[ - p-I(a + /3)2]j. (10) 

The latter is a tabulated inverse Laplace transform,4 whence 

tPv(a,/J) = (217) 1 12(a/3 )-I(a + /3 fl2 - vJv _ 112 (a + /3). 
(11) 

The case of the second integral I/lo(a,/3) is somewhat 
more complicated. The procedure above leads to 

I/lo(a,/3 ) 

= sP i/4
1{ p-I exp[ _p-l(a2 +/32)]L"'(X + I)-lx -3/2 

xexp[ p-l(a2x + /32x-I)]dX}. (12) 

To evaluate the x-integral in (12) we use the Parseval formula 
for the Laplace transform, noting that5 

sPz-I{(x+ I)-I} =e- z, (13) 

sP z (x- 3/2exp[ - p-I(/32x + a 2x- 1)]} 

= (l7p)1I2a -1 exp[ - 2ap-1I2(z+/3 2p-I)1/2] (14) 

so that the x-integral becomes 

(l7P)1/2a -IL'" exp[ - z - 2ap-II2(Z + /3 2p-I)1/2]dz 

= 2a- I(l7p)1/2 exp(/3 2/p) 

Xl'" exp[-2ap-1/2t - t 2]tdt. (15) 
J/'Ip-1/2 

From Ref. 6 we derive the formula 

l'" exp[ - xt - t 2]t dt 

= + {exP [ - bx - b 2] _ 2- 1171/2 

XX~2/4 erfc( + x + b )}, 

so that 

(16) 

I/lo(a,/3) = 171/2a- lsPi/41{ p-l12 (exp[ - p-I(a +/3)2] 

- a- I(17/p)1/2 erfc[ p-1/2(a + /3)])}. (17) 

The first inverse Laplace transform in (17) is tabulated7; the 
second is not, but it can be shown that 
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(18) 

Thus, 

"'o(a,{3) = 21a- 1 cos(a +/3) + si[2- I(a +/3)]). (19) 

The same procedure applied to Co(a,{3 ) yields the rhs of 
(12), where x- 3/Z is replaced by x- 1I2• A similar application 
of Parseval's formula gives 

Co(a,{3) = 1T 2" il411 p-I erfc [p-I/Z(a,/3)] j, (20) 

and by (18) this is reduced to 

Co(a,/3 ) = - 2 si(a + /3). (21) 

The integrals in (4) are much simpler. By the substitu
tionx = 2- I(UU,)-I/Z they reduce to tabulated Hankel 
transforms8 (our notation for the Hankel transform and the 
Struve functions are taken from this reference). 

Ao = 8(U )-l/zJ¥'olxI/Z(xZ - l)- I/ZO(X - l);U J 

= 4A. - I cos(U ), 

Al = 4(U )-I/zJ¥'dxl/Z(xZ _l)- I/ZO(X - l);U J 

= U -I sin(U), (22) 

Az = 2(U )-l/zJ¥'zlx-3/Z(xZ - l)- I/ZO(X - l);U J 

= (1T/A. )I/Z J3/Z(U), 

where 0 (x) denotes the Heaviside unit step function. By this 
procedure we have 
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Bo =A. -I cos(U) - U- I 

+ 4 Jo(U ) - 21T[ Jo(U )HI(U) -J1(U )Ho(U)] 

+ 2(U )-112J¥'0Ix-3/Z(XZ - l) IIZO(x - l);U J. (23) 

The latter Hankel transform is not tabulated, but it can be 
shown to be 

(U )-I/Z cos(U) + (U )I/Z si(U) (24) 

which completes the evaluation. 
The example (21) suggests the conjecture that for any 

function! for which the integral exists, 

(( 1 1 )IIZ Jo -;; + -;;; !(to}du = F (a + /3). (25) 
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Post-Newtonian extensions of the Runge-Lenz vector 
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We obtain the most general post-Newtonian extension of the Runge-Lenz vector corresponding 
to a very large class of two-body relativistic systems whose equations of the relative motion can be 
derived from a post-Newtonian Hamiltonian depending on four parameters which include the 
electromagnetic and gravitational cases. Assuming a couple of conditions, we fix the arbitrariness 
and obtain a unique post-Newtonian Runge-Lenz vector, whose associated symmetries generate 
the same algebra as in the Keplerian case. 

PACS numbers: 03.30. + p, 03.20. + i 

I. INTRODUCTION 

In Newtonian mechanics, a two-body system interact
ing through a Coulombian potential Vir) = k Ir (k = const) 
admits, in the center-of-mass frame, a vector first integral 
AN orthogonal to the relative angular momentum, which is 
called the Runge-Lenz vector: 

AN V AJN - kr-Ir, ( 1) 

I N prAv, p=m l m2(m l +m2)-I, 

(2) 

From a practical point of view, AN can be used to obtain 
directly the relative orbit of the system through a trivial cal
culation involving the scalar product (roAN)' Moreover, the 
dynamical symmetries associated to (2,u- 1IEN 1)-1/2 AN 
generate-together with the generators of the spatial rota
tions associated to the vector first integral IN-the Lie alge
bra corresponding to T(3)XSO(3) (EN = 0), SO(3,1) 
(EN> 0), or SO(4) (EN < 0), where EN is the relative Newto
nian energy. 

Basic questions addressed this paper are the following: 
Given post-Newtonian equations of motion that correspond 
to a two-body system, does there exists any post-Newtonian 
extension of the Runge-Lenz vector? If such an extension 
exists, is there uniqueness? Are the symmetries mentioned 
above broken? 

In Sec. II, we prove that such a post-Newtonian exten
sion is possible for a very large class of systems which include 
the relevant physical interactions (electromagnetism and 
gravitation). Two arbitrary functions of the variables 
(EN' I N) appear in the general solution corresponding to the 
extension. One ofthem can be fixed by assuming a particular 
coordinate system, in the plane of the relative motion, in 
order to obtain the most simple equation for the orbit. This 
calculation is presented in Sec. III, whereas we study the Lie 
algebra generated by the symmetries associated-via 
Noether's inverse theorem-to the previous extension of AN 
in Sec. IV. 

II. EXTENSION OF THE RUNGE-LENZ VECTOR 

Let us consider a relativistic two-body system, consti
tuted by two structureless pointlike particles, whose equa
tions of motion at the post-Newtonian level, in the center-of-

mass frame, are obtained from the Hamiltonian 

(3) 

where k is a constant, c the velocity of light in vacuum, p is 
the relative momentum [i.e., p =,uv + 0 (c- 2

)] and a,b,d,e 
are arbitrary functions of the dimensionless variable,um -I, 
m=m l + m2' The structure (3) corresponds to a nonsingu
lar (except at r = 0) relativistic extension, invariant under 
time translations and spatial rotations, of a classical Hamil
tonian with a Coulombian potential. 

The expression (3) coincides, in the center-of-mass 
frame, with Darwin's Hamiltonian 1,2 (DH) and Einstein-In
feld-Hoffmann's Hamiltonian3

,4 (EIHH) for the particular 
values 

DH: a=l! - 1 + 3,ulm), b =!,ulm, d =0, 

e=!,ulm, k= - ele2 , (4) 

EIHH: a=M - 1 + 3,ulm), b ==!(3 + ,ulm), 

d =~, e=!,ulm, k =Gm l m2. (5) 

The DH (EIHH) describes the electromagnetic (gravita
tional) interaction of two pointlike particles up to the post
Newtonian level in the framework of classical electrodynam
ics (general relativity). 

We shall look for a post-Newtonian extension of the 
Runge-Lenz vector AN, orthogonal to the relative post
Newtonian angular momentum J = rAp, being a vector 
first integral of the equations of motion derived from (1). 

From the expression v = an lap, one easily obtains 

p=,uv+ :2{ -4a,uv2v+ 2: [bv+e (;) r]}, (6) 

J = { 1 + :2 [ - 4av2 + 2b :r ]}IN. (7) 

Then, we shall consider the decomposition 

(8) 

Our objective is to calculate the functionsjandg, which we 
shall assume invariant under spatial rotations. It is clear that 
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J, g must be arbitrary functions of three independent scalars, 
for instance (r,EN.IN ), where I N = IJN I. 

Here A is a vector first integral if its Poisson bracket 
with the Hamiltonian (1) vanishes: 

[A,H] = O. (9) 

In order to calculate this bracket in a simple way, we can 
rewrite the extension (S) in the form 

A = Ao + (1/ e2)[aAo + .0 J t\ Ao], a, .0 (r,J,E), (10) 

with 

Ao=(p2 _ ~)r- (r·p) p, J= IJI, E=H. (11) 
f.L r f.L 

The introduction of this decomposition into Eq. (9) 
leads to a couple of partial differential equations (with re
spect to the variable r) for a and .0, whose integrations give 

J2 k [ E 
a= -- 2(4o-b-e)-+(4o-2b+d - 2e) 

A~W f.L 

X f.L~ + e(£. Y] + a(J,E ), (12) 

.0 = _1_ {(4o - 2b + d - e) ~ (2 E + ~) 
A ~ J /l J2 

(
f.Lkr j2) X arctan 

J(r·p) 

+ ~ (r·p) [2(40 - b - e) E + (40 - 2b + d - e) 
f.Lr /l 

X (~: + :J + e (£.yn + P(J,E), (13) 

where a, P (J,E) are arbitrary functions of their arguments 
and Ao=IAoI. 

Reintroducing the value ofp given by Eq. (6), we can 
rewrite the formulas (10) in the form (S) with 

J~ k [ EN 
1=-- 2(-20a+3b+e)-

A~ W /l 

+ ( _ 120 + 2b + 2e + d ) ~ _ e(J
N 

)2] 
/lr /lr 

(14) 

g=- (4o-2b+d-e)- 2- +-1 { k
2 

(EN k
2

) 

A ~ I N f.L J~ 

(
/lkr J2) X arctan - N 
f.L IN(r'v) 

+ - (r·v) (40 - 2b + d - e) -k [ k
2 

r J~ 

+ ( - 120 + 2b + d + e) :r -e(~: Yl} 
+.0*( IN,EN), (15) 

where a*, .0 *(IN ,EN) are arbitrary functions of their argu
ments and AN=IAN I. In order to fix this arbitrariness, we 
shall use the equation of the orbit and fix the modulus of A. 

2936 J. Math. Phys., Vol. 25, No.1 0, October 1984 

III. EQUATION OF THE ORBIT 

As in Newtonian mechanics, the orbit can be obtained 
making the scalar product (r·A), where A is given by the 
expressions ( 14) and ( 15). If we denote by fJ the angle between 
r and A, 

J2 1 
rA cos fJ = - kr + ~ + - I IrA cos fJ + gJAr sin fJ J. 

f.L e2 

(16) 

Substitutingrbyj2[f.L(A cos fJ + k )]-'inthepost-Newtoni
an term and J~ by the expression obtained from Eq. (7), 

J~=J2{l+ .![4o
E +(4o-b)~]}, (17) 

e
2 

f.L f.Lr 
Eq. (16) can be rewritten, after a tedious calculation, as fol
lows: 

1/r = B + Fcos(fJ - 8fJ + fJo) + G cos 2(fJ + fJo), (IS) 

where 

f.Lk { 1 [ E B = - 1 + - ( - Sa + 2b + e)-
J2 e2 f.L 

+ ( - Sa + 4b + ~ e - 2d ) ~: n, (19) 

f.LA { 1 [E
2
J

2 
Ek2 F=- 1 + - -40-- -(16a-6b+2d)-

J2 e2 f.L2A 2 f.LA 2 

-2(40 -2b+d)~]} (20) A 2J2 ' 

G= - (1/e2)e(f.LkA 2/214), (21) 

fJo==~ [JP*(IE)- !!...~(2 E + ~) 
e2 ' 2 A 2 f.L J2 

X ( - 40 + 2b - d + e) ], (22) 

8 -(1/e2l( - 40 + 2b - d + el(k 2/J2). (23) 

It is obvious that the equation of the orbit (IS) is written in 
the most simple way if one elects fJo==O, which is equivalent 
to the following election for .0 * : 

1Tk 2 (E k
2

) .0 * = -- 2 - + - ( - 40 + 2b + e - d). (24) 
2JA 2 f.L j2 

Then, Eq. (IS) represents a perturbed conic: the term 
F cos(fJ - 8(J) produces a perihelion advance (at any period 
the perihelion advances the angle 21T8 rad), whereas the term 
G cos 2fJ produces a deformation of the conic of period 1T. 

Substituting the parameters which characterize the 
Darwin and EIH Hamiltonians, Eqs. (4) and (5), we obtain 

80 = !(e1e2IcJ)2, 8EIH = 3(Gm,m2/eJ)2. (25) 

The last result, 8EIH , constitutes one of the classical tests of 
general relativity. 

Here F cos(fJ - 8fJ) is a "secular" term, because it pro
duces observable effects for sufficiently large time intervals 
(e.g., a perihelion advance of 43 arcsec/century for Mercury 
in the gravitational case). Trivially, this effect does not exist 
for particular Hamiltonians such that 40 + d = 2b + e, 
whereas there is no "periodic" perturbation for e==O. 
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In order to determine a unique extension of the Runge
Lenz vector, we shall assume that the modulus of A depends 
on E and J in the same form as in Newtonian mechanics, i.e., 

(26) 

Taking into account Eqs. (8), (14), and (15), we obtain the 
following expression: 

A2=k 2+2 E:2 + :2[A2a*+26a(:-')} (27) 

Therefore, if we assume the modulus given by Eq. (26), a* 
must be given by 

a* = - 26a(E/,u)(2 +,uk2/EJ 2)-I, (28) 

and f3 * is reduced to, see Eq. (24), 

(29) 

Summing up, under the assumption of a modulus for A 
given by Eq. (26) and an equation of the orbit referred to A 
expressed in the most simple form, we have obtained a 
unique post-Newtonian extension of the Runge-Lenz vector 
which is given by Eqs. (8), (14), (15), (28), and (29). 

IV. ASSOCIATED SYMMETRIES 

Let Jo Aj (iJ,k = 1,2,3) be the components ofthe post
Newtonian angular momentum and extension of the Runge
Lenz vector, respectively. A direct calculation leads to the 
following Poisson brackets between them: 

[Jo.l;] = E;/ Jk, [J;,Aj] = E;/A k, 

[A;,Aj] = - (2E /,u)E;/Jk. (30) 

Therefore the Poisson algebra corresponding to the first in
tegrals (J;,Aj) is the same as in Newtonian mechanics, but 
now E appears instead of the Newtonian energy. 

On the other hand, one can associate to the constants of 
the motion ta (x;, Pj) (a,b,c = 1, ... ,r) the infinitesimal genera
tors 

~ = _ a~a ~ + ata ~ (31) 
a- ap; ax; ax; ap;' 

under which the Hamiltonian H is invariant5 : 

taH = d5; = o. (32) 

It is very easy to prove, taking into account the struc
ture (31), the following relations: 

~; { [ta,tb] - C~btc J = { [~a'~b] - C~b~c - Sab J Po 

(33) 

(34) 

(35) 
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The Einstein convention on summation is considered and 
[ , ] denotes the Poisson (Lie) bracket applied to a couple of 
functions (generators). Therefore, if the first integrals ta gen
erate the Poisson algebra 

(36) 

from Eqs. (33) and (34) one obtains the following Lie brack
ets, corresponding to the symmetries of the Hamiltonian, 

(37) 

By applying all of this to the first integrals J;,Aj [see 
Eqs. (30)], we obtain generators J;,A j-via Eqs. (31 )-which 
satisfy the following relations, according to Eq. (37), 

[J;,Jj ] = E;/Jk, [JoAj] = E;/ Ak, 

[AoAj] = - (2/,u)E;/(E Jk + JkH), (38) 

where H is the generator associated to the Hamiltonian H. 
The algebra (38) is the same that appears in the Keplerian 
case, but now E and J; represent post-Newtonian quantities. 

Obviously, if we apply the previous technique to the 
first integrals Jo~' where ~~j for E=O and 
~==((2/,u)IE n-1/2Aj for E #0, weobtaingeneratorsJo~' 
which satisfy 

[JoJj ] =E;/Jk, [J;,Nj] =E;/Nk, 

[N;,Nj] = KE;/Jk, (39) 

with K~O for E~O, respectively. Trivially, the same relations 
appear at the Newtonian level and represent the invariance 
of Hby the group T(3)XSO(3) (E 0), SO(3,I)(E> 0), and 
SO(4) (E < 0), respectively. 

V. CONCLUSIONS 

We have considered a two-body relativistic system 
whose equation of the relative motion can be derived from a 
post-Newtonian Hamiltonian depending on four param
eters. For particular values of these parameters we recoup 
the Darwin and EIH Hamiltonians, in the center-of-mass 
frame, which apply for the electromagnetic and gravita
tional interactions, respectively. 

We have proven, in Sec. II, that it is possible to extend 
the Runge-Lenz vector to the post-Newtonian order and 
given an analytical expression A, see Eqs. (8), (14), and (15), in 
which appear two arbitrary functions. We fix such an arbi
trariness [see Eqs. (28) and (29)] by impossing a couple of 
conditions: one is related to the modulus of the vector A and 
the other takes into account the simplest writing of the equa
tion of the relative orbit as referred to A. 

In Sec. III we have given the explicit form of the relative 
orbit, which, in general, is a perturbed conic characterized 
by a perihelion advance given by Eq. (24). 

With respect to a possible breaking of the Keplerian 
symmetries we have answered in the negative [see Sec. IV] 
because the associated symmetries (of the Hamiltonian) to A 
generate the same algebra that appears at the Newtonian 
level [Eq. (38)]. 
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It remains as an unsolved problem the question of a 
possible extension at a higher order than the post-Newtonian 
level. We conjecture that this will not be possible up to the 
c-3 order, due to the manifestation of radiative effects for· 
certain types of interactions (e.g., electromagnetism). For 
certain interactions where these radiative effects appear at 
higher order (e.g., order c - 5 for gravitation), perhaps one can 
find a global first integral vector (smoothly defined over all 
the phase space) being a (n - 1)12 post-Newtonian extension 
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of the Runge-Lenz vector if radiation phenomena appear at 
orderc- n

• 
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After obtaining a representation of a quantum logic by means of projection operators on the state 
space, geometrical conditions are imposed on a cone in an abstract Banach space which allow us 
to show that certain projections leaving this cone invariant will form a quantum logic with 
conditioning. Several examples are also presented. 

PACS numbers: 03.65.Bz 

I. INTRODUCTION 

Logics in which a state conditioning process has been 
defined are important because it is only on this background 
that the study of general stochastic processes can be based. 
In abstract terms such logics have been studied by Pool in 
Refs. 1 and 2, and the present writer in Ref. 3 and 4. The 
results in this last paper will be used in Sec. II to obtain a 
geometrical model for such logics, i.e., a representation of 
the events in a conditioned logic by projection operators on a 
Banach space leaving the state cone invariant. This geomet
ric background becomes the motivation for the rest of the 
paper, whose main aim is to show how logics with condition
ing can be constructed geometrically. 

This construction can, of course, go through only in 
certain spaces; the exact hypotheses we use are stated in Sec. 
III, where some elementary consequences are also drawn. In 
Sec. IV the projections which will form the logic !f are de
fined and !f is shown to be a complete lattice. Complements 
are obtained in Sec. V and in Sec. VI the action of !f on the 
dual space, a useful technical tool, is studied. Orthomodular
ity of!f is the main result in Sec. VII and the states of!f are 
investigated in Sec. VIII. The Appendix is devoted to var
ious examples, among which the classical Hilbert space 
model and a commutative case are included. 

Logics consisting of projection operators on a normed 
space leaving a given cone invariant, analogous to those we 
construct here, have been studied by Alfsen and Shultz in 
Ref. 5, as part of what they call noncommutative spectral 
theory. The connection between their approach and the 
present exposition is not yet clear. Their basic assumption is 
a "projection axiom" which, roughly speaking, postulates 
the existence of enough projections of the desired type. On 
the contrary, in our approach we impose conditions of 
straightforward geometrical nature on the cone which is to 
be left invariant and deduce the existence of the projections. 
We have been unable as yet to show that the projection axi
om follows from our assumptions, but on the other hand we 
know of no example to the contrary. 

Having represented the events by means of idempotent 
operators on the space r, one is tempted to proceed and 
extend this representation to observables as well. This is 
quite straightforward to do, at least for bounded observa
bles. There are several difficulties to overcome, however, be
fore a complete theory can be developed. The last result in 
Sec. II, for example, shows that the spectral calculus will not 
work the usual way; on the other hand it is not hard to show 

that the nonzero elements of the point spectrum of an obser
vable are the nonzero eigenvalues of the corresponding oper
ator. Another possibility that would preserve the spectral 
calculus is to represent events and observables as functionals 
on r. This stumbles across the unsolved question as to 
whether or not an observable is completely determined by its 
expected values in all states. We shall therefore refrain from 
presenting in detail any of the above ideas. 

II. THE GEOMETRICAL MODEL 

First we list the axioms we need to build the geometrical 
basis. 

Consider given an ortholattice !f, write JI for the con
vex set of all states and g; for the set of pure states (extreme 
points of JI). The support of a state m is defined to be the 
eventLm = inqA ImA = I} (wheneveritexists). We impose 
the following structure on the set J(. 

(M1): (i)JI is quite full; that is, ifmA = 1 for all mE JI 
for which mB = 1, then B<A. 

(ii) Every state m has a support Lm and m(Lm ) = 1. 
(iii) Every mE JI is a countable mixture of pure states: 

m = l:i'= I aiPi' where ai > 0, l:i'= I ai = 1,pi E & and con
vergence is pointwise on !f. 

(M2): The map (p,q) -+ (Plq) = p(Lq ) defines a transi
tion probability functional on g; X g;, i.e., has range in the 
interval [0,1] and satisfies 

(i) (Plq) = (qIP); 
(ii) (Plq) = 1, if and only ifp = q. 
As we shall see presently, the map ( I ) extends by con

vexity of JI X JI. Keeping this in mind we state the follow
ing. 

(M3): A conditioning process is defined on JI, i.e., to 
each event A E !f there corresponds a map m -+ mA from 
JI u ! 0 } to itself (where 0 is a formal "vacuous state" Ii JI) 
with the following properties. 

(i) m:A = 0, if and only if OA = 0; also O:A = 8. 
(ii) (m:A ):A = m:A . 
(iii) m:A = m, if and only if mA = 1. 
(iv) IfnA = 1, then (min) = m(A) (m:A In). 

We shall call a conditioning "pure" if m:A E g; U {O 1 
for all events A and all m E &. 

Before proceeding with our construction we should ver
ify that the functional ( I ) extends from g; X g; to JI X JI. 
To this end first note that ifl:aiPi and l:b jq j are two ways of 
writing a state as a mixture, then l:a i (Pi Ir) = l:b j (q j Ir) for 
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all r E 9. Now let m = 'LaiPi = 'Lb jq j and n = 'Lckrk 
= 'Ldlsl ; then we have 'Li,kaick (Pi h) = 'L j,k b jCk (q j h) 
= 'L jb j'LkCk (rk Iq j) = 'L jb j'Lldl (sllq j) 
= 'L pb jdl (q j lSI)' which shows that (min) can be defined 

unambiguously as 'Li,kaick (qi Irk)' Trivially this functional 
on J/ X J/ is symmetric and convex in each variable. 

It is shown in Ref. 4 that the results therein follow from 
the above axioms; so we shall not hesitate to use those that 
we shall need. 

The vector space we shall use is the set r of all maps 
!L" -+ R of the form am - bn, where a,b>O and m,n E J/. 
Thus every vector in r is a countably additive finite signed 
measure on !L". We shall identify the vacuous state e of Ax i
om M3 with the zero vector in r. We write 'iJ for the convex 
cone with base J/. 

Note that finite convex combinations of vectors in J/ 
correspond to mixtures. More can be said, as we shall pres
ently see. 

We equip r with the base norm II III generated by J/: 
lIull l = infra + b Iu = am - bn; a,b>O; m,n E J/], and ob
serve that Ilmlll = 1 for all mE J/. 

Proposition 2.1: If m = 'Liaimi is a mixture, then the 
series converges to m in the 11111' 

Proof We have m - 'L;V~ I aimi = 'L,oo~ N + I aimi 
= ('L,oo~ N + 1 a;)nN' where nN is the state 

'Lr:"'N+ I a;l('Lr~N+ la j ) mi ; thus 11 m - 'L;V~ laimill l 
= 'L,oo~ N + 1 ai which approaches 0 as N -+ 00. 

Theorem 2.2: r is complete under IIII1 and 'iJ is closed 
inr. 

Proof Let (Uk)kE N be a Cauchy sequence, select 
kl < k2 < ... so that IlukN", I - UkN III < 1/2N and write VN 
for UkN ; it suffices to show that the sequence (VN )NE N con
verges. We next select aN,bN>O and mN,nN E J/ such that 
VN~ I - VN = aNmN - bNnN and aN + bN < 1/2N- l

, 

which is possible by the definition of the norm. Then we 
write a = 'LNaN, b = 'LNbN and m = 'LN(aN/a)mN' 
n = 'LN(bN/b )nN and note that v = am - bn E r; on the 
other hand, Ilv - V N III ,;;;'Lk' ~ N _ I (a k + bd which ap
proaches zero. To see that 'iJ is closed, let Uk E 'iJ and 
limllu - Uk III = 0; this implies that we can select ak ,bk >0 
and mk,nk E J/ so that U - Uk = akmk - bknk and 
ak + bk goes to zero. Then U = Uk + akmk - bknk and 
u(A) = Uk (A ) + akmdA) - bkndA »udA) - ak - bk, 
which implies that u(A »lim infk~ cO uk(A »0, since 
Uk E 'iJ. Thus u is a positive countably additive measure on 
!L" and thus in 'iJ. 

Theorem 2.3: The functional ( I ) extends to a bilinear 
nondegenerate functional on rX r whose restriction to 
'iJ X 'iJ is nonnegative, and such that I (ulv) I,;;; Ilulllllvll l· 
This functional is an inner product if and only if for all m, 
n EJ/ we have (mln)2,;;;(mlm)(nln). 

Proof Let Ui = aimi - bjnj with aj>bj>O and 
mj>nj E J/ (i = 1,2). If UI = U2 then, evaluating at I we get 
a l - b l = a2 - b2 and so we have [al/(a l + b2 )]m l 

+ [b2/(a l + b2 )]n2 = [a 2/(a 2 + btl]m2 

+ [b l/(a 2 + btl]n l E J/; thus, for any m E J/ we obtain 
al(mllm) + b2 (n 2 Im) = a2 (m 2 Im) + bl(nllm), or 
al(mllm) - bl(nllm) = a2 (m 2 Im) - b2 (n2Im). Using 
this it follows at once that for arbitrary U I and U 2 we can 
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define (ullu2) unambiguously as ala2 (m l lm2) 
- a l b2 (m l ln2 ) - a lb2 (m l ln2 ) + blb2 (n lln2 ) and that the 

resulting functional is bilinear. Now take u, v E 'iJ; we have 
u = am, v = bn with a, b>O and m,n E J/ so 
(ulv) = ab (mln»O. If (ulv) = 0 for all v E r, then 
(ujp) = 0 for allp E 9 and so u(Lp) = 0; but then, using 
propositions 2 and 4 of Ref. 4 we obtain u(A ) = 0 for all 
A E !L", i.e., u = 0; thus ( I ) is nondegenerate. Finally, since 
(am - bnlam - bn) = a2(mlm) - 2ab (min) + b 2(nln), 
we see that (ulu»O for all u = am - bn if and only if the 
discriminant (mln)2 - (mlm)(nln) is nonpositive. 

Axiom (M3) will now be used to obtain a representation 
of the events in !L" as operators on r. 

Theorem 2.4: To each event A E !L" there corresponds 
an operator PA: r -+ r such that (i) P~ = PA; (ii) 
(PAulv) = (uIPAv) (we call this symmetry); and (iii) 
PA 'iJ ~ 'iJ. 

P-;oof We first define PA on 'iJ by PA (am) 
= am(A ) m:A, and note that trivially PA (bu) = bPA (u), and 

that (iii) holds; by (M3) (ii) we also have P~ = PA • Proposi
tion 5 of Ref. 4 now gives property (ii) above for u, v E J/, 
and hence for u,v E 'iJ. Now observe that (PA(u + v)lm) 
= (u + viPAm) = (uIPAm) + (vIPAm) 
= (PA ulm) + (PA vim) = (PA u + PA vim) for u,v,m E 'iJ, 

which shows that PA is also additive on the cone; but 'iJ 
generates r and thus PA extends by linearity to r, retain
ing properties (i) and (ii). 

The algebraic structure of !L" can be completely de
scribed by means of these operators. Using the results in Sec. 
4 of Ref. 4 we obtain easily the following. 

(1) A,;;;B if and only if P A ,;;;P B in the sense that 
PA =PAPB· 

(2) PA , is the largest [in the sense of the partial order 
defined in (1)] element PB whose product with PA is zero. 

(3) The events A and B are disjoint if and only if 
PAPB = O. 

(4) The events A and B are compatible if and only if PA 

and PB commute. In such a case PA 11 B = PAPB· 
It is also straightforward to see that in general we have 

PA 11 B = PA 1\ PB' where the infimum on the operators is 
taken with respect to the partial ordering defined in (1). In 
case ( I ) in an inner product, a more explicit formula for 
PA 11 B can be obtained by working in the completion of r 
with respect to the norm IIull 2 = ~(ulu). 

(5) If the functional ( I ) is an inner product, then PAil B 
is the limit of (PAP B )\ as k -+ 00, in the strong topology. The 
probability m(A ) of occurrence of the event A in the state m is 
given, geometrically, by the length IIPA mill' In case ofa pure 
conditioning, a useful alternative exists. 

(6) If the conditioning is pure, then for P E 9 we have 

p(A ) =,j (PApjp). 
To see this we apply (M2) (iii) and (M3) (iv): since 

P:A (A) = 1, we have (Plp:A) = p(A )(P:A jp:A) = p(A ), and so 
p(A)2 = (PAPlp). 

Formulas for the supremum are difficult to obtain, even 
in the simplest case of disjoint events. 

(7) Let the conditioning be pure and the functional ( I ) 
be an inner product. Then, for A, B E !L" disjoint, we have 
PAVB =PA +PB + (I-PA,)(I-PB)· 
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Write Q for the right-hand side and note that the two 
factors of the third term are commuting idempotents, and so 
the three terms of Q are orthogonal idempotents; thus Q is an 
idempotent, and as each term is symmetric, Q is also. By 
direction computation, using the obvious facts that P A V B P A 

= PAPA V BPA' = PB, etc., we obtain that PA v BQ 
= PA v B. This implies in particular that Q - PA V B is a 

symmetric idempotent. Noting that according to (4) above 
we havePA ,PB, = PA'/\B' = PIA VB),' take a pure statep and 
compute (QpIP) = (PApIP) + (PBpIP) 
+ (PIP) - (PA, pIP) - (PB, pIP) + (PIA v B)' pIP) 
= ptA )2 + p(B )2 + 1 - ptA ')2 - p(B 'f 
+ pItA V B)'j2 = ptA )2 + p(B f + 1 - [1 - ptA If 
- [1 - p(B W + [1 - ptA V B W; using the fact that 

ptA VB) = ptA ) + p(B ) (since A and B are disjoint), we see 
that the last expression simplifies to 
ptA V B)2 = (PA V BPIP)· Thus (QpIP) = (PA v BPIP) or 
«(Q - PA v BlPIP) = 0, hence IIQp - PA v BPl12 = O. So, for 
any pure state p we have Qp = PA V BP, and since Q and 
PA v B are continuous in the topology of II III' Axiom Ml (iii) 
and Proposition 2.1 imply the same relation for p E JI, 
hence for p E Crt: , and thus for all vectors in r. 

III. THE GEOMETRICAL HYPOTHESES 

From this point on we shall be concerned with the re
verse question: what conditions need we impose on a normed 
space with a cone and a bilinear functional so that it is possi
ble to construct a conditioned logic consisting of symmetric 
idempotents leaving the cone invariant. 

In this section we shall list the conditions we need and 
draw some basic preliminary conclusions. Our hypotheses 
fall in two groups. Those that we call necessary, because they 
are valid in the spaces we constructed in the previous section, 
and the others which mayor may not be valid in these spaces, 
but are apparently essential-these we call sufficient. 

We write r for a given vector space over the reals R, Crt: 
for a cone in r; JI is a base for Crt:, 9 the set of extreme 
points of JI, and 'if? the set I apla>O; p E 9). 

Necessary hypotheses 
(H 1) The cone Crt: generates the space r and has a con

vex base JI which defines the base norm II III' 
(H2) r is complete with respect to II III and Crt: is closed 

in r. 
(H3) The bilinear nondegenerate functional ( I ) re-

stricted to Crt: X Crt: takes non-negative values. 
(H4) For all u, v E r we have I (ulv) 1<llulllllvll l. 
(HS) For eachp E 9 we have (PIP) = 1. 
(H6) For each p E 9 write pl for the set 

IrE 91 (rIP) = 0); then the only vector in 9 orthogonal to 
all vectors in pl is the vector p itself. 

(H7) Each m E JI has the form m = };'== I aiPi with 
Pi E 9, ai > 0, };;"'= I ai = I and where convergence is in the 

II III' 
(HS) For each q E 9 there is a unique ro Epl which 

maximizes (rlq) over r Epl; this ro is such that q - (qlro)ro 
is orthogonal to all r E pl. 

Sufficient hypotheses 
(H9) The functional ( I ) is an inner product such the 
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metric it defines on 9 is equivalent to that defined by II III' 
(HlO) For eachp E 91et%p = IVE rl<vlq) =Ofor 

all q E pl). Then every II III-closed hyperplane supporting Crt: 
at p contains the space % p' 

Several examples are presented in the Appendix. 

As in Sec. II we shall write IIul1 2 for ~(ulu). 
Lemma 3.1: The set 9 is complete in the II liz. 
Proof We shall show that 9 is complete in the II III and 

then apply (H9). All we need then is that 9 is closed in the 
II III' since r is complete with respect to this norm. So let 
Ilu - Pk III -+ 0 withPk E 9; since JI is the intersection of 
Crt: and the unit II III-sphere, we see that JI is II III closed, 
and so u EJI. By (H4) we have <ulu) = limk (Pk IPk) = 1; 
but since u E JI, (H7) gives u = };)"= I b jq j with b j > 0, 
};t= I b j = 1, and q j distinct E 9, which implies 

}; j,kb jbk (q j Iqk) = 1 = (}; jb j )(};kbk), i.e., that}; j,kb jbk 
[1 - (q j Iqk)] = 0, and since all terms are >0, that 
b jbd 1 - (q j Iqk >] = 0 for alIi, k. Thus, if b jo #0 we have 
b j = 0 for alli#io since the q j are all distinct and therefore 
(qj Iqk) # 1 forJ#k. Since u#O (11u112 = 1!) we have 
u = qjo E 9. 

Lemma 3.2: If Uk E 'if? and Ilu - Uk 112 -+ 0, then 
Ilu - Uk III -+ 0 also. 

Proof We have Uk = akPk with ak>O andPk E 9. 
Since IIPk 112 = 1, lim ak exists and we call it a; if a = 0 then 
u = 0 and Ilu - Uk III = ak -+ O. So let a#O which implies 
IIPk - u/a11 2 -+ 0 whence, by (H9), IIPk - u/all l -+ 0, i.e., 
Ilu - uklll -+0. 

In the previous section we had no opportunity to verify 
that (H6) and (HS) hold. We do this now. 

First (H6). Take any p E 9 and note that pl = IrE 91 
Lr <L ; ). Using Proposition 2 of Ref. 4 we see that mIL ;) 
= };im(Lr,l for suitable ri E pi; thus, if q is orthogonal to all 

r EPl, we have q(Lr,l = 0 and so q(L;) = 0, orq(Lp) = 1, i.e., 
q=p. 

For (HS) we shall need to assume a pure conditioning. 
First note that for any p E 9 we have ptA ) = (P IPA ), be
cause by (M3) (iv) we have (PIP,A) = ptA )(P,A IPA) and we 
have assumed PA E 9. But then, again by (M3) (iv), we ob
tain (qlr) = (qlqA) (qA Ir) for any r E 9 for which 
riA) = 1; thus for all such rwehave (qlr)«qlq,A)' Special
izing to the case where A =L;, we see that (qlr) (rEpl) is 
maximized for r = q'L .. The desired orthogonality relation 

. p 

is just (M3) (iv). As for uniqueness, let (qlqA) = (qlr) for 
some r E pi(A = L ;) and note that (M3) (iv) implies either 
(qlr) = 0, or (qA Ir) = 1; the first implies (qlqA) = 0, i.e., 
q(A ) = 0, or q = p, and the second means r = qA . 

A few more preliminary remarks. 
Note that for any linear T: r -+ r we have 

IITIII = sup I IITmlilim E JI). LetA be this supremum and 
observe thatA<IITII I, since Ilmlll = 1; on the other hand, 
IITull 1 = Iia Tm - b Tnlll<allTmlll + b IITnlll«a + b)A 
which implies IITulll<lIulllA or IITIII<A. 

We shall write r for the completion of r under the 

norm II 112' 
Proposition 3.3: Let T: r -+ r be a linear, II 112 contin

uous map such that T'if? ~ 'if? u (0). Then TCrt: ~ Crt: (hence 
Tr ~ r) and IITlrlll<IITI12' 
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Proof Letm = ~iaiPi withai >Oand~iai = l,pi E 9; 
~nce the se~es also converges to m in the norm II Ib we have 
Tm = ~iai Tpi = ~iaibiqi with bi >0 and qi E 9. Since 
bi < 111' Ib, we have lI~i>Naibiqi III <~i>Naibi «~i>Nai )111' Ib 
which shows that ~iaibiqi converges to I'm in the norm II II, 
also. Since '1: is closed for this norm, we see that I'm E ~, 
and since the cone generates r, Tr ~ r. Now look at the 
above estimates for N = 1 to obtain IITmlll<IITII2' which, 
combined with the previous remark, shows that 

IITlrlll<IITlb· 
It will be useful to keep in mind that since II III is the 

base norm generated by JI it is countably additive on JI and 
on '1:. 

IV. CONSTRUCTION OF THE LOGIC ..f 

We shall write ..f for the set of all operators P: r - r 
for which 

L(i)P 2 =P; 
L(ii) (Pulv) = (uIPv), for all u, v E r. 
L(iii) P~ ~ ~ u [OJ; 
L(iv) (~p n 9)11 = &I p n 9. 

where &I p is the range of the operator P and, for any S ~ 9 
wewriteS 1 for the set {qE 91(qlr) =OforallrESj. 

Using (H3) and (H6) we see at once that for eachp E 9 
the operator Pp :u _ (u IF) P is in .5t'. Clearly 0 and IE .5t' 
also. 

Proposition 4.1: Any P E .5t' extends uniquely by contin
uity to an orthoprojection P on r which leaves ~ u [0 j 
invariant. 

Corollary: For any nonzero P E .5t' we have liP II, = 1, 
andP~ ~ '1:. 

Proof Since P = P I r Proposition 3.3 implies 
liP III<IIP 112 = 1; butP 2 = Pimplies liP Ili>IIP II, and since 
P #0 we have liP II,> 1. 

Lemma 4.2: For O#p E .5t' and m E JI, we have 
Pm = m if and only if IIPmll, = 1. 

Proof One way it is obvious, so let IIPm II, = 1 and 
m = ~iaiPi with ai > 0, ~iai = 1 and Pi E 9. Then 
1 = ~iai IIPPi II, and so IIPPi III = 1; but PPi E ~ hence 
IIPPi 112 = 1 also, which by Schwartz implies PPi = Pi; but 
then Pm = m also. 

Proposition 4.3: For any P E .5t', ~ p n ~ is a face of ~. 
Proof Let u = alu l + a2u2 with UI,U2 E '1:, al,a2 > 0, 

a l + a2 = 1, and Pu = u; without loss we may assume that 
lIull, = 1 = lIu2 111 since all vectors are in ~ and II III isaddi
tive. Then we use u = a IPU I + a2Pu2 to obtain 1 = 
a,IIPulll, + a211Pu211, which implies IIPud11 = 1, and since 
Ui EJI, PUi = ui. 

On the set .5t' we impose now the partial ordering given 
by P<Qifand only ifPQ = P (i.e. &lp ~ ~ Q)' Note that by 
L(ii) this is equivalent to P = QP and so P and Q commute. 

Lemma 4.4: We have P~ Q if and only if for all m E JI, 
Pm = m implies Qm = m. 

Proof One way this is obvious, so we assume that, for all 
mE JI, Pm = m implies Qm = m. Take any u E &I p, and 
note that it has the form am-bn with m, n E &I p n JI [be
cause ifu = alm l + bInI' then 
u =Pu = a l IIPm , II I (Pm tlllPm I II I) + a21IPm2111(Pm2/ 
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IIPm2 11 tlJ. But then m, n E &I Q and so Qu = u. Thus P<Q 
follows. 

Theorem 4.5: Under the partial order defined above, .5t' 
is a complete lattice. 

Proof It suffices to show that any family of operators in 
.5t' has an infimum in .5t'. First we do it for two operators, P 
and Q. We consider their extensions P and Q to r which 
exist by Proposition 4.1, and write R for their infimum 
P A Q; we know that R is an orthoprojection on r and we 
shall show that it preserves ~ u [0 j. We know that R is the 
limit in the weak topology of the Hilbert space r of (PQ )k; 

take P E 9 and note that (PQ )kp = akPk with ak >0 and 
Pk E 9, since both P and Q preserve ~ u [0 J. Since 
IIFk 112 = 1, the limit of (ak ) exists; call it a. If a = 0, we are 
done; if a#O, then (Pk) converges to Rp/a in the 11112, and 
since 9 is complete in the corresponding distance, we have 
Rp/a E 9,henceRp E ~ u [OJ. By Proposition 3.3R leaves 
r invariant; setting R = R I r we see that R satisfies L(i), 
L(ii), and L(iii) and trivially ~ R = &I p n &I Q' Thus the 
proof that R is the infimum of P and Q will be complete as 
soon as we compute (&I R n 9)11. We observe that 
&I R n 9 ~ (&I R n 9)11 and since &I R ~ &I p we have 
(&I R n 9)11 ~ (&I p n 9)11 = &I p n 9 and similarly 
(&I R n 9)11 ~ &I Q n 9; thus (&I R n .9)11 
~ &I p n &I Q n .9 = &I R n .9. To finish the proof of the 

theorem we need to show that if (P j) is a decreasing net in .5t', 
then its infimum exists. The proof of this follows roughly the 
same lines as the previous argument. We consider the exten
sions P j to be Hilbert space r and let P be the infimum of 
thePj in r; sincePis the weak limit ofthePj , we can argue 
as above to get that P leaves ~ n {O J invariant. It is straight
forward now to adapt the previous arguments to show that 
P = P IrE .5t' and is the infimum of the family (P j)' 

Theorem 4.6: For any P E .5t' we have 
P = sup [ Pp IF E &I p n .9 J . 

Proof For any P E &I p n .9 we have Pp = P, hence 
PPp = Pp or Pp <P, and Pis an upper bound. Now letPp <Q 
for all P E &I p n .9 and suppose that Pm = m; write m as a 
mixture of pure Pi> m = ~iaiPi and apply Proposition 4.3 to 
getPPi = Pi' i.e., Pi E &lp n.9. Then Pp;<Q, which means 

Qpi =Pi' orQm = m. 

V. COMPLEMENTARY OPERATORS 

The complement of an operator P E .5t' is an operator 
Q E .5t' such that, for all m E JI, we have Pm = m if and 
only if Qm = 0 and Pm = 0 if and only if Qm = m. 

Using Lemma 4.4 we see that complements, if they ex
ist, are unique. We shall write P' for the complement of P and 
note that (P,), = P while P>Q implies P' <Q' (assuming of 
course that all the complements exist). Clearly it suffices to 
test only for m E .9. 

Theorem 5.1: For each P E .9, P; exists. 
Proof Consider any q E .9, q#p, and write Rq for the 

vector (qlro)ro, where ro is as in (HS); defineRp to be the zero 
vector. By (HS) we have (qlr) = (Rqlr) for all r EPl, and 
considering any two ql' q2 E .9 we observe that 
(qIIRq2) = (RqIIRq2) as well as (q2IRql) = (Rq2IRql)' 
Thus (qIIRq2) = (Rql!q2) for any ql,Q2 E 9. Arguing as in 
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Sec. II we can extend R to an orthoprojection on 'I' which 
evidently preserves ~ u (O}; since (~R n 9)1 = p1 we have 
L(iv) by using (H6). So we have R E .!f. To show that 
R = P;, note that Ppm = m implies m = p and so Rm = 0; 
conversely, if Rm = 0 we have either m = p or (m Iro) = 0, 
where ro maximizes (mlr) over rEp1; but then (mlr) = 0 
for all r E p1 and by (H6) we have m = p. Finally, Ppm = 0 
means (mil') = 0, or m EpI, i.e., Rm = m. 

Theorem 5.2: Every element P E .!f has a complement. 
Proof We shall show that P' = inf( P; IP E ~ p n 9}. 

Let R be this infimum and suppose that Rq = q; then 
P;q = qor Ppq = Of or a IIp E ~ p n 9, and so (qil') = o for 
all such p. Since Pq E ~ p n ~ we have (qIPq) = 0 and so 
Pq = O. Thus Rq = q implies Pq = O. Conversely, let Pq = 0; 
then Ppq = 0 for allp E ~ p n 9, hence P;q = q for all such 
p, which implies Rq = q. Now let Pq = q; then by definition 
P ~ >R and so RPq = 0 which means that Rq = O. For the 
converse note that r E (~p n 9)1 implies P;r = r for all 
p E ~ p n 9 hence Rr = r, i.e., note that we have (~ p n 9)1 
~ ~ R n 9. Now, if Rq = 0, then q E (~R n 9)\ hence 

qE (~p n 9)ll = ~p n 9, or Pq = q. 

VI. ACTION ON THE DUAL SPACE 

A linear functionalf on 'I' is positive iff(u»O for all 
u E ~. We shall write ~ * for the set of all positive function
als which are continuous with respect to the norm II III' and 
'1'* for the vector space ~ * - ~ *. Clearly '1'* is a subspace 
of the dual space of '1'. 

We now define a special useful functional in '1'*. If a, 
b>O and m, n E JI we see that am - bn = 0 implies 
a - b = 0; thus the map t: am - bn ~ a - b is single valued 
and, by the same token, linear. Clearly, tis positive, lit III = 1 
and it extends II II1I ~. 

The cone ~ * defines a natural partial order in 'Y*:f<g 
if and only ifg - fE C(!*, i.e., ifand only iff(m)<g(m) for all 
mEJI. 

Lemma 6.1: The functional t is an order unit in '1'*. 
Proof Since we have If(u)I<llflllllull l for all u, we ob

tain If(u)I<llfllt(u) for u E~, and so -llflllt.;J'<llflllt. 
Lemma 6.2: For allf E ~ * and all II III continuous op

erators Ton 'I' leaving C(! invariant we have T*f( fo T)in 
'1'*. 

Proof We havef=g - h withg,h E ~*; since 
TC(! ~ ~ we have T*g and T*h in C(!*, and so 
T*fE C(!* - C(!*. 

Lemma 6.3: If P,Q E .!f and P *t = Q *t, then P = Q. 
Proof Let m E JI and Pm = m; then 

1 = IIPmll 1 = t(Pm) = (P*t)(m) 
= (Q*t)(m) = t(Qm) = IIQmlll' hence by Lemma 4.2 we 

have Qm = m, i.e., P<Q; similarly Q<P, and so P = Q. 
Lemma 6.4: The following two properties of an opera-

tor P E .!f are equivalent. 
(i) For allfE C(!*,fIJVp' n C(! = 0 impliesflJVp' = O. 
(ii) For allf E C(! *, P *f = 0 implies P '*f = f 
Here JV T denotes the null space of the map T. 
Proof We assume (i) and P*f= 0 withfE ~*. Then 

f(Pu) = 0 for all u E 'I' and sof(v) = 0 for all v E ~ p. In 
particular, for any m E JI, P'm = 0 impliesf(m) = 0 since 
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Pm = m. But this means thatflJVp' n ~ = 0, and thus 
flJVp' = 0 holds; since for any u E 'I' we have 
u - P'u EJVp ', we obtainf(u) - f(P'u) = 0, i.e.,/= P'*f 
Now we assume (ii) andflJVp' n ~ = 0, which means that 
f(m) = o for all m EJiforwhichP'm = O. Thenf(Pm) = 0 
for any m E JI, and so P *f = O. But this implies P '*f = J, or 
f(P'u) =f(u); in particular, P'u = 0 impliesf(u) = 0, i.e., 
flJVp' = O. 

Lemma 6.5: Properties (i) and (ii) stated in Lemma 6.4 
are stable under suprema. 

Proof First for two operators. Suppose that (ii) holds for 
P and Q, and suppose that (P V Q )*f = 0; since 
(P V Q)P = P, we get P *f = 0 and similarly Q *f = O. Thus 
P'*f=fandQ '*f = J,fromwhichweobtainf= [(P'Q ')k]*/; 
so, for any p E 9 we havef(p) = f((P'Q ')k p ). But 
(P'Q ')kp E ~ and converges to (P' /\ Q')P in the norm II 112 
and hence by Lemma 3.2 in the norm II III also. Sincefis 
continuous for this norm, we havef(p) = f((P' /\ Q ')P) 
which implies (P' /\ Q ')*f = /; since P' /\ Q' = (P /\ Q)' 
property (ii) holds for P V Q. In a similar way, we assume 
that (ii) holds for each Pj and show that it holds for 
P = sup(P j)' where (P j) is increasing. To this end, P *f = f 
and note that it implies P j*f = 0, whence P ;*f = f For 
p E 9 we have again that P; P converges in the norm II 112 to 
P 'p(sinceP; form a decreasing net with infimumP 'land thus 
also in the norm II III and so we haveP '*f = J,just as before. 

Theorem 6.6: For any P E .!f and any f E ~ * we have 
that P *f = 0 implies P '*f = f 

Proof By Lemma 6.5 and Theorem 4.6 all we need is to 
show that (ii) holds for each Pp (p E 9); using Lemma 6.4 we 
verify (i) instead. To do this we must compute the null space 
JVPp.' which of course consists of all vectors orthogonal to 
~ Pp" As we have noted elsewhere, ~ p = ~ p n ~ 
- ~ p n ~ for any P E .!f, and so, using the definition of the 

complement we see that ~ p. = JV p n C(! - JV p n C(! . 
p p p 

Now JVp n C(! consists of all am with a>O and mE JI, m 
p 

orthogonal to p, and so ~ p = (am - bn la, b>O and 
p' 

m,n E JI orthogonal to p}. Thus JV p consists of all vectors 
p' 

u which are orthogonal to all am - bn as above. But obvi-
ously this boils down to saying that u is orthogonal to all 
q EpI, i.e., that U E %p. Thus we want to show that for any 
fE C(!* for whichf(P) = 0 (which is whatflJVp n C(! = 0 

p' 

means) we also havefl%p = O. Axiom (HIO) gives us this. 

VII. THE STRUCTURE OF !f 

From this point on all operators are in .!f. 
Lemma 7.1: Forf E C(! *, the following are equivalent: (i) 

f<P *t; and (ii) P *f = f and Ilflll < 1. 
Proof Assume (i), i.e., thatf(m)< IIPmll I for all mE JI. 

Thenf(P 'm) = 0 and so P '*f = 0 which by Theorem 6.6 
givesP *f=/; since IIPmlll< 1, Ilflll <1 follows. Now assume 
(ii); thenf(m) =f(Pm)<llfIlIIIPmlll<IIPmlll 
= t(Pm) = (P*t)(m) for all m EJI. 

Lemma 7.2: Letf E C(! *; iff<P *t andf<Q *t, then 
f«P /\ Q )*t. 

Proof Using Lemma 7.1 we obtain 
f(m) =f(Pm) =f(Qm) for all m EJI, and thus 
f(P) =f((PQ)kp ) for allp E 9 and k>O. Since (PQ)k p 
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E If u ! 0 J and converges to (P 1\ Q)P in the II 112 we use 
Lemma 3.2 once more to obtain convergence in the norm 
II III and thusf(P) = f((P 1\ Q )Pl. But this means that 
f = (P 1\ Q )*j, and since IVIII';;;; 1 we havef.;;;;(p 1\ Q )*t. 

Lemma 7.3: If P *Q *t.;;;;Q *t, then P and Q commute. 
Proof Since Q *t.;;;;t we also have P *Q *t.;;;;P *t and 

Lemma 7.2 gives us P *Qt.;;;;(P 1\ Q)*t. On the other hand, if 
f E CrfJ * andf.;;;;t, we have P *Q *f.;;;;p *Q *t and so 
P *Q *f.;;;;(P 1\ Q )*t. Lemma 7.1 now implies that P *Q *f = 
(P 1\ Q)* P *Q *f = (P 1\ Q )*f since (P 1\ Q)P 
= (P 1\ Q)Q = P 1\ Q. Since t is an order unit for r* this 

last relation holds for any f E CrfJ * and so for any f E r*; but 
then we haveP*Q * = (P 1\ Q)*,orQP=P 1\ Q,soQPisa 
symmetric operator and therefore P and Q commute. 

Proposition 7.4: If P.;;;;Q, then P' and Q commute. 
Proof All we need to do is show P '*Q *t.;;;;Q *t and then 

apply Lemma 7.3. Since we have PQ = QP = P we have at 
once P *Q *t = P *t.;;;;Q *t, which implies that 
Q *t - P *Q *t E CrfJ *; but this functional also vanishes under 
the action of P *, and so by Theorem 6.6 we obtain 
Q*t - P*Q*t = P'*(Q*t - P*Q*t), i.e., 
pl*Q *t + P*Q *t = Q *t. 
SinceP*Q *t E Cfj*, we havePI*Q *t.;;;;Q *t as desired. 

Proposition 7.5: If PQ = 0, then 
P*t + Q*t = (P V Q)*t. 

Proof First the special case where Q = P': clearly 
t - P *t E CrfJ * and vanishes under the action of P *, which 
implies that t - P *t = P '*(t - P *T) = P'*t, or 
t = P *t + P '*t. Now in general we note that the four opera
tors P, Q, P', Q 1 commute pairwise by Proposition 7.4. In 
particular P 1 1\ Q 1 = P' Q 1 and also P' commutes with 
P V Q since p';;;;P V Q. Now act on both sides of 
P*t + P'*t = tby (P V Q)* to obtain 
(P V Q)*t=P*t+R *t, whereR =P'(P V Q) 
= P' 1\ (P V Q). We shall show that R = Q; since both 

P V QandP'are;;;.Q (becausePQ = 0) we haveR;;;.Qand all 
we need is R.;;;;Q. SO letRm = m; then P'm = m and 
(P V Q)m = m, whence (P V Q)'m = 0, or Q'P'm = 0, 
which implies Q'm = 0, i.e., Qm = m. 

Theorem 7.6: The partially ordered complemented set 
.Cf is a complete atomic ortholattice. 

Proof We have already seen that .!f is a complete lat
tice; clearly, the projections Pp (P E .9) are the atoms of .Cf, 
and the zero and the identity projections are the extreme 
elements. It is also trivial that 0' = I and I' = 0, while for 
any P E .Cf we have P 1\ P' = 0 and P V P' = I (because 
PP' = 0). So all that is left is the orthomodular law. Let p.;;;; Q, 
and observe that since P (P' 1\ Q) = 0 we have by Proposi
tion 6.5 that P *t + (P' 1\ Q )*t = [P V (P' 1\ Q ))*t. Since 
we want to show that P V (P' 1\ Q) = Q, we must show that 
P *t + (P' 1\ Q )*t = Q *t. By hypothesis we have P.;;;;Q, or 
PQ = Q, and also that P' and Q commute, so that 
P' 1\ Q=P'Q=QP';thusP*t+(P' 1\ Q)*t 
= Q*P*t + Q*P'*t = Q*(P*t + P'*t) = Q*t. 

VIII. THE STATES OF THE LOGIC.!f 

For each m E JI write m for the map 
P--IIPmll l = t(Pm) = (P*t)(m). 
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Theorem 8.1: For each m E JI the map m is a complete
ly additive state of .Cf. 

Proof Since m = ~iaiPi implies m = ~iaJ)i it suffices 
to verify the above statement for m E .9. So take p E .9 and 
notethatO.;;;;p(p).;;;; lforallPandp(I) = 1. By Proposition 7.5, 
p is finitely additive, since pIP V Q) = p(P) + p(Q ) for dis
joint P,Q. SO it suffices to show that if (P j) is a decreasing net 
with infimum 0, then infj p(Pj ) = 0 also. But infj(Pj) = 0 
means that limjllPjpl12 = 0 hence again by Lemma 3.2 
limj IIPjPIl I = 0, i.e., limjp(Pj ) = O. 

The state functionals can be evaluated by using only the 
inner product. To this end we first establish a refinement of 
Theorem 4.6. 

Theorem 8.2: Let (Pi) be a family of pairwise orthogonal 
vectors in Y? p n .9 maximal with respect to inclusion. Then 
P= sup(Pp). 

Proof Let Q = sup(Pp, ).;;;;P. If Q =l=P, then R = P 1\ Q 
by orthomodularity, hence there is some r E .9 such that 
Rr = r. Then Pr = rand Q 1 r = r, so r E Y? p n .9 and 
Qr = 0, which implies that pp/ = 0 or (rlPi) = O. But this 
contradicts maximality of the family (PJ 

Now we can compute m(P): take any maximal orthogo
nal (Pi) in Y? p n .9 and note that m(P) = ~im(Pp,) 

= ~illPp,mlll = ~i(mlP;)llPilll =~i(mlP)· 
As can be seen by means of examples, not all states have 

necessarily the form m with m E JI. A specific case is pre
sented in the Appendix. We shall now characterize the 
spaces for which all states have the form m. 

Aframefunction is a map rp: .9 -- [0,1] such that for 
any maximal orthogonal set !Pi J in .9 we have ~irp (Pi) = 1. 

Theorem 8.2 shows that for each m E JI the map 
rpm:P -- (mlP) is a frame function. We shall say thatJl is a 
Gleason set if the converse holds, i.e., if every frame function 
of .9 is of the form rpm for some m E JI. 

Theorem 8.3: Suppose that every orthogonal set in .9 is 
at most countable. Then ! m 1m E JI J exhausts the set of all 
states of .!f if and only if JI is a Gleason set. 

Proof Suppose JI is a Gleason set and let s be a state of 
.!f. Again, Theorem 8.2 shows that the map P -- s(Pp) is a 
frame function and so s(Pp) = (m IP) for some m E JI, hence 
s = m. For the converse, let rp be a frame function of .9. We 
note that, given P E .Cf, the number ~irp (P), where !Pi J is a 
maximal orthogonal set in Y? n.9, is independent of !Pi J 

because if we select and fix a ~aximal orthogonal set! q j J in 
Y? p' n .9 the set !Pi' q j J is maximal orthogonal in .9 and so 
~irp (Pi) + ~ jrp (qj) = 1, ~r ~irp (Pi) = 1 - ~ jrp (qj) which 
depends only on P. Write rp (P) for this number and note that 
~ is a state of .Cf. By hypothesis all states have the form m 
and so rp(P) = ~ (Pp) = m(P) = (mlP)· 

It is not hard to see that countability of the orthogonal 
sets in .9 holds if, for example, the space r is separable with 
respect to the II III' 

Now suppose that indeed JI is the set of all states of .!f. 
We shall show that a conditioning exists, i.e., that the three 
Axioms (Ml), (M2), and (M3) of Sec. II hold, where the tran
sition probability functional is just our inner product. First 
observe that for any m E JI, the support Lm exists since .!f 
is complete. If we observe also that Y?;nflP,) = n Y? P,' we 
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have at once that Axiom Ml (ii) holds; the other two parts of 
Axiom M 1 are obvious. Clearly for q E f!i' the support is Pq , 

and so p(Pq ) is indeed the inner product (Plq), and (M2) 
holds. Now for (M3). We define the state (J to be just the zero 
vector, and we let for m E vi( and P E Y the state m:p to be 
Pm/11Pm11 I' if Pm #0 and let m:p = o if Pm = O. Then (i), (ii), 
and (iii) trivially follow, while, if n(P) = 1 we have Pn = n 
and so m(P){m:pln) = IIPml1 I (Pm/IIPm II I' n) = (Pmln) 
= (mIPn) = (min), i.e., (iv) holds. We also note that the 
conditioning is pure, and therefore, according to Ref. 4, it is 
the only conditioning possible on .Y. 

APPENDIX: EXAMPLES 

First some general remarks. 
In case dim r is finite and we select vi( to be compact 

we do not have to worry about (H2), (H7), and (H9). In such 
cases we identify r with Rn and take (xIY) to be l:7~ IXiYi' 
Also note that (H4) will follow from (H5), since the inner 
product is continuous in the II lit: (min) = l:i,jaibj(Pi Iqj) 
«l:ia/)(l: jb j) = 1, whence I (alm l - bln l la2m2 - b2n2) I 
<tal + bl )(a2 + b2) and so I (ulv) 1<lIulllllvll l, So all we have 
to pay attention to are (HI), (H3), (H5), (H6), (H8), and (HIO). 

Example 1. We select in lItn the convex base vi( to be the 

intersection of the unit ball with the hyperplane Xn = "fi/2, 
i.e., the set 

! (X I,x2,'" Xn -I' "fi/2)lxi + x~ + ... + x: - 1 <!J. 
The extreme points form the set 

9' = {(X I,x2"'" Xn _ I' v2/2)lxi + x~ + '" + x~ _ I =!J 
and so (H5) holds. Since 

n-I 
(xlv> = LXiYi +!> -~xi + .,. +X:_I 

i= I 

x ~Yi + ... + y~ _ I +!> - ! + ! = 0 

we get (H5) at once. By the Cauchy inequality we see that the 

only vector orthogonal to P = (X I,x2'"'' xn _ I' v2/2) is 
( - XI' - X2, ... , - Xn _ I, "fi/2) and so (H6) and (H8) hold. 
This same remark also shows that the subspace JY p consists 

of all v = (V I,V2' ... , vn) for which l:7 ~ /XiVi ± Vn (.j2/2) = 0, 
i.e., those v = (V I,V2, ... , Vn _ 1,0) for which l:7 ~ /XiVi = O. 
Now the hyperplane through P supporting ~ is 

{(ZI,z2, ... ,zn)1 ~tll XiZi = zn.j2/2} 

and it obviously contains JYp ; thus (HIO) holds. 
Example 2. In R3

, we select vi( to be a regular polygon 
of n sides in the plane Z = 8, inscribed in a circle of radius r, 

centered on the Z axis; clearly we want r = ~ so that 
(H5) holds. As before, (HI) holds by construction. We rotate 
vi( so that a vertex, say Po is in the xz plane, in which case f!i' 
consists of the pointsPk = (~cos(2k In), 

-JI-"Psin(2k In), 8) (k = 0,1, ... ,n - 1). Because of the ro
tational symmetry it suffices to consider (PoIPk) which is 
equal to (1 - 8 2)cos(2k In) + 82. To satisfy (H3) we must 
choose 8 2> - cos(2k1Tln)l[1 - cos(2k1Tln)] for k = 0, 
1, ... ,n. The maximum of the right-hand side occurs for 
k = N when n = 2N and for k = Nand N + 1 when 
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n = 2N + 1; this implies that we must select 8 2>! and 
82>cos(1Tln)l[1 + cos(1Tln)], respectively. We claim that se
lecting equality will yield (H6), because it is equivalent to 
orthogonality of Po and P N for n = 2N and Po and 
Pk (k = N, N + 1) for n = 2N + 1. Indeed, for n even there is 
only one vector orthogonal to Po and so symmetry gives (H6); 
for n odd we have P6 = Ip N'P N + I J, p1 = {PO,P2N J, and 
p1 + I = {PO,PI J which means that P61 

= Po' 
This leaves us with (H8) and (HIO); as we shall see, in 

case n is even (H8) holds but (H 10) fails, while in case n is odd 
it is the other way around. This serves to show independence 
of the axioms. So take the case n = 2N. Since P6 = {p N J the 
maximizing vector is, for any Pk, the vector PN; also 
Pk - (Pk IPN)PN is orthogonal tOPN which implies (H8). On 
the other hand JYpo is spanned by Po andpN' and is there
fore, the Y axis; since there are infinitely many planes sup
porting Ctf through Po, (HIO) fails. Finally take the case 
n = 2N + 1. We havep6 = {PN,PN+ 1 J and so the vector 
maximizing (Pklr) iSPN ifO<k<NandpN+1 if 
N + 1 < k < 2N; in the first case the desired orthogonality 
fails for P N + I and in the second for P N' However, (H 10) 
holds, because now JY Po is {O J . 

Example 3-the classical case. Let JY'be a Hilbert space 
whose inner product we write as ( I ) and norm as II II. All 
statements made about JY' and its operators which are not 
proved here can be found in Refs. 6 and 7. 

Let r be the space of all self-adjoint trace class opera
torsonJY';theinnerproduct (TIS) = tr(TS) is defined. We 
take vi( to be the convex set of all positive operators T with 
tr(T) = 1, so ~ is just the set of all positive operators; ~ 
spans r and so (H 1) holds. 

Now we compute the base norm. Since T = T + - T
we have IITIII<tr(T+) + tr(T-) = tr{iT I). On the other 
hand, if T = aA - bB with a,b>O and A,B E vi( we have 
T <aA, - T>bB; using the basis of eigenvectors of T to com
pute the trace, we obtain tr(T +)<a and tr(T -)<b, so 
tr(ITI)<a + b, which implies tr(IT I)<IITII I , whence 
equality. Thus (H2) follows. It is also well known that f!i' 
consists of all projections of rank 1; for any q; E JY' with 
1Iq;1I = 1 we shall write q; ® q; for the projection 1/1 ~ (I/IIq;)<P. 
It is clear that (H3) and (H5) are trivial to verify; (H4) follows 
at once from tr(T 2)<[trl T If Because 
(q; ®q;II/I® 1/1) = 1(q;II/IW, (H6) is immediate, while (H7) is 
part of the spectral theorem for trace class operators. For 
(H8)wenotethatifp = q;®q; thenpl = {I/I®I/III/Iorthogonal 
to q; J; given q = W ® WE f!i' we see that (qlr) is maximized 
for r = 1/10 ® 1/10 = ro, where 1/10 = 1Tw/1I1Twil and 17' is the or
thoprojection in JY' onto the orthocomplement of q;. The 
inner product of q - (q I r 0) r 0 = W ® W - (1TW) ® (1TW) and the 
vectors I/I® I/IEpl is l(wlI/IW -1(1TWII/IW = l(wlI/IW 
- l(wl1TI/JW = 0 since 17'1/1 = 1/1. To verify (H9) we must com

pute the norms of q; ® q; - 1/1 ® 1/1. We easily see that 

1Iq;®q; - I/I®I/I1I2 = ~2[1 -I(q; II/IW]; for the other, we 
compute the eigenValUes of the operator q; ® q; - 1/1 ® 1/1 
which turn out to be ± ~ 1 - I (q; II/IW and so the two dis
tances differ by a factor of v2 and (H9) holds. 

More work is required for (H 10). We want to show that 
for any fE r* which is >0 on ~ and such thatf(p) = 0 we 
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also havef(v) = ° for all v E %p. It is now immediate that 
any f E r* has the form T ---+ tr( TA ), where A is a bounded 
operator on Jf"'; using Tofthe formrp ® rp we see thatfis;;;;.O 
on cr; if and only if A is a positive operator. Now fix 
p = rp ® rp E g; and observe that % p consists of all A of trace 
class such thattr(A (rp ® rp )) = ° and trIA (t/J ® t/J)) = ° for all t/J 
orthogonal to rp; this boils down to (Arp Irp) = ° and 
(At/Jlt/J) = ° for all t/J orthogonal to rp. Now suppose that the 
given functional is determined by the (positive) operator B, 
and write B = C 2 with C positive; since the functional van
ishes at p = rp ® rp, we have (Brp I rp ) = 0, hence Crp = 0, and 
so Ct/J is orthogonal to rp for every t/J orthogonal to rp. We 
want to show that the functional vanishes to each operator A 
asdescribedabove,i.e., toshowtr(C 2A) = O,ortr(CAC) = 0. 
Take a basis rp, t/JI' t/J2' ... and compute 
tr(CAC) = (CACrp Irp) + l:;(CACt/J; It/J;) = l:;(ACt/J; ICt/J;). 
Since Ct/J; is orthogonal to rp, we have each term in this sum 
equal to zero, and so tr(BA ) = 0, and (H 10) holds. 

Example ~ commutative case. We let r be the space 
II of real summable sequences, cr; the cone of sequences with 
non-negative elements and J/ the convex set of all 
x = (x; );""~ I E cr; with l:;x; = 1. Clearly the base norm is the 
II norm and g; is the set of all x E J/ with all but one element 
zero. We define (xly) to be l:jX;y; and observe that (Hl)
(H7) and (H9) are trivial to verify. For (HS) we need only 
consider p = (1,0,0, ... ), as all other cases are similar; but 
note that any q E g;, q=/=p is necessarily in pl and so (HS) 
holds. It will take a little longer to verify (HlO). Obviously 
r* consists of all x ---+ l:;a;xj with (aj);""~ I bounded and cr;* 
of all those with a; ;;;;.0. Consider (without loss of generality) 
the point PEg; ,p = (1,0,0, ... ) and note that pl consists of all 
qk = (0,0, ... , 0,1,0, ... ) where 1 occurs at the k th place 
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(k> 1). We must show that ifjE cr;* andf(p) = 0, then 
f(v) = ° for all v orthogonal to all qk' Now v = (vl,VZ' ... ) is 
orthogonal to qk means Vk = 0, so we must show that 
f(v) = ° for all v = (vI,O, ... ), providedf(p) = 0. Butf(P) = ° 
means al = 0, and sof(v) = alv l = 0. 

We shall now show that the system of example 1 admits 
of states that do not have the form m. This can be done 
directly, or by showing that J/ is not a Gleason set. The 
second way is easier. Consider the set .sf of all antipodal 
pairs in g;, i.e., all pairs (p,q) with p orthogonal to q; recall 
that! q I isjustpl. Now select from each pair in.sf a pointp, 
define rp(p) arbitrarily between ° and 1 and define rp(q) as 
1 - rp(p). Since antipodal pairs form maximal orthogonal 
sets, rp is a frame function. However, every frame function of 
the form m is continuous, and we can obviously select our rp 
to be discontinuous. 

On the other hand, in example 3, J/ is a Gleason set. 
This is, of course, the content of the famous Gleason 
theorem (Ref. S) and the reason we called such convex sets 
Gleason sets. 

It is also quite straightforward to see that J/ in example 
4 is a Gleason set. 
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This paper derives simple analytical formulas for the energy eigenvalues En (A ) of one
dimensional anharmonic oscillators characterized by the potentials OJ2X2 + .1:; ~ 2Aa x2a. For. 
doubly anharmonic oscillators, over a wide range of n and A, these energy values agree well With 
the numerical values calculated by earlier workers. 

PACS numbers: 03.65.Db, l1.lO.Jj 

I. INTRODUCTION 

The study of one-dimensional anharmonic oscillators 
(AHO's) has evoked much interest because of its varied ap
plication in field theory1 and molecular physics:2 A ge~eral 
survey of the various applications may be found In the htera
ture.3

•
4 

The perturbation expansion of En (A ) in powers of A is 
not convergent but asymptotic.5

•
6 These investigations have 

been confined to the calculation of the lowest few eigenval
ues for differentA. Variational techniques using a harmonic 
oscillator (HO) basis have yielded better results? For higher 
eigenvalues, however, the variational calculations become 
quite cumbersome. The Hill determinant method has also 
been used7 for obtaining eight eigenvalues of the AHO for 
different A in the range 0 <A< 100. Once again for higher 
eigenvalues as well as for large values of A the numerical 
errors in the technique become quite appreciable. A variety 
of other methods have also been formulated to obtain ap
proximate analytic relations which yield the values of E" (A ) 
to high accuracy. Hioe and Montroll3 and Hioe et al.4

•
8 have 

obtained a number of such relations which are accurate in 
different regimes of values of the quantum number n and the 
anharmonicity constant A. In one regime the energy eigen
values differ slightly from the HO levels (the near harmonic 
regime), in the other they differ slightly from the pure quar
tic oscillator eigenvalues (the near quartic regime). In a tran
sition region between two such regimes, this work offers no 
specific way to decide which relation is more reliable. How
ever numerical computations made by these workers have 
yielded results for A varying from very small to very large 
values, but only for low-lying levels. The most comprehen
sive work on this problem is by Banerjee et al.9 and Baner
jee. 1O They have obtained E" (A ) for X4, x6

, and x8 oscillators 
for both n and A varying from very small to very high values. 
However, this work has the shortcoming that it provides no 
single analytical formula, for a general power of x, that 
yields En (A) accurately for all n and A. 

Some AHO's with more complicated potential have 
also been investigated recently.ll.12 Doubly anharmonic sys
tems of the type ax2 + px4 + yx6 have been studied analyti
cally. 13-18 In the study of this problem, 16.19 it is found that a 
suitable three-term difference equation involving contiguous 
terms exists which permits the analytic study of the system 
in a manner which was not possible for Am X2m oscillators. 
The eigenvalues of the rotating harmonic oscillator have 
been similarly investigated. 

The main object of this paper is to approximate analyti
cally the energy levels of oscillators having a Hamiltonian of 
the general form 

m 

H = p2 + OJ2X2 + L AaX2a, (1) 
a~2 

wherep = (- i d /dx)andAa > o are the anharmonicity con
stants. This has been done in Sec. II. The essential feature of 
our approach is to approximate the AHO wave function, say 
tP", by the basic states In) of a HO with a suitably chosen 
renormalized frequency OJo(n, A ). With this OJo(n, A ) the ma
trix H, when considered in the basic states In) of the above 
HO gets diagonalized and En closely approximates (n IH I)· 
The use of a scaled HO basis for obtaining the eigenvalues of 
an AHO has been recognized earlier.2.9.20.21 After obtaining 
the general eigenenergy expression for the oscillator, we 
have, for the purpose of obtaining accurate results, modifi~d 
it by introducing suitable correcting terms. Further to venfy 
the accuracy of our main result, viz., the eigenenergy expres
sion, we particularize it in Sec. III to the case of a doubly 
anharmonic oscillator with quartic and sextic anharmonici
ties. We then compare our results with the corresponding 
(accurate) results already available in the literature. Our re
sults are found to be quite good. 

In Sec. IV, our general expression has been particular
ized to the case of a generalized Am x2m AHO. It may be of 
interest to note that the procedure adopted by us has already 
been used by Mathews et al. 21

•
21 for deriving expressions of 

En (A ) for the quartic, sextic, and octic oscillators. These 
authors have checked the accuracy of their relations by com
paring them with the corresponding values available in the 
literature. Finally Sec. V is devoted to a discussion of our 
results. 

II. DERIVATION OF GENERAL EIGENENERGY 
EXPRESSION 

The Schr6dinger equation for the quantum mechanical 
AHO with polynomial interaction defined by (I) can be writ
ten as 

_ d 2~ + (OJ2X2 + i Aax2a _ E)'" = 0 (2) 
dx a~2 

(in units Ii = 2 m = 1). 
Here m > 2, and Aa > 0 are the coupling parameters. We 

consider the matrix representation of H in the eigenstates In) 
of the following harmonic oscillator with renormalized fre
quency OJo: 
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Ho= - d2~ + lU6X2 , Holn) =(2n + l)lUoln). (3) 
dx 

The matrix elements of H in the basic states of Ho are easily 
determined to be the following: 

(4) 

and 

(n +2IHln) = (nlHln +2)=Hn,n+2 

= lUO( - ..!..(1 - v) + i ~ v" + 1 2a! 
2 a=2 a 22a +1 

a 1 2r + 1 ) 
X L nCr 1---

r=1 (a-r)! - (r+l)! 

X!(n + 2)(n + 1))1/2. (5) 

Here v = lU/lUoisapositivequantity, nCr = n!lr!(n - r)!, and 
fa is the coupling parameter defined by 

(6) 

Other matrix elements (niH In') are obtained similarly; 
indeed, (niH In') = 0, when In' - nl > 2m. 

Now the renormalized frequency lUo(n, A. ) is suitably 
chosen to diagonalized the matrix H so that (n IH In) closely 
approximates En. To accomplish this (for approximating En 
by Hnn) we choose v such that the nearest off-diagonal terms 
(viz., H n.n ± 2 and Hn ± 2,n) are numerically as small as possi
ble. On substitution of v so obtained, H nn is expected to clo
sely approximate En. That is, 

TABLE I. Energy eigenvalues of oix2 + AzX4 + A3X6 oscillator 
(a? = A2 = A3 = I). Here n is the excitation number of the level, Ee is the 
result obtained by our calculations, EE is the exact eigenvalue, 8e is the 

relative error (defined) as8e = (EE - Eel/Ee in our calculated results, 8E 
is the corresponding error obtained by Datta et al.22 

n Ee EE" 8e 8E 

I 5.756 5.656 - 0.177X IO-!.... 0.336X 10- 2 

2 11.l44* 11.107 - 0.333X 10- 2 0.522 X 10-2 

3 17.607 17.637 0.170X 10- 2 0.578X 10- 2 

4 25.014 25.068 0.215 X 10-2 0.538X 10-2 

5 33.227 33.293 0.198XIO- 2 0.486xlO- 2 

6 42.163 42.236 0.173 X 10-2 0.438 X 10- 2 

7 51.763 51.841 0.150x 10-2 0.397X 10- 2 

8 61.981 62.062 0.13IXIO- 2 0.36IXIO- 2 

9 72.778 72.861 0.1I4X 10-2 0.332X 10-2 

10 84.124* 84.209 0.IOIXIO- 2 0.305XIO- 2 

20 223.206 223.295 0.399XIO- 3 0.169xlO- 2 

30 400.285 400.371 0.215xlO-3 0.1I6XIO- 2 

40 608.270 608.349 0.130X 10-3 0.882X 10-3 

50 843.009 843.079 0.830X 10-4 0.71OX 10-3 

60 1101.681 1101.739 0.526X 10-4 0.595X 10-3 

70 1382.208 1382.253 0.326X 10-4 0.51OX 10-3 

80 1682.973 1683.005 0.19OX 10-4 0.447 X 10-3 

90 2002.676 2002.692 0.799X 10-5 0.398X 10-3 

100 2340.237* 2340.237 0 0.368X 10-3 

• See Ref. 22. 
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TABLE II. Same as Table I but with ai = A2 = I, A3 = 5. 

n Ee E " E 8c 8E 

I 7.466 7.279 - 0.257 X 10- 1 - 0.331 X 10- 1 

2 14.806 14.731 - 0.509x 10- 2 -0.I04XIO- 1 

3 23.799 23.837 0.159X 10- 2 - 0.513 X 10- 2 

4 34.233 34.303 0.204 X 10- 2 - 0.295 X 10- 2 

5 45.884 45.965 0.176XIO- 2 - 0.186x 10- 2 

6 58.623 68.709 0.146X 10- 2 - O.l24x 10- 2 

7 72.358 72.447 0.J23 X 10- 2 - 0.870X 10- 3 

8 87.021 87.111 O.I03X 10- 2 - 0.628 X 10- 3 

9 102.553 102.644 0.887X 10- 3 - 0.462 X 10- 3 

10 118.909 118.999 0.756X 10-3 - 0.346 X 10- 3 

20 320.873 320.960 0.271 X 10-3 - 0.478 X 10-5 

30 579.751 579.833 0.141XIO- 3 0.357X 10-4 

40 884.895 884.971 0.859X 10-4 0.415XIO- 4 

50 1230.077 1230.147 0.569X 10- 4 0.401 X 10- 4 

60 1611.072 1611.134 0.385X 10-4 0.373x 10-4 

70 2024.764 2024.818 0.267 X 10-4 0.343 X 10-4 

80 2468.735 2468.780 0.182XIO- 4 0.315x 10-4 

90 2941.035 2941.071 0.I22XIO- 4 0.290 X 10-4 

100 3440.049 3440.074 0.727 X 10- 5 0.268x 10- 4 

"See Ref. 22. 

En~~[(n+ ~}I+V)+ a~2fav"+I~~ 
a 1 nc ] XL 2,_r lU, 

r=O (a - r)! r! 
(7) 

where v is the value between 0 and 1 which satisfies the 
following algebraic equation: 

m 2a1 a 1 
~ ~v"+1 . ~ (nc n- 2c 

a"'=2 a 22a r~1 (a _ r)! r- 1 + ,-I) 

2r 

X--+v= 1. 
(r+ I)! 

(8) 

Though the terms other than the nearest off-diagonal ones 
left uncompensated so far also contribute to En but if n is not 
very small, the contribution from the terms H mm' with 
m + m' < 2n is largely counterbalanced by the contribution 

TABLE III. Same as Table I but with ai = A2 = I, A3 = 10. 

n Ee E " E 8c 8E 

8.537 8.346 - 0.229x 10- 1 - 0.368X 10- 1 

2 17.139 17.046 - 0.546 X 10- 2 -0.119X10- 1 

3 27.682 27.726 0.159X 10- 2 - 0.614X 10- 2 

4 39.948 40.027 0.197X 10- 2 - 0.368X 10- 2 

5 53.663 53.754 0.169X 10- 2 - 0.243 X 10- 2 

6 68.674 68.769 O.l38X 10- 2 -O.l71XIO- 2 

7 84.871 84.969 0.115XIO- 2 - 0.126x 10- 2 

8 102.173 102.271 0.958X 10-3 -0.965XIO- 3 

9 120.510 120.608 0.813XIO- 3 - 0.759X 10- 3 

10 139.827 139.924 0.693 X 10- 3 - 0.609 X 10-3 

20 378.705 378.794 0.235X 10- 3 -0.129XIO- 3 

30 685.298 685.381 0.121 X 10-3 - 0.446x 10- 4 

40 1046.930 1047.005 0.716X 10-4 - 0.176x 10-4 

50 1456.187 1456.256 0.476 X 10-4 - 0.649 X 10- 5 

60 1908.040 1908.102 0.325X 10-4 - 0.116x 10- 5 

70 2398.784 2398.838 0.225X 10-4 O.I60x 10- 5 

80 2925.547 2925.586 0.133X 10-4 0.310X 10-5 

90 3485.991 3486.027 0.103X 10-4 0.392X 10- 5 

100 4078.212 4078.239 0.662X 10- 5 0.437 X 10-5 

"See Ref. 22 . 
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TABLE IV. Same as Table I but with oP = ,12 = 1, ,13 = 20. 

n Ee E • E De DE 

1 9.960 9.679 - 0.290X 10-[ - 0.387 X 10- [ 
2 20.018 19.904 0.S73X 10- 2 -0.126XIO-[ 
3 32.443 32.493 0.IS4XIO- 2 - 0.657X 10- 2 

4 46.923 47.014 0.194X 10-2 - 0.398X 10- 2 

S 63.129 63.233 O.I64X 10- 2 - 0.266X 10- 2 

6 80.878 80.987 0.13SX 10- 2 - 0.189 X 10- 2 

7 100.041 l00.IS0 O. 109 X 10- 2 - 0.142X 10- 2 

8 120.S17 120.626 0.904X 10- 3 - 0.109X 10- 2 

9 142.227 142.334 0.752X 10-3 - 0.874X 10- 3 

10 165.101 165.207 0.642 X 10-3 - 0.712X 10-3 

20 448.233 448.326 0.207 X 10-3 - 0.176X 10- 4 

30 811.921 812.006 O.I04X 10-3 -0.745XIO-4 

40 1241.077 1241.153 0.612X 10-' - 0.395 X 10-4 

50 1726.879 1726.948 0.340 X 10-' - 0.236 X 10-' 
60 2263.345 2263.406 0.270x 10-' - 0.IS3 X 10-4 

70 2846.066 2846.118 0.183xlO-4 - O.I04X 10-' 
80 3471.618 3471.660 0.121 X 10-4 - 0.728 X 10-5 

90 4137.240 4137.273 0.798xlO- 4 - 0.528X 10-5 

100 4840.653 4840.673 0.413 X 10-5 - 0.381 X 10-5 

• See Ref. 22. 

from the terms with m + m' > 2n. However for accurate val
ues of En (A ) one should take into account this contribution 
as well. Now as the exact value of En is independent of (uo 

(and hence of v) we utilize this extra information to obtain a 
more accurate expression for En by modifying the equation 
which defines v. The modified form can be written as 

g;, v'" + 1 [2m! f 1 C C + n - 2 C ) 
m 22m r=1 (m-r)! r-I r-I 

X _2_r __ A ] + m fig;, v" + 12a! ± 1 
(r + I)! m a = 2 a 22a r = 1 (a - r)! 

X (nCr_I + n- 2 C r _ d_2_
r 
-(1 -Aa) +A1v 

(r+ I)! 

= Ao + B I(n + !f (9) 

Here Aa (a = 0, 1, ... ,m) and B are arbitrarily chosen con-

TABLE V. Same as Table I but with 0/ = ,12 = 1, ,13 = 50. 

a Ee E a E De DE 

I 12.298 11.913 - 0.323 X 10- [ - 0.399X 10-[ 
2 24.798 24.651 - 0.596X 10- 2 -0.129XIO-[ 
3 40.312 40.374 0.154X 10- 2 - 0.679 X 10- 2 

4 58.418 58.528 0.188XIO- 2 -0.413XIO- 2 

5 78.696 78.821 0.159X 10- 2 - 0.277 X 10- 2 

6 100.917 101.046 0.128X 10- 2 - 0.198X 10- 2 

7 124.918 125.046 0.102X 10- 2 - 0.149X 10- 2 

8 150.570 150.697 0.843 X 10-3 - 0.116X 10- 2 

9 177.774 177.899 0.703 X 10-3 - 0.928 X 10-3 

10 206.444 206.567 0.595X 10-3 - 0.759X 10- 3 

20 561.570 561.672 0.182X 10-3 - 0.196X 10-3 

30 1018.024 1018.112 0.864 X 10-' - 0.875 X 10-4 

40 1556.816 1556.893 0.495 X 10-4 - 0.489X 10-4 

50 2166.849 2166.916 0.309X 10-4 - 0.31OX 10- 4 

60 2840.595 2840.653 0.204 X 10-' - 0.213X 10-4 

70 3572.511 3572.S58 0.132XIO-' - 0.154X 10- 4 

80 4358.288 4358.324 0.826X 10-5 -0.116XIO-4 

90 5194.457 5194.481 0.462 X 10-5 - 0.911 X 10-5 

100 6078.141 6078.155 0.230X 10-5 - 0.727 X 10-5 

a See Ref. 22. 
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TABLE VI. Same as Table I but with 0/ = ,12 = 1, ,13 = 100. 

n Ee E a E De DE 

1 14.488 14.023 - 0.332 X 10- [ - 0.403 X 10- [ 
2 29.28S* 29.109 - 0.6OS X 10-2 - O.130X 10-[ 
3 47.677 47.749 O.ISIX 10-2 - 0.686X 10- 2 

4 69.155 69.283 0.185 X 10-2 - 0.418X 10- 2 

5 93.219 93.364 0.155 X 10- 2 - 0.280X 10- 2 

6 119.594 119.743 0.124X 10-2 - 0.201 X 10- 2 

7 148.086 148.234 0.998X 10-3 -0.ISlxlO- 2 

8 178.544 178.689 0.811 X 10-3 - 0.117X 10- 2 

9 210.847 210.989 0.673X 10-3 - 0.942 X 10-3 

10 244.895 245.033 0.563X 10-3 - 0.771 X 10- 3 

20 666.759 666.871 0.168X 10- 3 - 0.201 X 10- 3 

30 1209.143 1209.237 0.777X 10-4 - 0.906 X 10-' 
40 1849.45S 1849.536 0.438 X 10-' -0.SIIXIO- 4 

50 2S74.496 2574.563 0.26OX 10-' - 0.327X 10-4 

60 337S.31O 3375.364 0.160X 10-' - 0.227 X 10-4 

70 4245.302 424S.364 0.989X 10-5 - O.l66X 10-4 

80 5179.351 5179.378 0.S21 X 10-5 - 0.126 X 10-4 

90 6173.326 6173.341 0.243 X 10-5 - 0.999X 10-5 

100 7223X813* 7223.813 0 - 0.806X 10-5 

• See Ref. 22 . 

stants. To obtain these constants, we choose some particular 
coefficients Aa and level number n, then find those values of 
v (between ° and 1) which make Hnn closely approximate the 
corresponding value of En (assumed known from some other 
computation). With these values of v and corresponding n 
andAa we obtain linear algebraic equations equal in number 
to the number of constants involved in (9). The values of the 
constants can easily be obtained by solving these equations. 

Expression (7) with relevant v obtained from Eq. (9) 
constitutes our expression for En. This simple generalized 
expression is applicable for a wide range of nand Aa . In the 
following section we shall examine the accuracy of our eigen
energy expression. 

III. NUMERICAL ANALYSIS-APPLICATION TO 
DOUBLYAHO 

To check the accuracy of our expression we consider 
the special case of a doubly AHO. Choosing m = 3, Eq. (2) 
reduces to 

Ht/J = Et/J, with H= 
d 2,1, 

- --~ + (U 2
X

2 + A:r4 + A3X6• 
dx 

(10) 

Equation (10) is the Schrodinger equation for a doubly an
harmonic oscillator. Here the values chosen for Aa are given 
in the table captions. For this AHO, (7) transforms to the 
following form: 

TABLE VII. Same as Table I but with oP = 1, ,12 = - 1, ,13 = 100. 

n Ee E • E De DE 

2 16.368 16.221 - 0.906 X 10- 2 - O.13x 10-[ 
4 38.440 38.533 0.241 X 10- 2 - 0.42 X 10- 2 

6 66.491 66.604 0.170X 10- 2 - 0.20X 10- 2 

8 99.318 99.435 0.118X 10- 2 - 0.11 X 10- 2 

10 136.299 136.417 0.865X 10- 3 -0.73xlO- 3 

• See Ref. 22. 
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TABLE VIII. Same as Table I but with oi = 1,.42 = 0,.43 = I. 

n Ec EE
a 8c 8E 

2 10.032 9.966 - 0.662 X 10- 2 - O.13X 10- 1 

4 22.843 22.910 0.292 X 10- 2 - 0.41 X 10- 2 

6 38.962 39.059 0.248X 10-2 - 0.20X 10-2 

8 57.745 57.845 0.173X 10- 2 - 0.12X 10- 2 

10 78.851 78.958 0.136XIO- 2 - 0.76X 10-3 

a See Ref. 22. 

En = (lIv){(n + !)(1 + v) 

+ ~v4(n + ~)[(n + !)2 + i] 

+ ~v[(n +!f + !lJeu. (11) 

For this case the constants A and B of Eq. (9) are obtained 
according to the procedure mentioned earlier. Values of En 
marked by an asterisk in Tables I and VI are used in obtain
ing these constants. Equation (9) now reduces to 

~v4P.H(n+!)2+~] -A3J +2.izv(n+!)(I-A2) 

+Atv=Ao+B/(n+!f. (12) 

Here 

g;. = Aa I eua + 1, Ao = 0.286 851 297 3, 
AI = 0.086163746, A2 = 0.425555777, 
A3 = l3.045 26593, B = 0.062 535. (l3) 

In the evaluation of these constants, the chosen values of En 
either equal or closely approximate the accurate values cal
culated from the truncated Hill determinants generated by 
scaled basis functions. 22 For these known values of En' n, 
and A, we obtain the corresponding values of v (lying 
between zero and one) which satisfy Eq. (11). Corresponding 
to these values of En, n, and Aa , Eq. (12) gives five linear 
algebraic equations. Solving these equations yields the con
stants mentioned in Eq. (l3). 

Equation (11), with v determined from Eqs. (12) and 
(13), expresses our results for the doubly AHO. These re
sults, valid for a wide range of nand Aa , are displayed in 
Tables I-VIII. The accuracy of our results is examined by 
comparing them with the known numerical results in the 
literature.22 For n < 2, our eigenenergy expression provides 
less satisfactory results than for n > 2. This discrepancy 
could be explained by remembering that for n < 2 there exists 
no nonvanishing H mm' with m + m' < 2n to counterbalance 
theeffectofHmm. withm + m' > 2n. Forn = 1, however, we 
must add a correction term which represents the contribu
tion from the nearest off-diagonal terms. Then the eigenen
ergy for n = 1 becomes the lower eigenvalue of the matrix 

~Il HI3) 
31 H33 

and this is 

2950 

EI = HII +H33 
2 

- ~ ~ [(HII + H33)2 - 4(HIlH33 - H13H3tll. 
2 

(14) 

In the above equation the values of Hw H 33, H 13, and 
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H31 with the relevant v substituted from Eq. (7) are obtained 
from Eqs. (4) and (5). Equation (14) has been used in obtain
ing the results for n < 2. 

Finally we compute the relative error in our results and 
compare it with the corresponding error obtained by Datta 
et al. 22 An overall improvement in the results is observed. 

IV. AHO WITH SINGLE GENERALIZED ANHARMONIC 
TERM 

In this section we examine the accuracy of the eigenen
ergy expression for an AHO with a single generalized anhar
monic term. For a = m, Eq. (7) reduces to that for aAmx2m 
oscillator, viz., 

En =~[(n +~)(1 + v) +g;,~+12m! 
v 2 22m 

m 1 nc ] XL 2'_' 
,=0 (m-r)! r!' 

(15) 

with relevant v substituted from 

,..2 ~ + I [2m! ~ 1 (n n - 2 
5m 22m ~ ( _)' C,_ I + C,_ I) 

,=1 m r. 

X---Am =Ao-Alv+B/(n+!). 2'] 2 

(r+ I)! 
(16) 

We now simplify the above expressions for large nand 
Am and compare it with the known WKB-Iarge-n and Am 
results. The solution of Eq. (16) for large n and Am can be 
expanded as 

v = (AoIPIg;, )l/lm + I)(n + !)(I- m)/l\ + m) 

X [1 _ P2 + 1 B 
(m + l)(n + !)2 (m + 1) Ao(n + !)2 

1 B P2 1 A I ( Ao )2Ilm + I) 

(m + 1)2 Ao(n + !)4 (m + 1) Ao PIg;, 

X(n + !)211-m)l11 +m)(1 _ 3P2 
(1 + m)(n +!f 

+ (1 + ~)~~ + !)4 ) + .. -l (17) 

Here 

2m! 1 
PI = (m + 1)!(m -I)! 2m - I ' 

(m - l)(m - 2) 2 ( 15 ) 
P2 = 2!22 3 m +""2 ' 

(18) 

Ifwe substitute this value of v in Eq. (15), and we set eu = 1, 
then En becomes 

E = AI/II + m)[x(n + ~)2mlll + m)(1 + --Y--"7') 
n m 2 (n +!f 

( 
(n + 1))2111 + m) ] +ZT +"', 

m 

(19) 

where 
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X=_I 1+ 0, (
p )l/lm+I)( (m+ l)A ) 

AD 2m 

Y=B( -1 + (m + 1) ) 
(m + l)Ao [2m + (m + l)Ao] 

+ (m 2 
- 1)(5 - 2m)Ao + P2 

4[2m + (m + l)Ao] (m + 1) 

and 

(Ao)lIlm+I)[ (1 1)] Z= - I+A I -- • 

PI Ao(m+l) 2 
(20) 

The WKB approximation for the general anharmonic 
oscillator with Hamiltonian H = p2/2m + ~mliJ2x2 
+ A,mX2m yields the following expansion, for large n, of the 

nth eigenvalue3
•
23

: 

E:KB = 2m/ll +m)A, ~Im+ I) 

{ [( 1) Dm ]2m/ll+m) 
X x n+- +---

m 2 (n +~) 

(( + 1))2111 +m) } + 22111 + m)Ym nA,m 2 + ... , 

where 

x = 21m - 2)/lm + 1)(1T(m + l)r(lIm))2m/ll + m) 
m r2(1I2m) ' 

= 212 - m)/11 + m)(1T(m + l)r(lIm))2Ilm + I) 

Ym r2(1I2m) ' 

X r(lIm)r2(3/2m) 
r(3Im)r2(1I2m) , 

D = 2m - 1 cot(..!!...-) 
m 121T(m + 1) 2m' 

fz = 2m = liJI2 = 1. 

Equation (21) can be further simplified to 

( 
8m2ml(1 + m)) 

X 1 + ------:--
(n + !)2 

+y ~ + ... (
(n+ 1))2/11+m) ] 

m Am ' 

where 

X = 22[lm -\)11m + 1))(1T(m + 1)r(lIm))2m/ll + m) 
m r2(1I2m) , 

and 

Y = 24/11 +m)(1T(m + 1)r(lIm))2/Im+ I) 

m r2(1I2m) 

X r (lIm)r 2(3/2m) . 
r(3Im)r2(1I2m) 

(21) 

(22) 

(23) 

With the proper choice of AD, A l' and B, expression (19) 
obtained by us is in complete agreement to that obtained by 
Hioe and Montroll.3 Further with a slightly different choice 
of above parameters [A m = 0, AD = a( 1 - v), 
Al = b (1 - v), and B = c( 1 - v)] our eigenenergy expres-
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sion becomes the generalization of the results obtained ear
lier by Mathews et al.20

•
21 for the cases of m = 2, 3, and 4. 

v. CONCLUSION 

To our knowledge the generalized eigenenergy expres
sion obtained by us with such a wide validity has been de
rived for the first time. It may be noted that we do not impose 
any restriction (except thatA,a > 0) on the relative amplitude 
of the coupling parameters which describes the relative 
strength of the corresponding anharmonic terms. As a spe
cial case of our generalized formulation we study the doubly 
AHO with Hamiltonian defined by Eq. (9). Results obtained 
for this case are quite good. Also we have examined the accu
racy of our results for A,a < O. If A,3 = 100 then results are 
quite satisfactory for A,2 = - 1 but not so good for large 
negative values of A,2' A similar observation for low-lying 
levels was also made by Datta et al.22 For A,2 = 0 the Hamil
tonian in Eq. (9) reduces to that for a A,3X6 oscillator and as 
shown in Table VIII, the accuracy remains comparable to 
that when A,2 # O. 

It may also be mentioned that a fresh choice of the pa
rameters appearing in Eq. (12) is required for calculating 
En (A, ) with values of n and A, much different from what have 
been considered in the present work. 

In Sec. IV we have used large-n and -A, WKB approxi
mations for obtaining the generalized expression for A, m x2m 
anharmonicity. The resulting expression produces uniform
ly accurate results over a large parameter domain (including 
smaller values of n and A, ). 

Using five eigenvalues computed numerically, our 
expression (12) provides a simple way of obtaining uniformly 
good results. Numerical computation of En (A, ) requires re
peated calculation ofthe roots. 22 For n = 100 and A,3 = 100 
(A, 1 = A,2 = 1) these repeated calculations of roots, involving 
a 25Oth-order polynomial, must be done as much as 250 
times. The order of polynomial and repeated calculation of 
roots go on increasing as the values of n and A, increase 
further. In our case however, the calculation of only a single 
root of a fourth-order polynomial is needed. The present 
method therefore accomplishes results with relatively less 
computational labor. 
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The shift operator technique for SO(7) in an [SU(2)]3 basis. I. Theory 
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Shift operators for the chain of Lie groups SO(7) ::) [SU(2)P are constructed, and several properties 
are examined. Quite a number of relations connecting quadratic products of shift operators are 
built up. Finally, the connection between matrix elements of the shift operators and reduced 
matrix elements ofthe tensor operator, which forms part of the SO(7) generator basis, is explained. 

PACS numbers: 03.65.Fd 

I. INTRODUCTION 

In a previous paper I the reduction chain 
SO(7)::) [SU(2)P was examined. The SO(7) generator basis 
was composed of the [SU(2W generators and the compo
nents of a tensor T[1I2 112 I] , of rank (!, !, 1) with respect to 
[SU(2)F. In the same reference, all the reduced matrix ele
ments of the tensor T[1I2 112 I] were determined in the case of 
the symmetric representations [u, 0, OJ. 

The application of the technique used in Ref. 1 to other 
representations than [u, 0, 0], leads to extremely difficult re
cursion relations between reduced matrix elements of 
T (112 112 I]. The solution of such relations would be very 
hard. 

Therefore, another, more general method is introduced 
in the present paper: the shift operator technique. This tech
nique was originally introduced by Hughes,2,3 and used by 
himself and others to solve state labeling problems.4-19 

In Sec. III, the [SU(2W shift operators for SO(7) are 
constructed. Some properties, derived from general relations 
for SU(2) shift operators, 20 are mentioned. Section IV con
tains the construction of relations connecting quadratic pro
ducts of shift operators. Several kinds offormal transforma
tion rules, by which relations tum into each other, are 
discussed. Finally, the connection between matrix elements 
of the shift operators and reduced matrix elements of the 
tensor T(1I2 1121] is presented in Sec. V. The relations (4.2)
(4.12) will enable us to determine explicit expressions for the I 

-I Research Assistant N.F.W.O. (Belgium). 
blResearch Assistant I.W.O.N.L. (Belgium). 

reduced matrix elements of T (112 112 I] for representations 
different from [u, 0, OJ. These applications are shown in a 
forthcoming paper.21 

II. THE SO(7) GENERATORS, NOTATIONS AND 
CONVENTIONS 

Since we are studying the chain SO(7P[SU(2W, it is 
convenient to make the subgroup structure appear explicitly 
in the SO(7) generator basis, The three commuting SU(2) 
subgroups are then generated by the sets (s -I' So,S + d, 
( t _ I' to, t + I) and (u -I' uo, U + I ), satisfying the well-known 
commutation relations 

[So, S ± I ] = ± S ± I , 

[s _,' S+ I] = So, 

(2.1) 

(2.2) 

and the same relations for to, ± I and uo, ± I . The remaining 
generators of SO(7) form a bispinor-vector T [~/2 }/2 ~] 
(a, {3 = ±!, r = 0, ± 1) under the [SU(2W subgroup. The 
SUbscripts on the bispinor-vector are s, t, u ordered, that is 

[sl" T(~/2 }/2 ~]] = ! v'3 < !a11L1! a + IL) T~~I' }/2 ~l, (2.3) 

[tl" T [~/2 }/2 ~]] =! v'3 < ! {3 III I! {3 + IL) T [~/2 }/L ~l, (2.4) 

[ul" T(~/2}/2 ~l] =Ji< 1r11L11 r+IL)T(~/2}/2 ~1+1" (2.5) 

Finally, the commutators of the components of the bispinor
vector among themselves are 

(2.6) 
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Clearly, the SO(7) algebra is completely determined by (2.1)
(2.6). 

The second-order Casimir operator of SO(7) has been 
constructed by Vanden Berghe et al., I and reads (for reasons 
of simplicity, the tensor components T ~/2 ;;2 ~l are hence
foreward denoted as Tsgn(a)sgn(.8)sgn(y)) 

12 = - 2T+++T ___ + 2T++oT __ o - 2T++_T __ + 

+ 2T+_+T_+_ - 2T+_oT_+o + 2T+ __ T_++ 

+ 3so - so(so - 1) 

+ 2s+ ls_ 1 + 2t+ I C I - to(to - 1) + U+IU_ I 

- ~Uo(Uo - 1). (2.7) 

When the irreducible representations (irreps) of SO(7) are 
denoted by the Dynkin labels [VI' V2, v3], the 12 eigenvalue 
is22 

(12 ) = - ~ {VI(V I + 5) + 2v2{V2 + 4) 

+ 3 i (i + 3) + 2VIV2 + VIV3 + 2V2V3 } • (2.8) 

It is known that one needs nine internal labels to classify 
the states of any SO(7) irrep [VI' V2 , v3] unambiguously. The 
subgroup [SU(2)P provides six label generating operators: 
S2,SO' T2, to, U 2

, anduo. TheexpressionofS 2 in terms of the 
basis generators is 

S2 = - 2s+ ls_ 1 +.ro -So; (2.9) 
analogous expressions are valid for T 2 and U 2. The eigenval
ues of the above-mentioned list of six operators are, respec
tively, sIs + 1), A, t (t + 1), J-l, u(u + 1), and v. Then the basis 
states of an irrep of SO(7) can be written as 

lVI' V2, V3; r stu A J-l v), 

or, if confusion is excluded 

IrstuAJ-lv). 

(2.10) 

(2.11) 

Herein, r denotes a set of three missing labels. If there is no 
degeneracy in the reduction of the SO(7) irrep into [SU(2)f 
irreps (which is for instance the case for the representations 
[v, 0, 0], [v, 0, 1] and [0,0, v]), we simply use the notation 
Is t U A J-l v). Moreover, if A, J-l, and v are irrelevant labels, 
we summarily denote the kets as Is t u). Formulas contain
ing these shorthand notations should be understood as being 
valid for all A, J-l, and v satisfying AE ( - s, - s + 1, ... , + s), 
J-lE{ - t, ... , + t) and VE{ - u, ... , + u). 

III. THE SHIFT OPERATORS 0 ~ { ~ 

A general analysis ofSU(2) shift operators has been giv
en by Hughes and Yadegar.20 They have set up a formula for 
a shift operator 07(k = - j, - j + 1, ... , + j) in terms of the 
SU(2) generators 10 • ± and the components of an SU(2) ten
sor T~l(J-l = - j, ... , + j). The extension of the theory for 
[SU(2W shift operators has been studied elsewhere. 19.23 The 
main result of that study was that the expression for [SU(2W 
shift operators can be derived immediately from the corre
sponding expressions for ordinary SU(2) shift operators. 

Consequently, in the present case the expressions for 
the shift operators 0 ~ { ~ built up with the tensor compo
nents T [~12 ;;2 ~l can be deduced from the SU(2) shift opera
tors for tensors T~/21 and T~l. The latter forms are given 
by20 

0,+ 112 = - T[~/[)21+ - (l + m + I)T\)?I, (3.1) 

0,-112 = - T[i:i1L + (I + m)T[~/[)2' (3.2) 

0/ 1 = (/- m + I)T[~ll/+ + (I + m + I)T[11J_ 
+ .J2(/- m + 1)(1 + m + I)Tbll , (3.3) 

07 = T[~JJ+ - TllllC + .J2mTbI1 , (3.4) 

0,-1 = - (I + m)T[~ll/+ - (/- m)T[11J_ 
+.J2(l + m)(/- m)TbI1 . (3.5) 

In Eqs. (3.1 )-(3.5), (C, 10 , 1+1 is the generator basis ofSU(2), 

where I ± = +.J2f ± I' and the commutation relations of 
the triple (I_I' 10 , 1+ 1 ) are determined in (2.1) and (2.2). The 
labels m and I (I + 1) are the eigenvalues of 10 and L 2. The 
tensor T [~I satisfies 

[/0' T[j.l] =J-lT[~l, (3.6) 

[/±, T[jl] = [(j+J-l)(j±J-l + 1)]I12T1Ji I' (3.7) 

Ifwe define 

s ± = + {is ± I' t ± = +.J2t ± I' and u ± = +.J2u ± 1 , 

(3.8) 

the expressions (3.1 )-(3.5) can be used explicitly. Now for
mula (5.9) of Ref. 19 is applied to derive from (3.1)-(3.5) the 
expressions for the shift operators 0 ~ { ~ (i, jE ( - ~, ~), 
kE{ - 1,0, + 1)). We show, as an example, the operator 
01(2 1:2 ~ 

o 1(2 1:2 ~ = (s + A + I)(t + J-l + 1) [ (u - v + 1) T + + _ U + + (u + v + I)T + + + u _ + .J2(u + v + 1)( u - v + 1) T + + 0] 

+ (s +..1, + I)[(u - v + I)T+ __ u+ + (u + v+ I)T+_+u_ + .J2(u + v + I)(u - v + I)T+_o] 

+ (t +J-l + l)[(u - v + I)T_+_u+ + (u + v + I)T_++u_ + .J2(u + v + l)(u - v + l)T_+o] 

+ [(u - v + l)T ___ u+ + (u + v + l)T __ +u_ + .J2(u + v + l)(u - v + l)T __ o]. (3.9) 

The action of a shift operator upon an [SU(2W state is given 
by20 

=Icy,lr's+i t+j u+k A+i J-l+j v). (3.10) 
y' 
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'Remark that the projection v remains unchanged. This can
not be required for A and J-l, since sand t are altered by half
integer values. The expressions (3.1)-(3.2) are chosen in such 
way that A (respectivelY,J-l) changes by the same amount ass 
(respectively, t). 

Let us finally recall some properties ofSU(2) shift oper
ators, which can be transferred immediately to the [SU(2)P 
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case. Ifj is an integer, the shift operator 0/- k (constructed 
from the tensor T ljl) is obtained from the expression of 0 /+ k 

by changing in the latter operator every I into - I - 1; for
mally: 

O/-k=Ok_/_ I • (3.11) 

If the rank of the tensor is half-integral, this rule is somewhat 
more complicated. For the operators (3.1 )-(3.2), we deduce 

0- 112 --/-1 -
CO l/2 

(/+m+l) 

0/- 112/+ 

(I + m + 1) , 
(3.12) 

Evidently, because ofthe symmetry between the SU(2)s and 
SU(2)t subalgebras in SO(7), the shift operator O{ ~ : follows 
from the operator 0 ~ { ~ by performing the transformation 

(s, A, t, ,u)~(t,,u, s, A) 

in the expression of 0 ~ { ~. 

(3.13) 

IV. RELATIONS CONNECTING QUADRATIC PRODUCT 
OPERATORS 

In order to derive reduced matrix elements of the tensor 
T [~12 }f2 ~l, relations connecting quadratic product opera
tors of the type 

(4.1) 

will be set up in this section. The operator (4.1) with 
i' + i = a,j' + j = 'T, and k' + k = 7] will be called "of the 
type (a, 'T, 7])," or "belonging to the class (a, 'T, 7])." 

It is known that there exist certain relations between 
product operators of the same (a, 'T, 7]) class.4,7-9,12,14,16,19 

(The way to construct such relations is clearly explained in 
Ref. 19.) In the present case there are 45 nonzero (a, 'T, 7]) 
classes. However, due to transformation rules derived from 
(3.12)-(3.13), the relations between objects of some classes 
may be obtained from the relations between shift operators 
of another class, only by simple substitutions. Then, it is easy 
to see that the explicit construction of relations may be re
stricted to the eight classes listed in Table I. In the latter 
table, # (a, 'T, 7]) indicates the number of quadratic products 
of shift operators of type (4.1) belonging to the class (a, 'T, 7]). 
Explicit calculations show that the minimum number of pro
duct operators belonging to a certain (a, 'T, 7]) class which 
occur in one relation, is a fixed number R (a, 'T, 7]), depending 
upon the (a, 'T, 7])-values. This seems to be a general property 
of relations connecting shift operator products. 19 With every 
(a, 'T, 7]) class corresponds a maximum number N (a, 'T, 7]) of 
linearly independent relations, that is, every other possible 
relation between elements of the same (a, 'T, 7]) class is neces
sarily a linear combination (withs-, to, and u-dependent coef
ficients) of the basis set of independent relations. All this 
information has been gathered in Table I. 

The properties and transformation rules in Table I not 
only lead the relations within one class into the relations 
within another class, but can sometimes perform transfor
mations within the same (a, 'T, 7]) class. This implies that it is 
not always necessary to construct N (a, 'T, 7]) relations, since 
the missing ones are derived from the given ones merely by 
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an obvious substitution. Taking into account this remark, we 
conclude that the following basis set generates the complete 
set of relations between quadratic product operators 

W)(a, 'T, 7]) = ( - 1, - 1, - 1) 

o s--1(;2 ,-=-1{J2 u- 10 s- 112 t- 112 ~ 

- 0 s-=-I{J2 ,-=-1(;2 ~ _ 10 s- 1/2 t- 112 u- I = 0, 

(2°)(a, 'T, 7]) = ( - 1, - 1, 0) 

0-112 -1/2 -10-112 -1/21 
u2 s - 1/2 ,- 1/2 u + Is' u 

(u - v + l)(u + v + 1) 
0-1/2 -1/2 I 0 -1/2 -112-1 

_ (u + 1)2 s - 1/2 ,- 112 u - Is' u 

(u - v)(u + v) 

- (2u + 1)0 s-_1{J2 ,-=-I(A ~O s-1I2 ,-112 ~ = 0, 

(3°) (a, 'T, 7]) = ( - 1, 0, - 2) 

(t+,u+l) 
o s-=-I{J2 ~~ 112 u--.! I 0 s- 1/2 ,- 112 u- I 

(t +,u) 
(4°)(a, 'T, 7]) = ( - 1,0, - 1) 

o - 1/2 112 - 10 - 112 - 1120 
2(t+l)U s-1I2t-1I2u s , u 

(t +,u) 

=0, 

0-112 -1120 0-112112-1 
-(2t+l)(u+l) s-1I2 ,+112 u-I s 'u 

(t+,u+l) 

(4.2) 

(4.3) 

(4.4) 

o - 1/2 - 112 - 10 - 1/2 112 0 
+ (2t _ u + 1) s - 112 ,+ 112 us, u = 0, 

(t+,u+l) 

(5°) (a, 'T, 7]) = ( - 1,0,0) 
o - 112 112 I 0 - 112 - 112 - I 

(2t+l)(u+l)2 s-l/2t-ll2u-1 s , u 
(t + ,u)(u - v)(u + v) 

0-112 -112 -10-1121121 
_ (2t + 1 )u2 s - 112 t + 112 u + Is' u 

(t +,u + l)(u + v + l)(u - v + 1) 

+ (u + 1)[(u + 1)(2u - 1) + 2(t + 1)] 
0-1/2 1/2 00 -112 -1120 

X s - 1/2 ,- \/2 us, u 

(t +,u) 

(4.5) 

o - 112 - 112 00 - 1/2 112 0 

-u[u(2u+3)-2t] s-1I2t+1I2u s 'u =0, 
(t+,u+l) 

(4.6) 

TABLE I. Properties of relations connecting quadratic product operators. 

(u, '1', 11) 

(-I, -I, -I) 
(-I, -1,0) 
(-1,0, -2) 
(-1,0, -I) 
( -1,0,0) 
(0,0, -2) 
(0,0, -I) 
(0,0,0) 

#(u, '1',11) 

2 
3 
2 
4 
6 
4 
8 

12 

R (u, '1', 11) 

2 
3 
2 
3 
4 
3 
5 
6 

N(u, '1',11) 

I 
I 
I 
2 
3 
2 
4 
7 
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o - 112 112 I 0 - 1/2 - 112 - I 
(2u+3) .-1/2 t-1I2 u-I • t u 

(t + ,u)(U - V)(U + V) 
o - 1/2 - 112 - I 0 - 112 112 I 

_ (2u _ 1) • - 112 t + 1/2 u + I. t u 

(t+,u + l)(u + V+ l)(u - v+ 1) 

o - 112 112 - I 0 - 112 - 1/2 I 
+ (2u _ 1) • - 112 t - 112 u + I. t u 

(t+,u+ l)(u+v+ l)(u-v+ 1) 
o - 1/2 - 112 I 0 - 112 112 - I 

-(2u+3) .-112 t+1I2 u-I. t u =0,(4.7) 
(t +,u + l)(u - v)(u + v) 

(6") (0", T, 7]) = (0, 0, - 2) 
o - 112 - 112 - I 0 1/2 112 - I 

t (2s + 1) • + 112 t + 112 u - I • t u 

(S + A + l)(t +,u + 1) 
o 112 112 - I 0 - 112 - 112 - I 

_ (s + 1 )(2t + 1) s - 112 t - 1/2 u - 1st u 

(S+A)(t+,u) 
0-112 112 -10112 -112-1 

+ (S + t + 1) • + 1/2 t - 112 u - I • t u = 0, 
(S+A + l)(t+,u) 

(4.S) 

(7°)(0", T, 7]) = (0, 0, - 1) 

[2(s + l)(t + 1)(u + 1)(2u - 1) - (s + l)u(u - 1) 
o - 112 - 112 - 10 112 112 a 

-(t+l)(u2+2u-l)] s+1I2t+1I2u • t u 

(s+A+l)(t+,u+l) 
- (2s + l)(t + l)(u + 1)(2u - 1) 

o - 1/2 - 112 a 0 112 112 - I 
X .+112 t+1I2 u-I stu 

(S+A+ l)(t+,u+ 1) 
+ (2s + l)(t + l)(u - l)u 

o - 112 112 - 10 112 - 112 a 
X s + 1/2 t - 112 u stu 

(S+A + l)(t+,u) 

+ (2s + l)(t + l)u(u + 1) 
0-112 112 a 0112 -112-1 

X .+1I2t-1I2u-l. t u 

(S+A + l)(t+,u) 

+ [ - 4(s + l)(t + l)u2 + (S + l)u(u - 1) 

+ (t + l)u(u + 1)] 
0112 - 112 - 10 - 112 112 a 

X • - 1/2 t + 112 u stu = 0; 
(s+A)(t+,u+ 1) 

(SO) (0", T, 7]) = (0,0,0) 

o - 112 - 1/2 a 0 112 112 a 
+ (2u + 1) • + 112 t + 112 u stu 

(s + ..1,+ l)(t +,u + 1) 
o - 112 - 112 I 0 112 112 - I 

+(u+l) s+1I2 t+1I2 u-I • t u 
(s + ..1,+ l)(t +,u + l)(u + v)(u - v) 

0-112 112 00112 -1120 
_ (2u + 1) • + 112 t - 1/2 u • t U 

(s + ..1,+ l)(t +,u) 
o - 112 112 I 0 112 - 112 - I 

-(u+l) s+l12 t-1I2 u-I • t u 
(s + A + l)(t + ,u)(u + v)(u - v) 
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(4.9) 

- 2u(u + 1)(2u + l)(s + 1)(2t + 1) 

X[/2+s(s+4)+t(t+ 1)+!u(u+ 1)]=0, (4.10) 

[(t + 1)(2u + 3) + t ] 

o - 112 - 112 00 1/2 112 a 
+(2t+l)(2u+3) s+1I2t+l12u. t u 

(s+A+l)(t+,u+l) 
-2(t+ l)(u+ 1) 

o ;.~I(J2 :~ 112 u-+II 0112 t- 112 ~ 
X----~~~~~~~~--~---

(S+A+ 1)(t+,u)(u+v+ l)(u-v+ 1) 

- [(t+ 1)(2u+3)+t] 

o 112 - 1/2 00 - 112 112 a 
-(2t+l)(2u+3) s-1I2t+1I2u s I u 

(s + A)(t +,u + 1) 
o 112 112 - I 0 - 112 - 112 I 

+2(t+l)(u+l) s-1I2 1-112 u+1 s I u 

(S+A)(t+,u)(u+v+ l)(u-v+ 1) 

- 2(2s + 1)(2t + l)(t + l)(u + 1)2(2u + 3) 

X [/2 +s(s + 1) + tIt + 2) + !u(u + 5)] = 0, (4.11) 

(u + 1)(2u + 1)[(2t + 1)(2u + 1) + 2(2s + 1)] 
o - 112 - 112 a 0 112 112 a 

X s+1I2 1+112 u s I u 
(S+A + l)(t+,u + 1) 

+ (u + 1)(2u + 1)[2s(u + 2) + 2(t + l)(u + 1) + 1] 

o s-+1(J2 1~I(J2 ~ _ 10 112 :12 u- I 
X----~~~~~~~~~--

(s +..1, + l)(t +,u + l)(u + v)(u - v) 

- u(2t + 1)[2(s + 1) + u(2u + 3)] 

o s-+1(J2 :~ 112 u-.; I 0 112 1- 112 ~ 
X----~~~~~~--~--~---

(S+A+ l)(t+,u)(u+v+ l)(u-v+ 1) 

- (2u + 1)[4(s + l)(t + 1)(2u + 3) 

- 2(s + 1) + 2(t + 1)(2u2 + U - 2) - u(2u + 3)] 
o - 112 112 00 1/2 - 112 a 

X s+1I2 1-112 u s I u 
(S+A + l)(t+,u) 

- (u + 1)[2(2s + l)(t + l)(u + 2)(2u + 1) 

+ (2s + 1)(2t + 1) + (2t + l)(u + 1)(2u + 1)] 
0-112 112 I 0112 -112-1 

X s+1I2 1-112 u-I s I u 
(s +..1, + l)(t +,u)(u + v)(u - v) 

+ 2u(2t + l)(s + l)(u + 1)(2u + 1) 

o 1~ 112 ;~SJ2 u-+II 0 s- 112 :12 ~ 
X--------=--.::..~.:-.::.:..=--=-...:.....:...--=---~~---

(s + A )(t +,u + l)(u + v + l)(u - v + 1) 

- 2(s + 1)(2t + l)u(u + 1)(2u + 1) 

X! [(2t + l)u(2u + 3) - 2(s - t)] 

X[/2+S(S+ 1)+t(t+ 1)+~u(u+ 1)] 

- 4(t + l)u2(2s + l)(u + t - S + 1) 

-1O(2s+ l)(t+ l)(t-s)u-6(t+ l)u(-s+u+ 1) 

- 3su(2u + 3) - 6(t - s)(2st + S + t + III = 0. (4.12) 
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v. THE RELATION BETWEEN MATRIX ELEMENTS OF THE SHIFT OPERATORS AND REDUCED MATRIX ELEMENTS 
OF THE TENSOR 

In their general analysis20 Hughes and Yadegar have given the connection between the actions of the shift operators and 
the reduced matrix elements of the tensor of which the shift operators are composed. For the operators (3.1)-(3.5), we derive 

[I + ~: 1] 1/2 Ir, I, m) = - ( ~~: ~ y12 ~ (i, 1+ !IITII121Ilr, I) Ir', 1 +!, m + !); (5.1) 

o - 112 (21 1 )112 
[I +1 m]1/2 Ir, I, m) = + ~ (r', 1- !IITI1I211Ir, I) Ir', I-!, m -!>; (5.2) 

0/
1 

Ir,/,m) = [(2/+2)(21+ 1) ]1I2L (r',I+ IIIT 111 1I r ,l)lr', 1+ I,m); 
[(I + m + 1)(/- m + IjP/2 (21 + 3) y' 

(5.3) 

O?lr, I, m) = [ 2/(1 + 1) ]112 L (i, IIIT1I11I r , 1 )Ii, I, m); 
21+1 y' 

(5.4) 

0 1
-

1 
Ir I m) = _ [ (21 + 1)(2/) ]112 L(r', 1- IIIT11111r, I)lr', 1- 1, m). 

[(l+m)(/-m)]1/2 " (2/-1) y' 
(5.5) 

Here again, r denotes a set of labels needed to specify the states completely. 
It is now straightforward to deduce from (5.1 )-(5.5) the similar properties for the shift operators 0 ~ { ~, defined in Sec. 

III. We give, as an example 

o ~12 :12 ~/[(s + A + l)(t + J.L + l)(u + v + l)(u - v + 1)] 1/21r stu A J.L v)' 

=[ (2s+1) (2t+l) (2u +2)(2u + 1) ]1I2L(is+!t+!U+II1TI1I2112111Irstu) 
(2s + 2) (2t + 2) (2u + 3) y' 

X Ii s +! t +! u + 1 A +! J.L +! v). (5.6) 

For some SO(7) representations, there is no degeneracy in the reduction to [SU(2W. Then the basis states of this representation 
are completely labeled by the [SU(2W labels s, t, u, A, J.L, and v. In this case, Eq. (5.6) reads 

(s + ! t + ! U + 1 A + ! J.L + ! viO ~12 :12 ~ is t U A J.L v) 

[(s + A + l)(t + J.L + 1)(u + v + 1)(u - v + IjP/2 

= [(2s+1) (2t+l) (2u+2)(2u+l) ]112(s+!t+!U+II1TII/211211IlstU). 
(2s + 2) (2t + 2) (2u + 3) 

(5.7) 

Relations such as (5.7) will prove to be very useful in a forthcoming paper,21 where all possible reduced matrix elements of the 
tensor T[1I2 1/2 I] will be determined in cases of no degeneracy. 
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The shift operator technique for SO(7) in an [SU(2)]3 basis. II. Applications 
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Reduced matrix elements of the tensor operator which forms part of the SO(7) generator basis are 
calculated for the three respective classes ofSO(7) representations [v,O,O], vENo, [V,O, 1], vENo, 
[O,O,v], vENo. The calculation is based on the relations between quadratic products of shift 
operators, established in a previous paper by the same authors. 

PACS numbers: 03.6S.Fd 

I. INTRODUCTION 

The generators ofSO(7) can be grouped into the genera
tors of the three SU(2) subgroups and into a bispinor-vector 
T [1/2 1/2 1 J, as was demonstrated by Vanden Berghe et al. 1 

The reduced matrix elements of the generators of [SU(2W 
are well known. Those of the bispinor-vector have only been 
calculated in the case of the symmetric SO(7) representations 
[v,O,O], vENo, in Ref. 1. 

The three classes ofSO(7) representations [v,O,O], vENo, 
[V,O, 1], vENo, and [O,O,v], vENo reduce without degeneracy 
into [SU(2W representations (s,t,u). This will allow us to cal
culate the matrix elements of the bispinor-vector between 
[SU(2)P states IStUA,uV) that form a basis for the three re
spective above-mentioned classes of SO(7) representations. 
We thus distinguish three cases and in each case the reduced 
matrix elements that have to be considered will depend on 
the specific SO(7)~[SU(2)P branching rule for that class of 
SO(7) representations. 

The reduced matrix elements are calculated by a meth
od entirely based on the use of the relations between quadrat-

ic products of shift operators. These relations have been es
tablished in the previous paper.3 

In the second section of this paper the reduced matrix 
elements for the [v,O,O], vENo representations are concisely 
calculated as a verification. In the third section the matrix 
elements for the [V,O, 1], vENo representations are calculated 
and particular features of the solution by means of relations 
between shift operators are illustrated. In the fourth section 
the matrix elements for the [O,O,v], vENo representations are 
calculated. We end with a remark about symmetry proper
ties of the reduced matrix elements. 

II. REDUCED MATRIX ELEMENTS IN THE [v,O,O], vENo, 
REPRESENTATION 

In the present article, frequent use will be made of the 
matrix elements of the products of shift operators occurring 
in Eqs. (4.10)-(4.12) of Van der Jeugt and De Wilde3 (to be 
referred to as I), between [SU(2)P states (stuA,uvl and 
IStUAILV). We therefore introduce the following notations: 

\ I 
0 - 1/2 - 1/2 - I 0 1/2 1/2 I I) 

A = StUA,uV HI/2 .+1/2 ,+1 • • , StUA,uV , 
(s + A + l)(t +,u + l)(u + v + l)(u - v + 1) 

( I 

0 - 1/2 - 1/2 00 1/2 1/2 0 I ) 
B = StUA,uV H 1/2 .+ 1/2, , • , StUA,uV, 

(s + A + l)(t + ,u + 1) 

( I 
0 - 1/2 - 1/2 I 0 1/2 1/2 - I I ) 

C = StUA,uV HI/2 .+1/2 ,-I • • , StUA,uV, 
(s + A + l)(t + ,u + l)(u + v)(u - v) 

( I 
0 - 1/2 1/2 - I 0 1/2 - 1/2 I I ) 

D = StUA,uV HI/2 ._1/2 ,+1 , • , StUA,uV, 
(S+A+ l)(t+,u)(u+v+ l)(u-v+ 1) 

\ I 

0 - 1/2 1/2 00 1/2 - 1/2 0 I ) 
E = StUA,uV ,+1/2 .-1/2, , • 'StUA,uV, 

(s +A + l)(t +,u) 
/ I 0 - 1/2 1/2 I 0 1/2 - 1/2 - I I ) 

F = \stUA,uV (s + A'~21')(;2;~)(u' + ~)(~ _ v) StUA,uV , 

\ I 
0 1/2 - 1/2 - I 0 - 1/2 1/2 I I ) 

G = StUA,uV .-1/2 .+1/2 HI • • , StUA,uV, 
(s + A)(t +,u + l)(u + v + l)(u - v + 1) 

\ I 
0 1/2 - 1/2 00 - 1/2 1/2 0 I ) 

H = StUA,uV .-1/2 .+1/2, • • , StUA,uV , 
(s+A)(t+,u+1) 

-I Research Assistant I.W.O.N.L. (Belgium). 
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( I 
0 1/2 -1/2 10-

1
/2 1/2 -I I ) 

1 = StUAp,v ,-1/2 ,+ 1/2 .-1 , " StUAJ.LV , 
(S + A )(t + J.L + l)(u + v)(u - v) 

( I 

0 1/2 1/2 -10- 1/2 - 1/2 I I ) 
J= stuAJ.LV ,-1/2 ,-1/2 HI , " stuAJ.LV, 

(S+A)(t+J.L)(U+v+ l)(u-v+ 1) 

/ I 0 1/2 1/2 00- 1
/
2 

-1/2 0 I ) 
K = \stuAJ.LV '-;; ~ I~ itt ~ J.L)' , stuAJ.LV , 

/ I 0 1/2 1/2 I 0 - 1/2 - 1/2 - I I ) 
L = \stuAJ.LV (s +'~/;(;-~ ~)iu ~ v)(~ ~ V) stuAJ.LV . 

Due to the branching rule2 for the symmetric represen
tations [v,O,O], VENo, ofSO(7) into representations of the sub
group [SU(2)Y, only the following reduced matrix elements 
of generators of SO(7) are nontrivial: 

(s +! U + IIIT[1I2 112 1IIIsu), 

(s +! U _ IIIT[I12 1/2 1IIIsu). 

We will denote them, respectively, by A (s,u) and B (s,u). The 
symbol T[1I2 112 1] is the bispinor-vector, introduced in Van
den Berghe et al. I 

The connection between the symbols introduced in Eq. 
(2.1) and the reduced matrix elements can be established by 
means of(15.1)-(15.5), as illustrated in (15.6)-(15.7). We ob-
tain 

A = - (2u + 2)IA (s,uW, 

C= -2uIB(s,uW. 

As a result of the above-mentioned branching rule, 
B=D=E=F=G=H=I=K=Q 

(2.2) 

(2.3) 

By considering the matrix elements between [SU(2)Y 
states (stuAJ.Lvl and IstuAJ.LV) of the expressions occurring in 
the right- and left-hand sides ofEq. (14.12) we obtain, in the 
notation (2.1), 

(2s + l)(u + 1)(2u + 1) 

X(2u + 3)C - 2(s + 1)(2s + l)u(u + 1)(2u + 1) 

X {(2s + l)u(2u + 3)[(/2) + 2s(s + 1) + ~u(u + 1)] 

- 2s(s + l)u(2u - 1)(2u + 3) + 2(s + 1) 

XU(U + 1)(2u + 3) + 3su(2u + 3)) = O. 

For the representations [v,O,O], VENo ofSO(7), 

(2.4) 

(/2 ) = - !v(v + 5), as is easily seen from (12.8). Substituting 
this result and (2.3) in (2.4) we obtain 

IB(s,uW 

= i(2s + 1)(2s + 2)u(v + 2s - U + 4)(v - 2s + U + 1). 
(2.5) 

As a result of (13.11), A can be obtained by the formal 
substitution u---+ - U - 1 in C. On account of (2.2) and (2.3) 
this implies (formally) 

IA (s,uW = - IB (s,u - lW· (2.6) 

In this way we find 

IA (s,uW = i(2s + 1)(2s + 2)(u + 1) 

xlv + 2s + U + 5)(v - 2s - u). (2.7) 

The expressions (2.5) and (2.7) for the reduced matrix ele
ments are in agreement with those calculated in Vanden 
Berghe et al. I 
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III. REDUCED MATRIX ELEMENTS IN THE [11,0, 1], vENo, 
REPRESENTATION 

In order to choose a set of independent reduced matrix 
elements of T[1I2 112 I) in the [SU(2)Y basis one needs to con
sider the SO(7)---+[SU(2)Y branching rule for [v,O,I], vENo 
representations ofSO(7) into [SU(2W representations (s,t,u). 
It reads 

[v,O,I]---+ L (s,t,u), 
s.t,u 

with 

Is - t I=!, 
s + t = v + 1 - u, v - u, ... ,!. 

This rule is considered as a special case of a more general 
branching rule in De Wilde et al.4 

On account of symmetry operations with respect to the 
first two labels and of the property 

(s't 'u'li T[I12 112 II Iistu) * 
= (_Ij"-s+t'-t+u'-U(stuIIT[1I2 112 1IIIs't'u'), (3.1) 

all other reduced matrix elements of T [112 112 I I can be relat
ed to 

A (s,u) = (s + ! s + 1 u + 111 T[1I2 112 1IIIs s + ~ u), 

B(s,u) = (s +!s + 1 u IIT[1I2 112 1111s s +! u), 

C(s,u) = (s+!s+ 1 u-lII T [1I2112 IllIss+!u), (3.2) 

D(s,u) = (s +!s u + IIIT[1I2 112 1IIIs s +! u), 

E(s,u)=(s+!su IIT[1/2112111Iss+!u). 

Equations (15.1 )-(15.5) can be used to establish the rela-
tions 

A = - (2u + 2)IA (s,uW, 

B= _ 2u(u + 1)IB(s,uW, 
2u + 1 

C= - 2uIC(s,uW, 

D = (2u + 2)ID (s,uW, 

E= 2u(u + 1)IE(s,uW, 
2u + 1 

F= 2uID(s,u - lW, 

J = - (2u + 2)IC(s - !,u + lW, 

L= -2uIA(s-!,u-lW. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

As a result of the condition Is - t I = ! in the branching rule, 
G=H=I= Oift=s +!. 
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In contrast with the reduced matrix elements in the [v,O,O], vENo representation, no single equation containing only one 
reduced matrix element can be obtained from the set (14.2)-(14.12) by taking matrix elements, even with the use of the 
properties (13.11)-(13.12). It is possible, however, to obtain a set of recursion relations containing only A (s,u) and C(s,u). 

Substitution of s_ - s - 1 and t_ - t - 1 in Eq. (14.10), taking into account the property (13.12), and considering 
matrix elements, gives 

uG + (2u + I)H + (u + 1)1 - uJ - (2u + I)K - (u + I)L 

+ 2s(2t + l)u(u + I)(2u + 1)[ (12) + (s - 3)(s + 1) + t (t + 1) + !u(u + 1)] = 0. (3.11) 

Substitution of s_ - s - 1 in (14.12) gives 

2s(2t + I)u(u + I)(2u + I)A + [2(2s + 1) - (2t + I)(2u + I)](u + I)(2u + I)H 

+ [2(s + I)(u + 2) - 2(t + I)(u + 1) - I](u + I)(2u + 1)1 - [2s - u(2u + 3)](2t + l)uJ + [2s - 4s(t + I)(2u + 3) 

+ 2(t + 1)(2u2 + u + 2) - u(2u + 3)](2u + I)K - [(2s + I)(2t + 1) + 2(2s + l)(t + I)(u + 2)(2u + 1) 

- (2t + l)(u + I)(2u + I)](u + I)L - 2s(2t + I)u(u + 1)(2u + III [2(s + t + 1) + (2t + I)u(2u + 3)] 

X [(12 ) + sIs + 1) + t (t + 1) + ~u(u + 1)] + 2(2s + I)(s + t + I)(t + I)u(2u + 5) + 2(s + I)(t + I)u(2u - I)(2u + 3) 

- 2(t + l)u(u + I)(2u + 3) + 3(s + I)u(2u + 3) + 6(s + t + I)(2st + s + t)} = 0. (3.12) 

If we let t = s + !, take into account G = H = 1 = 0, (3.3), (3.9), (3.10), the expectation value (12.8) of 12, which equals 
- A(4V2 + 24v + 21) for the [v,O, 1], vENo, representations ofSO(7), and eliminate K from (3.11) and (3.12), we get 

(2s + I)(2s + 3)u(2u + 3)IA (s - !,u - IW - 2s(2s + 2)(u + I)(2u + I)IA (s,uW - (2s + I)(2s + 3)(2u + 2)IC(s - !,u + IW 

= - s(2s + I)(2s + 2)(2s + 3)(2u + I)(2u + 3) [1(4v2 + 24v + 21) - 2s2 - 2s + a - 2su - ~u(u + 2)]. (3.13) 

Clearly another recursion relation is required to obtain 
A (s,u) and C (s,u). It is obtained by performing the transfor
mation(s,A,t,Jt)-(t,Jt,s,A )onEq. (14.8). We can then consider 
the matrix elements between the states (s t u - 2 A JL vi and 
IstUAJLV) and apply the relations (15.1) - (15.5) between the 
matrix elements of the shift operators and the reduced ma
trix elements. After multiplication of the equation with its 
complex conjugate, taking into account property (3.1), we 
obtain 

[2s(2s + 2WIA (s,uWIC(s,u + 2W 

= [(2s + I)(2s + 3)fIA (s - !,u + IWIC(s - !,u + lW. 

(3.14) 
In manipulating recursion relations between reduced 

matrix elements, it is often convenient to use a graphic repre
sentation. We plot all [SU(2)P representations (s,t,u) allowed 
by the branching rule as points in a three-dimensional space. 
In the case of the [v,O,I], vENo, SO(7) representations, the 
points (s,t,u) lie in the planes t = s + ! and t = s - ~. We rep
resent a reduced matrix element by an arrow pointing from 
the point (s,t,u) towards the point (s',t ' ,u') if(s,t,u), respective
ly, (s',t ' ,u') are the labels appearing in the right-, respectively, 
left-hand side of the reduced matrix element, written in one 
of the forms (3.2) or their complex conjugates. 

Figure 1 shows the projection of the points (s,t,u) in the 
plane t = s + ~ on the plane t = 0. The SO(7) representation 
considered is [9,0,0]. Odd-numbered arrows represent the 
reduced matrix elements C (s,u), even-numbered arrows 
A (s,u).1t is easily seen that Eq. (3.13) gives a relation between 
the reduced matrix elements represented by arrows num
bered by 2n, 2n + 1, and 2n + 2, ne{0,I, ... ,[vI2]). If the 
number of an arrow is not contained in the set { I,2, ... ,v 1, the 
corresponding reduced matrix element is zero. This is a con-
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I 
sequence of the definitions (3.2) and the branching rule. 
Equation (3.14) gives a relation between the reduced matrix 
elements represented by arrows numbered by 2n - 1, 2n, 
and 2n + 1, ne{ I,2, ... ,[vI2]}. 

Figure 1 illustrates that in order to solve the recursion 
relations (3.13) and (3.14) all we need is the value of the re
duced matrix elements C (~(v - u + ~),u) represented by the 
arrows numbered 1. To calculate them we can make use of 

u 

FIG. I. Graph of the points (s,u), where (s,s + ~,u) are [SU(2)]' representa
tions appearing in the reduction of the SO(7) representation [9,0,0]' The 
reduced matrix element (s's' + ~ u'll TII/2 1/2 IJlls s + ~ u) is represented by 
an arrow pointing from the point (s,u) to (s',u') if If - 2s - u is even. 
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the fact that if t = S + ! and S has its maximum value, i.e., 
S = SM = !(v - u + !), not only G = H = I = 0, but also 
A = B = D = O. This allows us to obtain J at once from Eq. 
(14.11): 

J = - !(u + 1)(2u + 1)(2u + 3)(v - u + !) 
xlv - u + l)(v - u + ~), (3.15) 

and, with the use of (2.16) 

IC(SM - !,u + lW 

= l(2u + 1)(2u + 3)(v - u + !)(v - u + l)(v - u + ~). 
(3.16) 

Now IA (SM - !,u - lW can be calculated from (3.13), 
because A (SM,U)2 = O. Then IC (SM - ~,u - lWcanbecalcu
lated from (3.14). So, by using alternately Eqs. (3.l3) and 
(3.14), all values of IA (s,uW and IC(s,uW are obtained, with 
one restriction, however. It can be easily seen from Fig. 1 
that only those reduced matrix elements are obtained for 
which v - 2s - u + ! is even. In this case, we will use the 
subscript E, else we will use the subscript tJ. From now on in 
this paragraph no subscript is used if v - 2s - u + ! can be 
either even or odd. 

Consideration of a set of values for IA E (s,u) 12 and 
ICE(s,uW obtained from the recursion relations leads us to 
propose 

IAE(s,uW 

= -h(2s + 1)(2s + 3)[(2u + 1)(2u + 3)/(u + 1)] 

xlv + 2s + u + ¥)(v - 2s - u + !), (3.17) 

ICE (s,uW 

= -h(2s + 1)(2s + 3)[(2u - 1)(2u + l)/u] 

X (v + 2s - u + ~)(v - 2s + u + !), (3.18) 

which are indeed solutions ofEqs. (3.13), (3.14) and satisfy 
the condition (3.16). 

As in paragraph 2, we can use the fact that, as a conse
quence of (13.11), A can be obtained by the formal substitu
tion u- - u - 1 in C and vice versa. This substitution 
changes the parity of v - 2s - u + ! so that we can conclude 
with Eqs. (3.3) and (3.4) that, formally, 

IA t7 (s,uW = - ICE(s, - u - lW, (3.19) 

ICt7 (s,uW = -IAE(S, - U - lW. (3.20) 

In this way we obtain at once from Eqs. (3.17) and (3.18) that 

IA t7 (s,uW 

= -h(2s + 1)(2s + 3)[(2u + 1)(2u + 3)/(u + 1)] 

Xlv + 2s + u + ¥)(v - 2s - u - !), (3.21) 

ICt7 (s,uW 

= -h(2s + 1)(2s + 3)[(2u - 1)(2u + l)/u] 

Xlv + 2s - u + ¥)(v - 2s - u + ~). (3.22) 

TocalculateB (S,U)2 we need a relation between IA (s,uW, 
IB (s,uW,and IC (S,uW or, equivalently, betweenA,B,C,J,and 
L. This relation we obtain by taking matrix elements of 
(14.10), performing the transformation (s,A,t,p.)-(t,p.,s,A ) 
and taking into account that G = H = I = 0 for t = s + !: 
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uA + (2u + 1)B + (u + I)C 

or 

= (2s + 1)(2s + 3)u(u + 1)(2u + 1) 

X [ - j(4V2 + 24v + 21) 

+s(s+ 1)+(s+!)(s+~)+!u(u+ 1)], 

IA (s,uW + IB(s,uW + IC(s,uW 

= - !(2s + 1)(2s + 3)(2u + 1) 

X [ - A(4V2 + 24v + 21) + sIs + 1) 

+ (s + !)(s +~) + !u(u + 1)]. (3.23) 

We can now calculate IBE(s,uW by substituting the re
sults (3.17) and (3.18) in this equation 

I BE (s,u) 12 = -h(2s + 1)(2s + 3) 2u + 1 
u(u + 1) 

X (v + 2s - u + ~)(v - 2s - u + !). (3.24) 

As a result of (13.11), B is invariant for the transforma
tion u_ - u - 1. It then follows from Eq. (3.4) that, formal
ly, 

IB t7 (s,uW = -IBE(s, - u - lW. 

From Eqs. (3.24) and (3.25) we can then deduce 

IB t7 (s,uW 

= -h,(2s + 1)(2s + 3)[(2u + 1)/u(u + 1)] 

(3.25) 

xlv + 2s + u + ¥)(v - 2s + u + ~). (3.26) 

It is easy now to calculate the values of ID (s,uW and 
IE (s,u) 12 by considering an appropriate scalar-type equation 
of!, taking matrix elements, and substitution of (3.3H3.1O). 
In this way, we can derive from Eq. (14.11) that 

[2s + 1 + (2s + 3)(2u + 3)](2u + 1)IA (s,uW 

+ (2s + 2)2u(2u + 3)IB (s,uW 

+ (2s + 3)(2u + 1)(2u + 2)ID (s,uW 

+ (2s + 3)(2u + 1)(2u + 2)IC(s - !,u + lW 

= (2s + 1)(2s + 2)(2s + 3)(2u + 1)(u + 1)(2u + 3) 

X U(4v2 + 24v + 21) - 2s2 
- 4s - i - !u(u + 5)]. 

(3.27) 

Substitution of the known reduced matrix elements results in 

IDE(s,uW 

= -h,[(2u + 1)(2u + 3)/(u + 1)] 

Xlv - 2s + u + ~)(v - 2s - u + !), 
ID t7 (s,uW 

= -h,[(2u + 1)(2u + 3)/(u + 1)] 

(3.28) 

xlv + 2s - u + ~)(v + 2s + u + ¥). (3.29) 

In a similar way we can deduce from (14.10) that 

IA (s,uW + IB(s,uW + IC(s,uW 

+ ID(s,uW + IE (s,uW + ID(s,u -IW 

= - !(2s + 2)2(2u + 1)[ - A(4V2 + 24v + 21) 

+2r+6s+1+!u(u+ 1)]. (3.30) 

This relation allows us to obtain 
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IEE(S,UW = _1_ 2u + 1 (V + 2s + 4su + 3u + ..2..)2, 
16 u(u + 1) 2 

(3.31) 

and with the formal equality lEt' (s,uW = - IEE(S,UW, 

lEt' (s,uW = _1_ 2u + 1 (V _ 2s _ 4su _ 3u + ~)z. 
16 u(u + 1) 2 

(3.32) 

This concludes the calculation of the reduced matrix ele
ments in the [v,O,I], vENo representation ofSO(7). 

IV. REDUCED MATRIX ELEMENTS IN THE [D,D,v], vENo• 
REPRESENTATION 

First of all we need the SO(7)--+[SU(2Jr branching rule 
for the [O,O,v], vENo representations ofSO(7). It can be 
shown, for instance by using the method outlined in De Mey
er el al.,z that if we denote the [SU(2W representations by 
(s,l,u), the branching rule reads 

with 

[O,O,V]--+ L (s,l,u) 
s,t,u, 

V V 
U = -,- - I, ... ,! or 0, 

2 2 

Is - I 1= u,u - I, ... ,! orO, 

v v 
s + t = -,- - I, ... ,u. 

2 2 

(4.1) 

A graphical illustration for v = 6 of this branching rule 
is given in Fig. 2. The [SU(2jF representations (s,l,u) are con
sidered as points in the three-dimensional space. The tetra-

I 
/ 

/ 
/ 

I 

/ 

/ 

I 
/ 

/ 

u 

FIG. 2. Graph of the tetrahedron with smallest content and containing all 
points (s,t,u), where (s,t,u) are the [SU(2)]3 representations occurring in the 
reduction of the SO(7) representation [0,0,6]' 
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hedron with smallest content and containing all points (s,t,u) 
is represented as a solid body. The planes S, T, U, and V will 
be of interest later on. Their equations are 

S: - S + 1+ u = 0, (4.2) 

T:s - t + u = 0, (4.3) 

U:s+ t- u =0, 

V:s + t - v/2 = 0. 

(4.4) 

(4.S) 

If v is even, there exist on all edges of the tetrahedron points 
(s,l,u) corresponding to [SU(2jp representations, if v is odd, 
no such points lie on the edge s - t = u = 0, but this is not 
relevant to our reasoning for calculating the reduced matrix 
elements. 

We define the following reduced matrix elements: 

A (s,t,u) = (s +! t +! u + 1I1T[I12 112 1'lIstu), 

B(s,t,u) = (s+!t+!u IIT[1I2 112 IJllstu), 

C(s,l,u) = (s +! I +! u - IIIT[I12 112 1'lIsIU), (4.6) 

D(s,t,u) = (s +! t -! u + 111T[1I2 112 l'llstu), 

E(s,t,u) = (s +! t -! u IIT[1I2 112 IJllstu), 

F(s,t,U) = (s +! t -! u - IIIT[1I2 112 l'llstu). 

The labels s, I, and u are subject to the conditions (4.1). All 
other reduced matrix elements can be related to those de
fined in (4.6) by means of the property (3.1). 

To calculate the reduced matrix elements (4.6) we pro
ceed in the following way: first E (s,l,u) and F (s,l,u) are calcu
lated in the plane V (i.e., for [SU(2Jr representations (s,t,u), 
wheres, t,andusatisfyEq. (4.S) of the plane V). ThenE(s,t,u) 
is calculated in the plane U and F (s,t,u) in the plane T. Com
bining these results and taking into account properties such 
as (I3.11) and (I3.12) will yield all reduced matrix elements. 

The following results can be established with the aid of 
Eqs. (IS.1 )-(IS.S): 

D = (2u + 2)ID(s,t,uW, 

E= [2u(u + l)/(2u + 1)] IE (s,l,uW, 

F = (2u + 2)IF(s,I,UW, 

H = [2u(u + 1)1(2u + 1)] IE(s - V + !,uW, 

L = - 2u IA (s - V - !,u - 1 W· 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

We first calculate E (s,t,u) on the lines + t = v/2 = u in 
the plane V. On that lineA = B = C = D = G = J = K = 0. 
We can transform Eq. (14.11) by performing the substitution 
t--+ - I - 1 and taking matrix elements, into an equation 
between A,D,E,G,J, and K. From this equation E can be 
solved, and we obtain, taking into account (4.8) and the ex
pectation value (12.8) of fz, which equals - ~v(v + 6) for the 
[O,O,v], vENo representations ofSO(7): 

IE (s,t,uW 

= !(s + 1)(2s + 1)t(2t + I)[(2u + I)lu(u + 1)] (4.12) 

X(V+2)2, s+l=v/2=u. 

With the knowledge of this special value for E (s,t,u), we 
can calculate D (s,l,u), E (s,t,u), and F(s,t,u) in the plane Vin 
much the same way as was done for A (s,u), B (s,u), and C (s,u) 
in the previous paragraph. 
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In the plane V, A = B = C = 0, so that we can deduce 
from Eq. (14.10), with the aid of (4.7) and (4.9) that 

ID(s,t,uW + IE (s,t,uW + IF(s,t,uW 

= (s + 1)(2t + 1)(2u + 1) 

X [lV2 +:,(v - 2r - 3s + vs - ~u(u + 1)], (4.13) 

s+ t= v/2. 
This is essentially an equation between E (s,t,u), F (s,t,u), and 
F(t -!,s + !,u + 1) because 

ID(s,t,uW = IF(t-!,s + !,u + lW, (4.14) 

as can be seen from the definitions (4.6) by interchanging s 
and t and applying the property (3.1). 

We now need a relation between E (s,t,u) and an 
E(s',t',u - 1). Why we need precisely this one can be seen by 
drawing a sketch similar to Fig. 1, but for the plane V. It 
follows that we have to consider a relation between products 
of shift operators of nonscalar type. We take matrix elements 
of both sides ofEq. (14.2), after performing the substitution 
S---+ - s - 1. By multiplying this equation with its complex 
conjugate and taking into account (15.1HI5.5) we obtain 

u - 1 1 ( 1 1 )1 21 12 2u _ 1 E s + 2,t - 2'u - 1 F (s,t,u ) 

u+ll ( 1 1 )1 2 
2 =-- F s+-,t--,u IE (s,t,u) 1 . 

2u + 1 2 2 
(4.15) 

Equations (4. 13H4. 15) together with the boundary val
ue (4.12) are sufficient to calculate recursively all values of 
E (s,t,u) and F(s,t,u) in the plane V. Consideration of these 
values leads to the following general solutions in the plane V: 

IE (s,t,uW = ~(s + 1)(2t + 1)[(2u + l)1u(u + 1)] 

xis - t + u + 1)( -s + t + u)(v + 2)2, 

S + t = v/2, (4.16) 

IF(s,t,uW =!(s + 1)(2t + 1)( - s + t + u - 1) 

X( -s + t + u)(l/u) 

X (v/2 - u + l)(v/2 + u + 1), (4.17) 

s+ t= v/2. 

To calculate E (s,t,u) in the plane U, we remark that in 
this plane D = G = J = K = O. After performing the substi
tutions s---+ - s - 1 and t---+ - t - 1 in Eq. (14.10) we deduce 
from it the following relation on the plane U: 

(u + 1)L - (2u + 1)H - (u + 1)1 

= s(2t + 1)2u(u + 1)(2u + 1) 

[2(s + 1)(u + 2) + 2t(u + 1) - l](u + 1)(2u + 1)L 

+ [2s - 2t(2u2 + U - 2) + 4st(2u + 3) 

- u(2u + 3)](2u + 1)H + [(2s + 1)(2t + 1) 

+ 2(2s + l)t(u + 2)(2u + 1) 

- (2t + l)(u + 1)(2u + 1)](u + 1)1 

+ 2s(2t + l)u(u + 1)(2u + 1){ [2(s - t) 

- (2t + l)u(2u + 3)][ - iv(v + 6) 

+s(s+ 1)+t(t+ 1)+~u(u+ 1)] 

- (2s + l)(s - t )2tu(2u + 5) 

(4.19) 

- 2(s + l)tu(2u - 1)(2u + 3) + 2tu(u + 1)(2u + 3) 

+ 3(s + l)u(2u + 3) - 6(s - t )(2st + s + t + III = 0, 

s+ t= u. 

We can now eliminate I from (4.18) and (4.19). Taking into 
account (4.10) and (4.11) we obtain 

2t(u + IfIA (s,t - l,u - lW + (2t - l)u(u + 1)IE(s,t,uW 

+ (2s + l)t (2t - l)(u + If(2u + 1) (4.20) 

X [ - iv(v + 6) + 2r + s - 2su + ~U2 + ~u - 3] = 0, 

s+ t= u. 

Again we need an equation between products of shift 
operators of nonscalar type. As can be inferred from a sketch 
of the plane U, we need an equation between products with a 
total shift (1,0,1) or ( - 1,0, - 1 ). We therefore consider 
(14.5). To avoid the occurrence of as yet unknown matrix 
elements, we perform the substitution t---+ - t - 1. In a way 
analogous to derivation of Eq. (4.15), we obtain 

(2tf(u+W~ 
2u -1 

XIE(S- ~,t- ~,u-l)12IA(S,t-l'U-IW 

= (2t - Ifu2~ (4.21) 
2u + 1 

XIA(S- ~,t- ~,u-l)12IE(s,t,uW, 
s+ t= u. 

We can now calculate recursively E (s,t,u) and A (s,t,u) 
from (4.20) and (4.21). Indeed, a boundary value of E (s,t,u) is 
known from (4.12). Only the result for E (s,t,u) is of interest 
here. We obtain 

IE(s,t,uW 

= ~2s + 1)2t(2u + 1)(2u + 2) 
8 u 

x(~ +S-t+2)(~ -S+t+l). (4.22) X [ - ~v(v + 6) + (s + l)(s - 3) 

+ tit + 1) + ~u(u + 1)], (4.18) s+t=u. 
s+ t= u. 

As Hand L are related to E (s,t,u) and A (s,t,u) by (4.10) and 
(4.11), we need another relation between L, H, and I in order 
to eliminate I. After performing the substitutions 
s---+ - s - 1 and t---+ - t - 1 we deduce from (14.12) that 
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We now derive the general result for E (s,t,u) from the 
values of E (s,t,u) on the planes Vand U. From the definition 
(4.6) of E (s,t,u) and the branching rule (4.1) it is clear that 
IE (s,t,uW is proportional to 

(s - t + u + I)Q( -s + t + U)b, a,b,ER+. (4.23) 
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Comparison with the partial results (4.16) and (4.22) leads to 
a = b = 1. As a result we have to look for an expression 
€(s,t,u) that satisfies 

€(s,t,u) 

= (2s + 2)(2t + 1) 2u + 1 (v + 2)2, s + t = ~ 
u(u+l) 2' 

€(s,t,u) 

= (~ + s - t + 2 )(~ - s + t + 1) 
X (2u + 1)(2u + 2), s + t = u. 

u 

(4.24) 

A careful consideration of this problem learns that the only 
solution is 

€(s,t,u) 

= 2 2u + 1 (~+ s _ t + 2) 
u(u+l) 2 

X(~ -s+t+ 1)(S+t+ 1)2. (4.25) 

Thus, combining (4.23) and (4.25), we obtain 

IE (s,t,u) 12 
1 2u + 1 

= -Is + t + 1 )2(S - t + u + 1)( - s + t + U)I-~-
4 u(u+l) 

X(~ +S-t+2)(~ -s+t+u)' (4.26) 

If u = 0, this expression is indefinite, because in that case 
s = t, as a result of the branching rule (4.1). However, it fol
lows from the definition (4.6) of E (s,t,u) that IE (s,s, O) 12 = 0. 

As a result of (13. 12), B is obtained by making the formal 
substitution t_ - t - 1 in E. In this way we obtain from 
(4.26) that 

IB (s,t,U) 12 

= ~(s - t )2(S + t + u + 2)(s + t _ u + 1) 2u + 1 
4 u(u+ 1) 

X (~ + s + t + 3)(~ - s - t ). (4.27) 

Ifu = 0, thens = tandlimu---.o IB (s,t,uW = 0. We there
fore expect IB (s,s,OW = 0. This follows indeed from Eq. 
(4.27) after the substitution u_ - u - 1 and taking into ac
count that if u = 0, C = E = F = H = I = L = 0. 

To obtain the general expression for F(s,t,u), we first 
calculateF(s,t,u) in the plane T. To that end, we perform the 
transformations s- - t - 1, t- - s - 1, and u_ - u - 1 
in Eq. (14.11). This allows us to deduce from it 

(2s + l)(u + 1)(2u - 1)IB(s - V - ~,uW 

+ 2su(u + 1)IF(s,t,uW 

+ s(2s + 1)(2t + l)u(2u - 1)(2u + 1) 

X [ - iv(v + 6) + 2s2 + s - 3 + 2su + ~U2 - !u] = 0, 

s - t + u = 0. (4.28) 

Because B (s,t,u) is already known, we obtain 

2964 J. Math. Phys., Vol. 25, No.1 0, October 1984 

IF (s,t,U) 12 

=~(2s+ 1)(2t+ 1)(2U-1)(~ +S-t+2)(4.29) 

X (~ - s + t + 1). s - t + u = 0. 
In a way similar to that of the derivation of the general 

result (4.26) for E (s,t,u), we can deduce from (4.17) and (4.29) 
that 

IF(s,t,uW = lIs + t + u + l)(s + t - u + 1) 

X( - s + t + u - 1)( - s + t + u) 

X~(~+S-t+2)(~-S+t+l} (4.30) 

From (4.14) we obtain at once 

ID(s,t,uW = lIs + t + u + 2)(s + t - u) 

X (s - t + u + 2)(s - t + u + 1) 

x_l_(~ +s- t + 2)(~ -s + t + I). 
u + 1 2 2 

(4.31) 

To calculate A (s,t,u) we use the property that A can be 
obtained from D by making the formal substitution 
t_ - t - 1. As a result we have the formal equality 
IA (s,t,uW = - ID (s, - t - l,uW. Consequently, 

IA (s,t,uW = lIs + t + u + 2)(s + t + u + 3) 

X (s - t + u + 1)( - s + t + u + 1) 

X_l_(~ +s + t+ 3)(~-S- t). 
u + 1 2 2 

In an analogous way the formal equality 
IC(s,t,uW = -IA (s,t, - u - 1)J2 leads to 

IC(s,t,uW = lIs + t - u + 2)(s + t - u + 1) 

X (s - t + u)( - s + t + u) 

(4.32) 

X ~ (~ + s + t + 3)( ~ - s - t)' (4.33) 

As a result of the definitions of F(s,t,u) and C (s,t,u), we find 
IF(s,s,OW = IC(s,s,OW = 0. 

v. CONCLUSION 

We have calculated all matrix elements of the bispinor
vector T 1112 112 1) between [SU(2W states which constitute a 
basis for the respective classes of SO(7) representations 
[v,O,O], VENo, [V,O, 1], vENo and [v,O,O], vENo' Indeed, due to 
the property (3.1) and the Wigner-Eckart theorem, all ma
trix elements of T 1112 112 I) between states that constitute a 
basis for the SO(7) representations [v,O,O], VENo are known if 
(2.5) and (2.7) are given. For the [v,O,I], VENo representa
tions, it is sufficient to know the results (3.17), (3.18), (3.21), 
(3.22), (3.24), (3.26), (3.28), (3.29), (3.31), and (3.32). For the 
[O,O,v], vENo representations, all matrix elements of 
T [112 112 I) are known once we are given (4.26), (4.27), (4.30)
(4.33). 

Finally we want to mention some additional symmetry 
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properties of the reduced matrix elements. Equation (5.4) of 
Vanden Berghe et al. 1 can be generalized for arbitrary SO(7) 
representations that reduce without degeneracy into 
[SU(2jp representations. We obtain, denoting 
(s't'u'IIT[1I2 112 Iliistu) by (s't'u'l/stu), 

(12) 

= - [(2s + 1 )(2t + 1 )(2u + 1)] - 1 

x[I(s+~t+!u+ IllstuW+ l(s+!t+!ul/stu)1 2 

+ I (s + ! t + ~ u - II/stu) 12 + I (s + ! t - ! u + Illstu W 
+ I (s +! t -! ullstuW + I (s +! t -! u - IllstuW 

+ I(s-! t+! u + Illstu)1 2 + I(s- !t+! ullstuW 

+ I (s -! t +! u - Il/stuW + I (s -! t -! u + Illstu) 12 

+ l(s-!t-!ullstuW+ l(s-!t-!u-lllstu)12 

- sIs + 1) - tIt + 1) - !u(u + 1)]. (5.1) 

This equation points out that invariances in (12 ) must some
how be manifest in the matrix elements themselves. 

Indeed, for the [v,O,O], vEND representations ofSO(7), 
(12) = - ~v(v + 5) is invariant under the transformation 
v~ - v - 5, as are the reduced matrix elements (2.5) and 
(2.7). For the [O,O,v], vEND' representations, 
(12) = - §v(v + 6) is invariant under the transformation 
v~ - v - 6, and so are the reduced matrix elements (4.26), 
(4.27), (4.30)-(4.33). 

For the [v,O,I], vEND' representations, 
(12 ) = - A(4V2 + 24v + 21) is again invariant under the 
transformation v~ - V - 6, but the reduced matrix ele
ments don't exhibit this property. 

From the expressions (3.17), (3.18), (3.21), (3.22), (3.24), 
(3.26), (3.28), (3.29), (3.31), and (3.32) it is apparent, however, 
that reduced matrix elements with index E are transformed 
under the transformation v~ - v - 6 into reduced matrix 
elements with index tJ, and vice versa. For example 
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IAE(s,uW-IAd(s,uW· 
v---+-v-6 

Ifwe make the choice t = s + !, Eq. (5.1) can be written 
for [v,O,I], VEND' representations as 

l(4V2 + 24v + 21) = [(2s + 1)(2s + 2)(2u + 1)]-1 

X [IA (s,uW + IB(s,uW + IC(s,uW 

+ IA (s - !,u - lW + IB (s - !,uW 

+ IC(s - !,u + lW + ID(s,uW 

+ IE (s,uW + ID(s,u - lW] 

- 2s2 
- 3s - ~ - !u(u + 1). (5.2) 

We now consider this equation for v - 2s - u +! even and 
perform the transformation v~ - v - 6. As a result of the 
above-mentioned transformation properties of the individ
ual matrix elements, we obtain the same expression in the 
right-hand side, but for v - 2s - u + ! odd. By this argu
ment the right-hand side of(5.2) is invariant under the trans
formation v~ - v - 6 if it is the same function of sand u for 
v - 2s - u + ! even or odd. This is clear at once, because 
(5.2) is valid as well for v - 2s - u + ~ even or odd, and the 
left-hand side of (5.2) is independent of sand u. 
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I. INTRODUCTION 

It has already been shown that supersymmetry is poten
tially relevant in elementary particle physics and gravity. 1.2 
It has also been demonstrated to a certain extent that super
symmetry plays some roles in the determination of the ener
gy spectra of odd and even nuclei. 3,4 The idea of supersym
metry may even find its applicability to a broader context, 
namely, general many-body (fermion-boson) problems. The 
questions are what the relations of second quantization and 
supersymmetry are and how to formulate the many-body 
problems in terms of Lie superalgebras. In this paper we will 
answer the former. 

The setup of the paper is as follows. In Sec. II, we will 
review the basic ideas of the classical Lie superalgebras. 
Some defining relations and definitions which are used in the 
later sections are introduced. Section III is a study of the 
type 1 Lie superalgebraA (m, n) realized by the fermion and 
boson creation and annihilation operators. Section IV is 
about the type 2 Lie superalgebra D (m, n) and Sec. V is on 
type 2 Lie superalgebra B (m, n) in relation to the second 
quantization of fermions and bosons. Section VI contains 
discussions on the physical representations and in Sec. VII 
are some concluding remarks. The Appendix is a discussion 
of the type 1 Lie superalgebra ctn) for completeness. 

II. CLASSICAL LIE SUPERALGEBRAS 

Our discussion will follow the articles of Kac5 and 
Hurni and Morel. 6 We will discuss only A (m, n),B(m, n),and 
D (m, n) which are found to be closely related to secondquan
tization. 

A Lie superalgebra L is a Z (2)( = 10, I}) graded linear 
vector space which is a direct sum of an even Lo and an odd 
L 1 vector space, 

(1) 

(Henceforth, we will call Lo the even part and LIthe odd 
part.) Furthermore, all elements X, Y, and Z in L satisfy the 
following axioms of the bracket operation [,]: L xL--L: 

(I)[X, Y] = - (_I)81X)81Y)[y,X]; (2) 

(2) graded Jacobi identity, 

[ X, [Y, Z ]] + ( - l)81X)(81y) +81Z))[ Y, [Z, X]] 

+ (- 1)81Z)(81X)+81Y))[Z, [X, Y]] = O. (3) 

Here, g( X) is the grading (or degree) of X. If X ELo' then 
g( X) = O. If xEL 1> then g( X) = 1. The grading of a product 

of elements is the sum of the gradings of all elements in the 
product modulo 2[i.e., Z(2) graded]. Equation (1) says that 
the bracket is an anticommutatior if X and Y have odd grad
ings; otherwise the bracket is a commutator. Moreover, to
gether with the second axiom, Lo forms an ordinary Lie alge
bra and LI behaves as a representation of Lo. 

(I)A (m - 1, n - 1) = su(mln) is a type 1 Lie superal
gebra defined by 

A (m - 1, n - 1) =A_1(m - 1, n - 1) + Ao(m - 1, n - 1) 

+AI(m -1, n - 1), (4) 

in which the ordinary Lie algebra Ao(m - 1, n - 1) is reduc
ible and is given by 

Ao(m - 1, n -1) =A (m -1) +A (n -1) +K, (5) 

where A (m - 1) = su(m), A (n - 1) = su(n), and K is a real 
number which corresponds to the abelian group U(I). This 
Ao(m - 1, n - 1) forms the even part of A (m - 1, n - 1). 

The odd part is composed of two pieces: 
A -I (m - 1, n - 1) corresponds to the irreducible represen
tation (m, ii) ofsu(m) + su(n) andA1(m - 1, n - 1) corre
sponds to (m, n). The dimension of A (m - 1, n - 1) is 
(m + n)2 - 1 - 8m • n' 

Let H be the Cartan subalgebra of Lo. If a(h ) is not zero 
in the relation 

[h, X] = a(h )X, (6) 

for hEll and XEL, then a is called a root of X. It is an even 
root if X ELo and an odd root if X EL I' A collection of all roots 
is denoted by Ll. The set of all even (odd) roots is denoted by 
Llo(Ll d. 

The root system of A (m - 1, n - 1) is given by 

Llo = I€; -€j;8i -8j }, (7) 

LlI = I ± (€; - 8j ), i#j, 1 <;:;i<;:;m, kj<;:;n}, (8) 

where €i and 8j are basis vectors. 
We choose a simple root system as 

n = I €I - €2' €2 - €3'''',€m - 81, 81 - 82, .. ·,8n - 1 - 8n I, 
(9) 

in which just one odd root €m - 81 is included. We use the 
word "choose" because it has been shown that unlike the 
classical Lie algebra in which the simple root is unique, the 
simple root systems in Lie superalgebra are not unique. 5 

(2) B (m, n) = osp(2m + 1I2n) is a type 2 Lie superalge
bra defined by 

B(m, n) = Bo(m, n) +B1(m, n), (10) 
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where Bo(m, n) is an ordinary reducible Lie algebra given by 

Bo(m,n)=B(m)+C(n), (11) 

whereB(m) = so(2m + 1) and C(n) = sp(2n). 
Here BI(m, n) is the odd part which corresponds to the 

irreducible representation (2m + 1,2n) of B (m) + C (n). The 
root system of B (m, n) is given by 

..10 = { ± €; ± €j; ± 28;; ± €;; ± 0; ± OJ J, i=/=}, 
(12) 

..11 = {±o;; ±€; ±OJ j. (13) 

We choose a system of simple roots as 

n = {Ol - oz,···,on - €I' €I - €z"",€m-I - Em' €m j, 
(14) 

in which an odd root on - €I is included. 
(3)D(m, n) = osp(2mI2n) is a type 2 Lie algebra defined 

by 

D (m, n) = Do(m, n) + D1(m, n), 

where Do(m, n) is a reducible Lie algebra 

Do(m, n) = D (m) + C (n), 

(15) 

(16) 

whereC(n)isthesymplecticalgebradefinedasinB(m, n)and 
D(m) = so(2m). 

The odd part D1(m, n) transforms as the (2m, 2n) irre
ducible representation of Do(m, n). The root system of 
D(m, n) is given by 

..10 = { ± €; ± €j; ± 28;; ± 0; ± OJ i=/=jj, (17) 

..11 = { ± €; ± OJ j. (IS) 

We choose a system of simple roots as 

n = {O l - oz,.··,on _ 1 - on' On - €I' €I - €z, 

(19) 

in which one odd root on - €I is included. 
Our study of the connection between supersymmetry 

and second quantization relies heavily on the root systems in 
the subsequent sections. Basically, it is a construction of 
these Lie superalgebras by the fermionic and bosonic cre
ation and annihilation operators, along the same line of 
thought as in the realization of the classical Lie algebras 7 by 
second quantization. 

III.A(m -1, n -1) AND SECOND QUANTIZATION 

A (m - 1, n - l)hasalreadybeenemployedinthestudy 
of nuclei. Its structure in relation to fermionic and bosonic 
operators has been known for a time. We are going to write 
down the defining relations in the most general form in an
ticipation of any other possible applications in other branch 
of physical interests. 

Let! au a/ , i = 1, ... ,m j be a set offermionic operators 
which satisfy the usual anticommutation relations 

[a;, a/ J = Oi,j' {ai' aj I = 0, {a/, a/ I = O. (20) 

The index i stands for the ordered complete quantum label of 
a state. Then the set 

l<'i,j<.mj (21) 

constitutes the classical Lie algebra A (m - 1) associated 
with the group SU(m). The particle number operator 
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(22) 

is a Casimir invariant. The notation 1: means to sum over all 
values of i. The Cartan subalgebra is 

{ + 1'- 1 j aj ai - 2' I - ,oo.,m , (23) 

and the set of raising and lowering operators is 

[a/aj , i=/=j, l<'i,}<.mj. (24) 

Let [bk, b k+, k = l,oo.,n j be a set of bosonic operators 
which satisfy the commutation relations 

[bk, b /] = Okl' [bk, bJ] = 0, [b k+' b / ] = O. 
(25) 

The set of bilinear terms 

[b k+ bl' k =/=1, b k+ bk + -i, l<.k, I<.n j (26) 

also satisfy the commutation relations of the classical Lie 
algebra A (n - 1) associated with the group SU(n). The parti
cle number operator 

is a Casimir invariant. The Cartan subalgebra is 

[b k+ bk +!, k = l,oo.,n j 

and the set of raising and lowering operators is 

[bk+bl , k=/=I, l<.k,l<.nj. 

(27) 

(2S) 

(29) 

Note that if we replace a/ aj - ~ by a/ aj , b k+ bk + ! 
by b k+ bk , all commutators of the algebra 
A (m - 1) + A (n - 1) remain unchanged. For the present 
treatment, we assume m =/= n (see the discussion of Humi and 
Morel6 for the case m = n). 

Now we add the set of elements 

S(m,n)= [a/bk, bk+a;; 1 <.i<.m, l<.k<.nj (30) 

to Ao(m - 1, n - 1). It is easy to verify that 
Ao(m - 1, n - 1) + S(m, n) satisfy axioms (1) and (2) if 
Ao(m - 1, n - 1) has even grading andS(m, n)hasoddgrad
ing. Therefore they form a Lie superalgebra. 

To establish its association with the Lie superalgebra 
A (m - 1, n - 1), we need only to show the structure con
stants (specifically, the Cartan matrix8

) of 
Ao(m - 1, n - 1) + S(m, n) are equal to that of 
A (m - 1, n - 1). We will first establish the association of the 
roots with the generators. Consider the properties of the fol
lowing element in the Cartan subalgebra H of 
Ao(m - 1, n - 1) 

(31) 

where €j and Ok are the standard basis of the dual of H. The 
commutator of H with elements in A (m - 1) and A (n - 1) 
show that a/ aj(i=/=j) corresponds to the root €j - €j and 
b / b/(k =/=l) to the root of Ok - 01, Moreover, thecommuta
tor of Hwith elements inS(m, n) show that a/ bk corre
sponds to €i - Ok and the Hermitian conjugate b / aj to 
Ok - €j. Therefore, Ao(m - 1, n - 1) + S (m, n) reproduces 
all roots of A (m - 1, n - l)inEqs. (7) and (S). Here, the even 
part is Ao(m - 1, n - 1) and the odd part is S(m, n). 
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Now let us define the following notations. Simple posi
tive roots are denoted by 

{

Ej - Ei+ 1> l<i<m - 1, 

a j = Em+1 -81, i=m, 

8k - 8k + 1> i = m + k, 1 <k<n. 

(32) 

The simple negative roots are - a j • The corresponding gen
erators are 

Immediately it follows from Eq. (33) that 

r 
2 I 
- 1 I 

m-l 
A, 

-1 I 
2 I 

, , , 

(33) 

"' 

-1 
-1 2 

-1 

All other elements in the superalgebra A (m - 1, n - 1) can 
be generated from the above generators as is customarily 
done in classical Lie algebras.9 Inspection of the generators 
reveals the following. 

(1) Total particle number (fermion and boson) is con
serving inA (m - 1, n - 1). Fermion particle number and 
boson particle number may vary separately because of the 
odd generators. 

(2) The b k+ transform as (n) and the bk transform as (ii) 
inA (n - 1). The a/ transformas(m)andtheaj transform as 
(m) in A (m - 1). Therefore, the a/ bk transform as (m, iiI, 
and the ajb;: as (m, n) inA (m - 1) + A (n - 1). Hence 
A1(m -1,n -1)= {a/bk+,i= 1, ... ,m,k= t, ... ,n}, 

and 

A_ t(m-l,n-l)={aib k+, i=I, ... ,m, k=I, ... ,mJ, 

and 

S(m, n) =At(m - 1, n - 1) +A_I(m - 1, n - 1). 
A discussion of the physical representation of 

A (m - 1, n - 1) is in Sec. VI. 

IV. D(m, n) AND SECOND QUANTIZATION 

As discussed in Sec. II the even part of D (m, n) consists 
of so(2m) and sp(2n). It is long known that all bilinear combi-
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[Ea ;, E _ a
j

] = 8 jjhi , i,j = 1, ... ,m - 1, 

m + 1, ... ,m + n - 1, 

{Ea""E-aJ =hm, (34) 

[Eam,E-a;] = [Ea;,E- am 1 =0 for i#m, 

[h;.E±aJ = ±aijE±a
j 

foralliandj, 

where 

{

a/ ai - ai~ I ai+ I' l<i<m - 1, 

hi = a;:; am + b 1+ bl, i = m, 

bk+bk -b;:+lbk+I' i=m+k, l<k<n 

are the elements in the Cartan subalgebra of the Lie superal
gebra and (a jj ) is exactly the Cartan matrix of 
A (m - 1, n - I): 

m 

-1 
0 1 

-1 2 
-1 

, 

I 

-1 , , 

'Y' 

n-l 

m 

, 
r I -1 
I I 

} n-1 

2 
I 

nations of the fermionic creation and annihilation operators 
of m states close under commutation operation and form the 
classical Lie algebra so(2m) (see Ref. 7). Furthermore it is 
also known that the symplectic algebra sp(2n) can be con
structed from the bilinear combinations of bosonic creation 
and annihilation operators. to To form D (m, n) additional 
vectors have to be constructed. Since a/ and ai transform as 
(2m) in so(2m) andb ;: and bk transform as (2n) in sp(2n), it is 
tempting to use bilinear combinations of these operators to 
form the odd part of D (m, n). The following sets serve the 
purpose: 

D t = {aibk, aib;:, a/ bk, a/ b k+' l<i<m, l<k<n J. 
(35) 

Here, D (m) is given by 

{a/ai -!,a/aj,aiaj,a/aj+, 

and its Cartan subalgebra is 

f + _I ·-1 J 1 ai ai l' I - , ... ,m , 

and ern) is given by 

i#j, l<i,j<m J, 
(36) 

(37) 

{b ;:bk + l' b;: bi' bkbl , b;:b 1+, k #1, l<k, l<nJ, (38) 

and its Cartan subalgebra is 

{b / bl +~, 1= 1, ... ,n}. (39) 
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Now we prove that the union of the sets in (35), (36), and 
(38) contribute to the classical Lie superalgebraD (m, n). We 
proceed in a manner analogous to that in Sec. III. It is simple 
to show that if D\ has odd grading andD (m) and C(n) have 
even grading, they satisfy axioms (I) and (2) and therefore 
they form a Lie superalgebra. To make the identification 
with D (m, n), consider the operator 

changes the sign of the basis vectors. 
We introduce the simple root notation 

i= I, ... ,n -I, 

i= n, 
i= n + k, 

i=n +m. 

k = I, ... ,m -I, (41) 

(40) The corresponding generators are 

whichisane1ementintheCartansubalgebraofD(m) + C(n). 
It is straightforward to calculate the commutators of H with 
all elements in Eqs. (35), (36), and (38). It is found that 
a+ a· a·a·, and a+ a+ correspond to the roots 

, )' I J I J 

€j - €j, - €j - €j, and €j + €j, respectively; b t bl , bkbl' 
and b k+ b / correspond to the roots ~k - ~I' - ~k - ~I' 
and ~k + ~J' respectively; and bkbk and b k+ b t correspond 
to the roots - ~k and ~k' respectively. Moreover, the ele
ments in Dl correspond to all the odd roots, that is, 
ajbk, ajb t, a;+ bk, and a/ b k+ correspond to 
- €j - ~k' - €; + ~k' €j - ~k' and €j + ~k' respectively. 

As a rule, creation operators provide a positive basis vectors 
€j for fermions and ~k for bosons. Destruction operators 
provide the negative basis vectors - €i for fermions and 
- ~k for bosons. In other words, Hermitian conjugation 

J 

b/bj -bj~lb;+l' 

(bn+bn +!)+(atal-!)' 

i = I, ... ,n - 1, 

i=n, 

i= I, ... ,n -1, 

i=n, 

i = n + k, k = 1, ... ,m - 1, 

i=n +m. 

It follows from Eqs. (42) that 

[Ea"E_aj] =~ijhj, 

!Eam+I,E-am+,J =hm + 1 , 

(42) 

(43) 

[Eam+I,E- a,] = [Ea"E- am +l ] =0, for i=/=m+l 

[ hi, E ± aj J = ± auE ± aj' for all i and j, 

where 

hj = 
i=n + k, k = 1, ... ,m -1, 

(44) 

are the elements in the Cartan subalgebra of the Lie superalgebra and (aij) is given by 

,. r 
2 -1 

-1 2 
-1 

n-I 

n 

~ 

n-l 
.A.. 

-1 
2 -1 . .. 

2 
-1 

0 

-1 
2 

-1 

The D (m, n) Lie superalgebra realized in this construction 
has properties different from that of A (m - I, n - 1). We 
note the following. 

(1) Total particle number no longer conserves. Instead, 
variation of particle number in even integral values is al
lowed. 

(2) The odd part of the superalgebra contains elements 

2969 J. Math. Phys., Vol. 25, No.1 0, October 1984 

, n m+n'" 

0 
-I 

2 -1 

- 1 0 I I 
-1 --2 -i J 

-I . . . 
2 

-I 
-1 

-I -I 
2 1) 

0 2 

'" 

... 

m-I 
~ 

m+n 
(45) 

which change the fermion number and the boson number by 
one unit simultaneously. 

(3) ThisD (m, n) Lie superalgebra is the largest superal
gebra that accommodates only bilinear combinations of the 
fermionic and bosonic operators. We will discuss the repre
sentation in Sec. VI. 
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v. 8(m, n) AND SECOND QUANTIZATION 

The even part of B (m, n) is composed of a so(2m + 1), 
which is constructed from all possible linear and bilinear 
combinations of the fermionic creation and destruction op
erators/ and a sp(2n) which is the one in D (m, n). The odd 
part corresponds to the irreducible representation 
(2m + 1, 2n) of B (m) + C (n). The possible candidates are 
products of a bosonic operator with a fermionic operator. To 
proceed with the search for the odd generators consider an 
element 

H=2);(a/a;- ~)+L8k(bk+bk+ ~) (46) 

oftheCartansubalgebraofB (m) + C(n). In the usual way of 
deriving roots the commutator of H with the bilinear pro
ducts a/ bj , a;b /, a;bj , and a/ b / produce odd roots 
E; - 8j , - E; + 8j , - E; - 8j , andE; + 8j , respectively. To 
search for the operator that associates with 
- 8j = - E; + (E; - 8j ) the commutator 

shows that h; bj corresponds to - 8j • As a matter of fact, the 
commutator of H with h;bj just produces the root - 8j • 

Therefore it is tempting to say that the union of the set 

the set 

sp(2n) = {b / bk +~, b k+ bl(k #/), bkbl, b / b /, 

1<1, k<n, 

and the odd part 

i = 1, ... ,m, k = 1, ... ,n J 

(48) 

(49) 

(50) 

constitute B (m, n). However, it is not true because (1) there 
are too many operators (m of them) corresponding to - 8j • 

They are h;bk for i = 1, ... ,m. (2) h;bk is not fermionic (i.e., 
odd). It is a bosonic operator even though it reproduces the 
odd root - 8j • (3) The anticommutator 

does not close, and (4) h; in h;bk do not give the correct 
representation (2m + 1, 2n). The way out of the difficulty is 

i= 1, ... ,n - 1, 

i= n, 

culty is indicated by argument (2) above. The symplectic Lie 
algebra sp(2n) and the odd roots ± 15k imply that bk does to 
a certain extent correspond to - 15k , However, it is bosonic 
in character. To make it fermionic, let us multiply a Clifford 
element e (its grading is 1) to bk to form ebk (grading is then 
1). We demand e satisfies the following relations. It anticom
mutes with any a/ and a;, {e, a/ J 
= ie, a; J = 0, i= 1, ... ,m. 

It commutes with any bk and b k+' 

moreover, e 2 = - I and e + = - e. Then, if we replace 
h;bk by ebk, h;b k+ by eb k+' a; by ea;, and a/ byea/ in 
(50) and (48), respectively, all four difficulties listed above 
immediatley disappear. It is easy to show that all bracket 
operations close to form the B (m, n) superalgebra. Because 
we have introduced e, the even part contains, instead of Eq. 
(48), the set 

(51) 

which is also a B (m) = so(2m + 1). 
We list below some of the crucial relations. Introduce 

the simple roots 

i= I, ... ,n-l, 

i=n, 
i= n + k, 

i=n + m. 

The corrresponding generators are 

k = I, ... ,m - 1, 

i = I, ... ,n - 1, 

We have 

i= n, 

i= n + k, 

i= n +m. 

[Ea" E _ a}] = 8;jh;, 

{Ea ,E_a J =hn , 
" " 

k = I, ... ,m - 1, 

[Ean,E- a,] = [Ea"E- an ] =0, for i#n 

[h;,E±aJ = ±aijE±a}' for all iandj, 

where 

(52) 

(53) 

(54) 

i = n + k, k = I, ... ,m - 1, 

i=n+m 

(55) 

2970 J. Math. Phys., Vol. 25, No.1 0, October 1984 Dun-Sang Tang 2970 



                                                                                                                                    

are the elements in the Cartan subalgebra and (aij ) is given by 
n-l 

A 

2 1 -11 
, n f 

1 I 21 
.... 

.... -1 .... 

-1 2 -1 

-1 0 

0 -1 

Note that the above formulation simply says that all fermion 
and boson destruction and creation operators are multiplied 
by a Clifford element such that the resulting fermion opera
tors have even grading and the boson operators have odd 
grading. This formulation applies also to A (m - 1, n - 1) 
and D (m, n) with virtually nothing changed. 

VI. REPRESENTATIONS 

The Lie superalgebras realized by explicit construction 
through fermionic and bosonic creation and annihilation op
erators are important in the sense that it opens potential 
application of supersymmetry even to many-body (fermion
boson) problems. However, to make contact with quantum 
mechanics, the physical representations of the classical Lie 
superalgebras have to be identified. This is not yet complete
ly solved since the infinite dimensional unitary irreducible 
representations5 of the classical Lie superalgebras are not 
known. The discussion in this section is rather indicative 
than conclusive. Many facets5

,JI of the theory are to remain 
explored. 

Let Fa denote the Fock space of the fermoionic opera
tors, andFb the Fock space of the bosonic operators. Consid
ertheaction of the elements of A (m - 1, n - 1),D(m, n),and 
B (m, n) on the direct product FaXFb. In the case of 
A (m - 1, n - 1), the even parts A (m - 1) and A (n - 1) do 
not change the particle numbers ofbosons and fermions. The 
physical irreducible representations are the totally antisym
metric representation (1 M) for A (m - 1) and the totally sym
metric representation (N)forA (n - 1). HereMandNarethe 
particle numbers offermion and boson, respectively. This 
implies that the physical state space FaXFb decomposes 
into 

(57) 

summing over M and N. The odd parts of A (m - 1, n - 1), 
however, mix the totally antisymmetric representations la
beled by different M integers with the totally symmetric re
presentations labeled by different N integers and at the same 
time keep the total particle number (fermion and boson) con
stant, i.e., 

M + N = constant positive integer R. (58) 
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n+m -

U 

1 

2 - 1 J 
-1 2 I, , 

.... -1 
L - 1 2 -1 
1 -2 2 -

I 
Therefore, the irreducible representations of 
A (m - I, n - 1) can be labeled by R. Hence, the 

n 

m+n 
(56) 

A (m - I, n - 1) irreducible representations restrictFaXFb 
to a subspace of states which belong to 

(59) 

summing over M and N with restriction (58). 
In the case of D (m, n), the even part consists of a so(2m) 

which has the spinor representation as the physical represen
tation. Furthermore, the elements in so(2m) realized by the 
fermionic creation and destruction operators are bilinear 
and therefore spinor representations of odd and even fer
mion particle number do not mix. Hence, for so(2m), we have 
irreducible representations either 

(60) 

where (112m
) = (1I2 ... m times ... 112) is the spinor represen

tation label in which each entry is the highest weight state 
associated with an element of the so(2m) Cartan subalgebra 
in (36). The spinor representation is finite dimensional. 

The sp(2n), which also constitutes the even part of 
D (m, n) is made up of bilinear terms from the boson creation 
and annihilation operators. Therefore, representations of 
odd and even boson particle numbers do not mix. Hence, we 
have irreducible representations 10 either 

(1I2n
) or (I/2n - I 3/2), (61) 

where (112) = (1I2 ... n times ... 112) in which each entry is 
the lowest weight state associated with an element of the 
sp(2n) Cartan subalgebra in (39). Note that the representa
tion is infinite dimensional (physically, each bosonic state 
can accommodate any number of boson quanta) and thus is 
consistant with the fact that the group of real sp(2n) is non
compact. This is obvious if one consider the case n = 1 
whence SP(2) = U(t, 1), a noncompactgroup which has two 
continuous and two discrete irreducible representations. 
The physical one is that discrete irreducible representation 
which is bounded from below. 7 

The odd part of D (m, n) is composed of elements each of 
which is a product of one fermionic and one bosonic opera
tor. It mixes the even particle number and odd particle num
ber representations of both so(2m) and sp(2n). However, it 
preserves the overall (sum of fermion and boson particle 
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number) oddness and evenness of so(2m) and sp(2n) together. 
Therefore, the physical irreducible representations of 
D (m, n) decompose FaX Fb into subs paces of states in which 
the overall oddness or evenness is a constant. In other words, 
the physical irreducible representations of D (m, n) have the 
A (m - 1) + A (n - 1) subalgebra decomposition either 

(62a) 

in which (N + M) = 0 mod 2 and summing over M and N 
with O<N, O<M<m or 

(62b) 

in which (N + M) = 1 mod 2 and summing over M and N 
with O<N, O<M <m. 

In the case of B (m, n), the above restriction is complete
ly removed. This is explained below. The even part of B (m, n) 
has the same sp(2n) asD (m, n) and therefore the same phys
ical sp(2n) representations (61). It also consists ofso(2m + 1) 
which is formed by linear and bilinear terms of the fermion 
creation and annihilation operators. The linear terms Oa j 

and Oa/ mix the evenness and oddness of the fermion parti
cle numbers. Therefore, the physical irreducible representa
tion is the spinor representation 

[ 112M
], 

which has the so(2m) subgroup decomposition 

(112m) + (112m 
-I - 112). 

The odd part of B (m, n) has terms linear in bosonic creation 
and annihilation operators, namely, Obk and Ob k+' which 
also mix the sp(2n) odd and even particle number representa
tions (61). Hence, the whole physical space FaXFb belongs 
to the physical irreducible representation of B (m, n), which 
has the following A (m - 1) + A (n - 1) decomposition: 

summing over Nand M with O<M <m, O<N. 

The above discussion is by no means rigorous math
ematically. However, it brings out the essential points in the 
construction of the physical representations for a classical 
Lie superalgebra, namely, the evenness and oddness in the 
particle (overall, fermion, boson) number and the roles 
played by the even and odd parts of the superalgebra, the 
former (even part) supplying the irreducible representations 
and the later (odd part) mixing up these irreducible represen
tations. 

VII. CONCLUDING REMARKS 

We have accomplished so far realizations of the classi
cal Lie superalgebrasA (m - 1, n - 1), B(m, n), C(n), and 
D (m, n) and indicated to some extent properties of the corre
sponding physical representations. These suggest that a Ha
miltonian of many fermion-boson interaction is an element 
of the enveloping algebra of the classical superalgebras. The 
discussion in the previous sections are so far limited to the 
study of "kinematic symmetries" of the basic fermion-boson 
creation and annihilation operators. The dynamics aspect 
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has not yet been touched. It will be crucial for future devel
opment to construct physical model Hamiltonians of ordi
nary fermion-boson interactions that possess dynamical su
persymmetry. 

APPENDIX: LIE SUPERALGEBRA C(n) 

C( n) can be realized by one fermionic and n - 1 bosonic 
creation and annihilation operators. The standard basis is 

!EI,Oj, i= 1, ... ,n-IJ. 

The simple roots are 

{

EI - 0 1, i = 1, 

a j = Ok + Ok + I' i = k + 1, k = 1, ... ,n - 2, 

20n _ l , i=n. 

The corresponding generators are 

i= 1, 

{

atbl, 

Eu , = bk+bk+l> i=k+ 1, k= 1, ... ,n -2, 

!b n+- I b n+- I' i = n. 

The commutators and anticommutators are 

[ Eu" E _ u,] = ojjh j , i = 2, ... ,n, 

!Euj,E_ujJ =h l , 

[Euj,E_ u,] = [Eu"E_ uj ] =0, i#l, 

[h j , E ±u
j

] = ± ajjE ±U
j

' for all i andj, 

where 

{

(atal -!) + (b tb l +!), i= 1, 

h j = b k+ bk - b k++ I bk + I' i = k + 1, k = 1, ... ,n - 2, 

- (b n+- 1 bn _ 1 + !), i = n. 

The Cartan matrix (a jj ) is 
n 

0 1 
-1 ? 1 

-1 2 

---
-I 

r - 1 2 -2 
+1 -2 n 

The even part is a l+ a l - ! with sp(2(n - 1)) as in (49) and the 
odd part is 

!albj,alb/,atbj,al+b/, j= 1, ... ,n -IJ. 

The physical irreducible representation is similar to that of 
D (m, n) in which the evenness or oddness of the particle (fer
mion and boson) number is preserved. The subspace of 
FaX Fb in a supermultiplet of the physical irreducible repre
sentation ofC(n) can only belong to either 

I~(IM N), 

with the restriction (M + N) = 0 mod 2 and summing over 
MandN, or 

Dun-Sang Tang 2972 



                                                                                                                                    

with the restriction (M + N) = 1 mod 2 and summing over 
M and N, where M can only be 0 or 1, in the unitary group 
decomposition. 
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Exact solutions of the SchrOdinger equation for a class of three-dimensional 
isotropic anharmonic oscillators 

P. G. L. Leach 
Department of Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa 

(Received 26 September 1983; accepted for publication 20 January 1984) 

A mathematical explanation of how the Schrodinger equation for a class of three-dimensional 
isotropic anharmonic oscillators possesses exact solutions is given. The class of potentials is 
shown to be wider than at present found in the literature. 

PACS numbers: 03.65.Ge, 33.1O.Cs 

I. INTRODUCTION 

The determination of exact solutions to the time-inde
pendent Schrodinger equation has been an object of study for 
many years and in earlier studies! classes of potentials have 
been enumerated. Trivially the Schrodinger equation 

( - ~V2 + V)t/J = Et/J (1.1) 

(Ii and m are taken as one throughout this paper) is always 
satisfied by t/J = t/Jo, where t/Jo is a real-valued C 2 function 
whenE = o and V = !V2t/Joit/Joprovided that the potential V 
makes physical sense. However, if t/Jo is the only explicit solu
tion which this potential provides the result is oflittle or no 
practical use. What is useful is a potential for which more 
than one, preferably many more than one, explicit solutions 
can be obtained. The value of such solutions is that, if the 
potential can be treated by perturbation methods, the exact 
solutions provide an excellent check ofthe perturbation ex
pansion for those states for which they exist. If the potential 
cannot be treated by perturbation methods, then the exact 
solutions do at least give some information about the energy 
levels. 

In the particular instance of anharmonic oscillators 
there has been some recent interest in those potentials for 
which an exact solution to the time-independent Schro
dinger equation exists. Examples of such potentials occur in 
the study of the spectra of molecules for which the potential 
has been modeled as a double-minimum well. This is found 
even in fairly early studies of simple molecules such as am
monia and hydrogen-bonded solids.2 Exact solutions have 
been obtained for both one-dimensional systems3

•
4 and iso

tropic multidimensional systems. The usual method of de
termination of potential and state function adopted is inde
pendent of the dimension and is illustrated by the simplest 
example. The Hamiltonian is 

H = ~p2 + V(q), (1.2) 

with 

(1.3) 

where a, b, and e are constants and e is necessarily positive. 
The time-independent Schrodinger equation is 

( 
I d

2 
) - - -2 + V(q) t/J(q) = Et/J(q). 

2 dq 
(1.4) 

A solution of the form 

t/J(q) = exp( - !aq2 -1 f3q4) (1.5) 

(the normalization factor has been ignored), where a and f3 
are constants and f3 is necessarily positive, is assumed. The 
substitution of t/J(q) (1.5) into (1.4) yields the following set of 
conditions on the coefficients a, b, e, a, and f3 when in the 
resulting expression the coefficient of each separate power of 
q is set equal to zero: 

E=!a, a=!(a2-3f3), b=af3, e=!f3 2. (1.6) 

This state is a ground state and the ground state energy level 
is positive or negative according to whether a is positive or 
negative. Eliminating a andf3 from the expressions for a, b, 
and e, a potential of the form (1.3) will give rise to a solution 
of the form (1.5) if a, b, and e satisfy the relation 

a = b 21e ± ~ ..jie. (1.7) 

As stated above a single explicit solution for a given 
potential is of little value. It is possible to obtain more than 
one explicit solution (corresponding to different energy lev
els) for a particular potential by assuming that t/J(q) has the 
form 

t/J(q) = f(q)exp( - !aq2 - f3q4), (1.8) 

wheref(q) is a polynomial ofform qg(q2) or g(q2) for odd and 
even states, respectively. In this case the coefficients in the 
potential are not the same as given in (1.6) and the coeffi
cients of g(l) are fixed by the values of a and f3. Potentials 
containing further anharmonic terms may be obtained by 
increasing the degree of the polynomial in the exponent of 
(1.5) [or (1.8)]. A curious feature is that this method worked 
only for potentials of the form 

2N 

V(q) = L a nq2n + 2. (1.9) 
n=O 

Leach4 has provided a mathematical basis for what had been 
hitherto a solution obtained by ansatz. The time-indepen
dent Schrodinger equation (1.4) may be written as 

(D2+A -X)t/J=O, (1.10) 

where D =d I dq, A is the eigenvalue, and X (q) the potential 
(to within a constant mUltiplier). Assuming that the differen
tial operator in (1.10) may be factored, 

D 2 + A - X = (D - a)(D - f3), 

it follows that 

f3 = - a, a2 - a' = X-A. 

Equation (1.10) is now 

(1.11) 

(1.12) 
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(D - a)(D + a)¢ = 0, 

with solution 

¢(q) = A exp ( - f a(u)du) 

+ B exp (f a(U)dU) 

X f exp (2 r a(v)dV)dU. 

(1.13) 

(1.14) 

In the context of an oscillator potential, a(q) is a polynomial 
and either A or B will be zero according to the behavior of 
a(q) as /q/-..oo. The solution for ¢(q) in (1.14) is a ground 
state solution. To obtain higher states a factorization of the 
form 

(D -a)(jD-{J) =/(D2 +..1, -X) (1.15) 

is assumed. By an analysis similar to that above, 

X - ..1,= a 2 - a' - (2a!, -I")!/, (1.16) 

¢(q) = Aj(q)exp ( - f a(U)dU) 

+ B/(q)exp ( - f a(U)dU) 

X f 1-2(u)exp ( 2 JU a(V)dV) du, (1.17) 

with the same qualification on A and B. 
The differential equations (1.12) and (1.16) are both Ric

cati equations. However, in the context of anharmonic oscil
lators it is not necessary to solve them. In (1.12) the choice of 
a polynomial for a(q) will give a polynomial X (q). For the 
wave function to be square integrable the degree of a(q) must 
be odd, i.e., 2N + I, whence the degree of X (q) = 4N + 2, 
which is in accordance with (1.9). There is, however, no re
quirement that X (q) be a polynomial in q2. The polynomial 

2N+ 1 

a(q) = I anqn (1.18) 
n~O 

will provide both a square integrable wave function and a 
polynomial potential. An oscillator potential is often ob
tained as a Maclaurin polynomial approximation to a poten
tial about an equilibrium point. In such a case the coefficient 
of ql in X (q) is zero, i.e., to (1.18) we add 

aoal + a2 = 0 (1.19) 

as a constraint on the coefficients of a(q). More generally the 
origin and equilibrium point need not coincide and the con
straint (1.l7) is not necessary. In (1.16) to obtain a polyno
mial X(q) it is necessary for the term (2a!, -1")/1 to be a 
polynomial. This imposes constraints on the coefficients of 
the polynomial function/(q) as was discussed in Ref. 4. 

II. THREE-DIMENSIONAL ISOTROPIC OSCILLATOR 

The multidimensional isotropic oscillator has also been 
treated by a method which is similar to that outlined by Eqs. 
(1.2)-(1.9) (see Ref. 5). Provided the system is isotropic its 
dimension is immaterial. The potentials which have been 
treated are of the form 

2N 

Vir) = I anrn+2, (2.1) 
n=O 
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where r is the radial variable and the an are not all arbitrary. 
We shall construct a broader class of potentials which in
cludes the examples (2.1). 

The three-dimensional time-independent Schrodinger 
equation 

(- ~V2 + V)¢=E¢ (2.2) 

is reduced to the radial equation 

[D 2 +..1, -x -/(1 + l)r-2]u = 0, (2.3) 

whereD =d /drandXis V to within a constant multiplier, by 
means of the substitution 

¢ = [u(r)/r] Y1m(f),<jJ). (2.4) 

As for the one-dimensional problem we assume that the op
erator in (2.3) can be factored to give 

(D - a)(D - {J)u = O. (2.5) 

This requires that 

{J = - a, a{J - {J' = A - X -I (I + l)r-2. (2.6) 

Hence X, A, and a are related according to 

a 2 -a'=X+/(/+l)r-2-A. (2.7) 

In terms of a the solution of (2.3) is 

u(r) = A exp (- r a(X)dX) 

+ B exp (- r a(X)dX) 

X r exp (2 r a(Y)dY) dx, (2.8) 

where A and B are constants. If air) > 0 as r-.. 00, B = 0 and, 
if aIr) < 0 as r-.. 00 , A = O. In the following discussion we will 
consider the former case only as it is the simpler. The latter 
case, which corresponds to a different potential, could be 
discussed in a similar fashion. 

As we are treating an anharmonic oscillator our choice 
of air) for substitution into (2.7) and (2.8) must be such that 
X (r) is a polynomial in r and that the coefficients of the high
est powers in X (r) and aIr) must be positive. If we take 

N 

aIr) = I an,n, N> 1 (2.9) 
n= -1 

from (2.7) we see that X (r) is a polynomial of degree 2N, 
aN> 0, ao = 0, and ..1,= a l (1 - la_I)' The wave function is 
required to be square integrable and so 

(2.10) 

As 

( 
~ an I) u(r) = r-o-, exp - L.J --,n+ , 
n~ In + 1 

(2.11) 

the integral is well-behaved as r-.. 00 since aN> O. It will be 
well-behaved as r~ provided we make the choice 
a _I = - (I + 1). Hence the eigenvalue is 

..1,= a1(21 + 3). (2.12) 

The function aIr) is 
N 

air) = - (I + l)r- 1 + I an,n, (2.13) 
n~l 
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and the potential is, to within a constant multiplier, 

X(r) = ctl a/Y - ntl (2/+n+3)an+ I,n, (2.14) 

in which, for a given value of the angular momentum eigen
value, there are N independent constants. Alternatively we 
could write 

2N 
X(r) = L bn,n, (2.15) 

n=l 

in which the 2N coefficients bn are subject to N constraints. 
The potential given in (2.14) describes an oscillator for 

which r = 0 is not an equilibrium point. If r = 0 is an equilib
rium point the coefficient of rl in (2.14) must be zero. This 
requires that a2 = O. In the case N = 2 the above results are 
the same as those obtained by Flessas and Watt6 when due 
allowance is made for the presence of angular momentum. 
In general one can use any function a(r). The choice 

N 

a(r) = - (I + l)r- 1 + L an/nljn 
n=l 

could be of some use in the study of the fractionally anhar
monic oscillator which has been treated recently by Znojif 
from a different viewpoint. 

III. HIGHER STATES 

The wave function and eigenvalue obtained in Sec. 2 are 
for the lowest energy level for a given value of the angular 
momentum. To obtain wave functions and eigenvalues for 
higher energy states we make a modification of the factoriza
tion as was done at (1.15) and write 

(D - a)(jD -/3) f[D2 +..1, - X -/(1 + 1)r-2 ],(3.1) 

so that 

/3= -af+ /" (3.2) 

X + 1(1 + 1)r-2 -A = a 2 
- a/ - (2a/, - f"lf-I. 

(3.3) 

The function u(r) is given by 

u(r) = Af(r)exp (- r a(X)dx) 

+ Bf(r)exp ( - r a(X)dX) 

X r f- 2(x) exp [2 r a(Y)dY] dx. (3.4) 

For X to represent an oscillator potential, the constant B will 
be zero if a(r)-. 00 as r-. 00 and A will be zero if a(r)-. - 00 

as r-. 00. The latter case is computationally more complex 
and for clarity we shall confine our discussion to the former. 

The angular momentum term on the left-hand side of 
(3.3) is provided for by allowing a(r) to contain a term in r- I. 
We obtain higher states by takingf(r) to be a polynomial in r. 
The coefficients off(r) for an oscillator potential are then 
determined by the requirement that X (r) be a polynomial in r, 
i.e., the right-hand side of(3.3) may not contain fractions 
with polynomials in r in the denominator with the exception 
of a term in r- 2. We illustrate the process with some simple 
examples. They must of necessity be simple due to computa
tional complexity even in the simplest cases. Let 
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N 

a(r) = L an,n, 
n~ -I 

f(r) =r-k. 

Substituting these into (3.3) we find that 

a_l(a_ 1 + 1) = 1(1 + 1), a_lao + b_ 1 = 0, 

..1,= a l - a~ - 2a_ Ial - 2bo, 

X(r) = Ctl an,n r + nt2 (2a_ 1 - n)an,n - I 

N N-I 
+ 2ao L an,n + 2 L bn,n, 

n= 1 n= 1 

where 
n 

bn =k -n-I L amk m 
m= ~ t 

and 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

The first three of(3. 7) come from equating the coefficients of 
r- 2, r- I, and rO of each side of(3.3), respectively, and the last 
is what remains. Equations (3.8) and (3.9) come from the 
requirement thatf factor a. From (3.7) we see that 

a_I = - (I + 1), kao = - 1, ..1,= (21 + 3)(a~ + ad, 
(3.10) 

and (3.9) becomes 
N 

L amkm+I=I+2. (3.11) 
m= 1 

Since aN> 0, there is always one positive root of (3.11). Be
cause of the connection between k and ao different roots cor
respond to different potentials and so we have only one ex
plicit solution to the Schrodinger equation for a given a(r). 

Instead of using thef(r) given in (3.6) we could use 
J 

f(r) = II (r - kj ). (3.12) 
j~ I 

Equations (3.7) are almost replicated. The only change is 
that the terms containing the bn are more complicated. We 
may define these terms recursively by 

n 

b~+t=kj-n-l L b'",k7, j=1,J-1, (3.13) 
m= -1 

with the coefficients b ~ being given by equating the coeffi
cients of like powers of r from the two sides of 

N+J 
L b! ,n = a(rlf/(r) - f"(r). (3.14) 

n= 1 

Each term containing a bn would also be multiplied by a 
factor ( - W - 1 compared with (3.7) and the roots off(r) are 
determined from the equations 

N+J-j 
L b1", k 7=0. (3.15) 

m= -1 

However, this is not a fruitful path to follow as the potential 
depends on the values of the roots off(r) and so only one 
eigenstate is found per potential. 

To obtain multiple eigenstates it is necessary to place 
some restrictions on the forms of the functions a(r) andf(r). 
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We consider some examples. 
Example (i): 

a(r) = -(/+1)r- 1 +ar+br, b>O, 

f(r)=r-k. 

Then 

(2af' - f"lf-l = 4br + 4(a + kb), 

provided that 

4(a + kb )k = 41 + 6. 

The roots of (3.17) are 

(3.16) 

(3.17) 

k=(2b)-I[ -a±~a2+b(4/+6)]. (3.18) 

The potential is determined to within a constant factor by 

X(r) = [a2-b(2/+9)]r+2abr4 +b 2r6. (3.19) 

For this potential there are two explicit eigenfunctions with 
eigenvalues 

,1,0 = a(21 + 5) - 2~a2 + b (41 + 6), 

,1,1 = a(21 + 5) + 2~a2 + b (41 + 6), 

(3.20) 

(3.21) 

corresponding to the two values of k. For the lower eigenval
ue, A.o,k is negative andf(r) is never zero and so the state is a 
ground state. For A.I,/(n) has a single zero for positive r and is 
the first excited state. The result whenf(r)=l may be ob
tained from (2.12) and (2.14) using the particular expression 
for aIr) in this example. It is 

A. = a(2! + 3), 

(3.22) 

We see that the potential differs from that given by (3.19). 
This is a general feature for anharmonic potentials as was 
noted also for the one-dimensional problem. 

To obtain a greater number of explicit solutions to the 
SchrOdinger equation, we merely increase the degree of the 
polynomialf(r). We shall look at the cases whenf(r) is a quar
tic and a sextic polynomial in r. 

Example (ii): 

aIr) = - (I + l)r- 1 + ar + br, 

fIr) = r4 - kr + c. 

In the course of doing the algebra it is convenient to intro
duce new variables. They are defined by 

b = 2cr, a = 2av, 

a + kb = 20'17, p2 = ar, a>O. (3.23) 

In terms of the new notation, 

c = !(21 + 3)(1] - v)(1] + V)-I, (3.24) 

f = a-2[p4 - (1] - V)P2 + 1(2/ + 3)(1] - v)(1] + V)-I], (3.25) 

a = a l
/
2

[ - (I + 1)p-1 + 2vp + 2p3]. (3.26) 

We find that the potential is given by 

X = 2a{ [2v - (21 + 13)]p2 + 4Vp4 + 2p6j, (3.27) 

and the eigenvalues by 

A. = 2a[(21 + 7)v + 41]], (3.28) 

where 1] is a root of the equation 

1]3 - [v + (2/ + 4)]1] - v = O. (3.29) 
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The three roots of(3.29) are all real and obey the inequalities 

1]1 < - Ivi < 1]2 < Ivl < 1]3' (3.30) 

The potential X is independent of the value of 1] and so pos
sesses three eigenstates. The ground state is given by 1] I andf 
has no real roots. For 1]2'/ has one real root for p > 0 and, for 
1]3'/ has two real roots for p > O. 

Example (iii): Using the same a as in example (ii) and 
introducing new variables as in (3.23), as a sextic polynomial 
f has the form 

f = a-3 (p6 - ~(1] - 3V)p4 

+ (1] - 3v)(1] + 3v)(21 + 5) 2 

2[(1] + v)(1] + 3v) - 3(21 + 5)] p 
(1] - 3v)(21 + 5)(21 + 3) ) 

4[(1] + v)(1] + 3v) - 3(21 + 5)] . 

In this notation the potential is given by 

X = 2a{ [2v - (21 + 17)]p2 + 4Vp4 + 2p6j, 

and the eigenvalues by 

A. = 2a[(21 + 9)v + 21]], 

where 1] is a solution of 

[1]2 - (v + 21 + 5)] [1]2 - 9(v + 21 + 5)] 

- 481]v - 36 = O. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

Again the potential is independent of 1]. The four real roots 
of (3.34) satisfy the inequalities 

1]1< -K,[5<1]2<0<1]3<K<3K<1]4' 

in the case v> 0, and 

(3.35) 

1]1 < - 3K< -K<1]2<0<1]3<KV5<1]4' (3.36) 
in the case v < 0, where 

~ = v + 21 + 5, K>O. (3.37) 

The number of zeros off for p > 0 increases from zero with 1] I 
to three with 1]4' 

IV. DISCUSSION 

In this note we have demonstrated that a factorization 
method can be used to determine exact solutions of the time
dependent Schr6dinger equation for a three-dimensional 
isotropic anharmonic oscillator. It should be evident that the 
method is applicable to an arbitrary number of dimensions. 
In the process we have extended the class of potentials for 
which an exact solution is known to exist. Indeed any poten
tial which can be written in the form 

X(r) = a 2(r) - a'(r) +,1, -/(1 + 1)r-2 

will have a wave function of the form 

(4.1) 

t/J(r,O,t/J) = exp ( - r a(U)du) Ylm (O,t/J ). (4.2) 

To attempt to solve (4.1) for aIr) is just the equivalent of 
attempting to solve the original time-independent Schr6-
dinger equation (2.3). This is why a constructive procedure 
has been used here. It will have been observed that the num
ber of parameters in a given potential is fewer than the num
ber of terms in the potential. This means that not every an-
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harmonic potential can be treated by the methods described 
here even though the powers in the potential are appropriate. 
Given a potential for a particular problem, it would first be 
necessary to test to see whether it is a member of the class 
described here. By way of example suppose that we have a 
potential of the form 

X(r)=Af2+Br+Cr6
, C>O. (4.3) 

It will be of the desired form ifthere exists an aIr) and anf(r) 
which satisfy (3.3) when X from (4.3) is included in the left
hand side. Taking aIr) andf(r) to be given by 

aIr) = - (I + 1)r- 1 + ar + br, 
N 

fIr) = I cn f2n
, CN = 1, (4.4) 

n=l 

we require 

Af2 + Br4 + Cr6 = (ar + br)2 - (21 + 4N + 5)bf2.(4.5) 

Equating coefficients oflike powers of r on each side of (4.5) 

b 2 = C, 2ab = B, a2_(21 + 4N + 5)b = A. (4.6) 

Eliminating the a and b, we require a positive integer N such 
that 

N = !(!B 2yC -3 - A yC -I - 2/- 5). (4.7) 
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Should this be the case we will then have an explicit wave 
function for each of N + 1 eigenstates with eigenvalues given 
by 

A = !(21 + 4N + l)ByC- 1 + 4cN _ 1 yC, (4.8) 

where C N _ 1 is one of the real roots of a polynomial equation 
of degree N + 1. 
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We develop a new fonnalism suitable for diagonalization of Hamiltonians with 2t + 1 nonzero 
diagonals (chain models). In a systematic perturbation-like way, we get the expansions of Green 
and/or wave functions. They are generated by solution of a sequence of "fixed-point" quadratic 
equations for (t X t I-dimensional matrices. For t = 1 and t = 2, this solution is feasible by 
elementary means, so that the respective tridiagonal and pentadiagonal chain models may be 
considered exactly solvable in this context. In an alternative first-order variational-perturbation 
fonnulation, the method may provide the simultaneous upper and lower energy bounds for any t. 

PACS numbers: 03.6S.Ge, 03.6S.Db, 02.60. + y 

I. INTRODUCTION 

The concept of a strong interaction between neighbor
ing "orbitals" has inspired the introduction and detailed 
study of the so-called chain models in solid-state physics, I in 
scattering or nuclear theory,2 in the recent papers on the 
anharmonic oscillators,3.4 etc. These models are all charac
terized by the Schrodinger equation 

Ht/J = Et/J, (1.1) 

with some infinite-dimensional band-matrix Hamiltonian 
H. 

By definition, the off-diagonal matrix elements of Hare 
not small and the standard perturbation theory may con
verge only after a careful choice of the unperturbed operator 
H O•

4
•
5 Moreover, there is a conflict between an easy diagona

lization of this Ho and its "realistic" character, i.e., between 
the simplicity of the perturbation expansions and their con
vergence. Therefore, the nonsmallness of the perturbation 
H - Ho usually requires the nonperturbative treatment of 
H. 

For the simplest tridiagonal Hamiltonians H, the non
perturbative techniques of their diagonalization I range from 
the analytic theory of continued fractions6 and analogies 
with the Mathieu functions to the general theory of mo
ments 7 and Pade approximants.8 

Any generalization of this mathematics to band matri
ces with 2t + 1 diagonals, t> 1, encounters immediately a 
number of specific methodical difficulties.3,4.9 Our present 
intention is to show that most of these difficulties disappear 
at least in the t = 2 case of five diagonals. 

The material is organized as follows. In Sec. II, we re
view the "matrix continued fraction" (MCF) approach9 to 
diagonalization of the band matrices and emphasize that the 
MCF algorithm need not be employed in the numerical con
text only. Indeed, for the particular t = 2 anhannonic-oscil
lator (AHa) example,3 we are able to obtain also the explicit 
asymptotic fonn of the effective Hamiltonian (Appendix A) 
and/or to analyze its MCF convergence still by purely ana
lytic means (Appendix B). 

When applied to the general MCF quantity, this geo
metric "fixed-point" (FP) approach 10 generates the natural 
FP approximants. In the chain-model context, they define 
algebraically the approximate effective Hamiltonians in a 
large model space (Sec. III). 

In Sec. IV, a systematic FP treatment of the higher
order corrections is suggested. For the Schrodinger equation 
(1.1), this enables one to define exactly the effective Hamil
tonian by an infinite series in an arbitrary model space. This 
general FP expansion resembles perturbation theory but its 
algebraic construction has a more complicated character 
(Appendix C), especially for t > 1. 

The particular t = 1 (Sec. V A) and t = 2 (Sec. V B) ver
sions of the FP expansions are exceptional and simple: Their 
construction remains fully elementary. This makes the pen
tadiagonal chain model "exactly solvable" and fonnally 
close to the current tridiagonal Hamiltonians. 

II. BAND-MATRIX HAMILTONIANS AND THE MCF 
ALGORITHM 

A. Effective Hamiltonians and bound states 

Let us start by a refonnulation of the MCF fonnalism 
initiated by Graffi and Grecche·9 and applicable to any 
Schrodinger-type eigenvalue problem: 

JY(E )t/J = 0, (2.1) 

with the band or, equivalently,9 block-tridiagonal "Hamil
tonian" 

C 
Bo 

~} JY(E)= CI Al BI 
(2.2) 

C2 A2 

dimAo = Mo;;' 1, dimA k =Mk = t;;,l, k= 1,2, .... 

First, we introduce a model-space projector 

P= P(M) = 10)(01 + 11)(11 + ... + Id -l)(d - 11, 

d=Mo+MI + ... +MM· 

In the spirit of Feshbach, II we may rewrite (2.1), i.e., 

PJYPt/J+PJYQt/J=O, Q= I-P, 

QJYPt/J + QJYQt/i = 0, 

in the equivalent fonn 

7t'(:f)P", =0, J't(!) =PJYP-PJYQ(lIQJYQ)QJYP, 
(2.3) 

Q", = - (lIQJYQ)QJYP"" 

where, obviously, the complexity of solution concentrates in 
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the construction of the effective matrix JY'(!I itself. 
In this formulation, the main MCF idea stems from the 

M-dependence of the exact effective Hamiltonians JY'(! I (E ), 

~ff ff (Ao Bo) 
(01 (E) = Go, JY'(1)(E) = C

I 
G

I 
' 

£Ol(E) ~ (~: ~: ~) ,U' • (2.4) 

Indeed, when we choose the various dimensions 
d = Mo + tM of the model space, the different (t X t )-dimen
sional "effective" submatrices GO,GI,. .. become related pre
cisely by the MCF recurrences 

Gk =Ak -BdllGk+I)Ck+\! k=O,I,.... (2.5) 

These recurrent relations are to be initialized in accord with 
the standard variational technique [truncation of Yr(E )], i.e., 
by GN =AN' N--oo. All the effective Hamiltonians (2.4) 
become exact in the MCF limit N--oo. 

The dimension Mo is variable. Its change may be used as 
a "regularization procedure" whenever we encounter the 
random zeros of det Gk + I at some k = ko> 1 in (2.5) (an 
example may be found, e.g., in Ref. 12). In the "regular" 
cases, we may fix Mo = 1 and get the simplest MCF form of 
the secular equation 

, 
(AO)l1 - I (Bo)\i(G 1- l)ij(CI)jl = 0, (2.6) 

i,j= I 

which is extremely suitable for a numerical search for the 
binding energies E. Quite formally, the inverse of the left
hand side expression (or det Go in general) may be interpret
ed also as the MCF Green function. 3,9 

Concerning the wave functions t/!, we may notice that 
their MCF form 

Xk = DkDk_I .. ·DIXo, Dk = - (lIGk)Ck, (2.7) 

(Xk)m = (kt + m - IIt/!), m = 1,2, ... ,t, k = 1,2, ... , 

follows from (2.3) with k = M #0. It must be accompanied 
by the remaining M = ° requirement (2.3) 

GoXo = 0. (2.8) 

Then, the projections (2.7) satisfy (2.1) at the physical ener
gies only. 

Vice versa, any initialization Go and Xo of the respective 
definitions (2.5) and (2.7) leads to the formal solution (nit/!) 
provided that (2.8) holds. Then, the requirement II t/!I I < 00 

I 

Similary, for any t)2, the MCF numerical algorithm is easi
ly implemented to produce the AHa energies. 3 

With t < 0, the singularly anharmonic Hamiltonians 
(2.9) may also be converted into the (21t I + I)-diagonal ma
trices Yr(E ): It suffices to use the nonorthogonal basis func-
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must be imposed in a way illustrated again in Ref. 12 or in 
Sec. V A below (see alternative proof of Theorem 2). 

B. Examples of the band-matrix Hamiltonians 

Anharmonic oscillators (AHa) possess some interest
ing physical interpretations (e.g., in zero-dimensional field 
theory) and are often employed due to their technical simpli
city.3-5 In the quantum-mechanical context, we may repre
sent their Hamiltonians 

H - _ ~ 1(1+ 1) ~_2' - dr + r + r2 + r.r , 

A> 0, t = 2,3, ... , (2.9) 

in the harmonic-oscillator (HO) basis In) and get the Schro
dinger equation (1.1) or (2.1) in the band-matrix form: 

m+' 
0= I [(20 m -E)8mn +A (ml,-2'ln)] (nlt/!), 

(2.10) 

am =2m+I+~, m=O,I, .... 

The matrix elements are easily obtainable since (mlrtln) 
= (T')mn, where 

bo 

with I = - 1,0 (parity in one dimension), I = 0,1, ... (angular 
momentum in three dimensions), or I> -! (noninteger pa
rameter simulating the r- 2 component in the potentiaI12

). 

The trivial choice of t = 1 corresponds merely to the 
harmonic oscillator represented in a "wrong" basis. With 

Ak =(2+A)ak -E, Bk =Abk, t= 1, k)O, 
(2.11) 

this simplest tridiagonal chain model may be used as a meth
odical guide. In the present MCF context, we may immedi
ately notice that the HO formula (2.5), 

A 2b ~ 
Gk = (2 + A )ak - E - , (2.12) 

(2+A)ak+ 1 -E- ... 

represents a classical continued fraction. It converges if and 
only if 6 A> - 1, i.e., in all cases of interest. 

In the simplest nontrivial t = 2 example, the matrix 
Yr(E) may be given the form (2.2) with 2k + Mo - 2 = nand 

(2.13) 

~ions (rln)rltl suppressed near the origin. The simplest ex
ample with 

Vir) = r + a2r- 4
, t = - 2, (2.14) 

will be considered below. 
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The (2t + 1 )-diagonal forms of J¥'(E) may be derived 
also from some nonpolynomial anharmonicities-a nontri
vial example (fractionally anharmonic potentials) may be 
found in Ref. 12 or 13. The band-matrix form of J¥'(E) may 
also be postulated a priori, as a phenomenological (possibly, 
nonlocal) interaction model. 13 

III. ASYMPTOTICALLY SMOOTH CHAIN MODELS 

A. Large model space and the AHO example 

Notice that the k-dependence of A k and B k = C k + I in 
(2.2) is often smooth. In general, the k> 1 asymptotic AHO 
estimates 

Ak =Ak'a(t)(1 + a (11k)), 

Bk =CLI =Ak'b(t)(1+0(lIk)) 
(3.1) 

aij(t) = C+2: _), bij(t) = C ~), 
i,j = 1,2, ... ,t, t;;,.2, 

contain the k-dependence in the common scalar factor only. 
Thus, putting GN + I _ k = AN 'gk , the nonlinear matrix 
mapping G N + I _ C-+GN _ k may be approximated by its 
leading-order form 

gk + I = a - b (lIgk)b T, gl = a. (3.2) 

As a consequence, the AHO MCF expansion 

Gk =Ak -BdAk+1 -Bk+ 1 
X [1I(A k +2 - ... )]B k+ Ij-IB k (3.3) 

of the effective Hamiltonian (2.4) in a large model space may 
be replaced by its asymptotic modification G tt ) = Ak 'g", , 
where 

g", =a-b!a-b[lI(a- ... )]b T j- Ib T (3.4) 

is a new, simplified MCF expansion with constant coeffi
cients. This leads to results of the following type. 

Theorem 1: In the asymptotically leading-order ap
proximation, the effective t = 2 AHO Hamiltonians have 
the form 

C 
Bo . . 

J¥i1t\ = 
. 

CM_ I AM_I BM_} 
CM G~) 

M>I, (3.5) 

where Mo = t and 

G~)=AM2 G 2) AMC 1 + 1 ~) +O(M), 

(3.6) 

1 <A<M. 

Proof Formula (3.4) is reducible to the quadratic equa
tion 

goo =a-bg;;lb T
, (3.7) 

for (t X t )-dimensional matrices g '" . It defines the stationary 
value (fixed point, FP) of the mappinggk----+gk + I' One ofthe 
fixed points g", must become the point of accumulation of 
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the sequencegk I k> 1 based on the physical (variational) ini
tialization g I = a. 

For t = 2, Eq. (3.7) may be solved easily and its solution 
is unique (Appendix A). The form of the correction term 
follows from Appendix B. Q.E.D. 

An interesting feature of the preceding result is its inde
pendence of the MCF convergence. Although its proof may 
also be delivered (for gk and t = 2, see Appendix B), the 
semistable character of the fixed point goo indicates a possi
bility of divergence of the MCF matrices Gk , caused by the 
second-order corrections. This is the main short-coming and 
limitation of the original MCF method. 9

•
14 

B. Fixed-point approximation, its sign ambiguity, and 
perturbation-variational reinterpretation 

For the general band-matrix Hamiltonian, we may 
choose M> 1 and expect that the effective Hamiltonian 
Jr'!!) (E) is again a slowly varying function of the parameter 
M.Inparticular,ifAk-Ak+ 1 andBk =Ck+I-Bk+ 1 ina 
long interval of indices k> 1, the fairly reliable fixed-point 
(FP) approximation Fk to Gk -Gk+ I may be generated 
along the same lines as in the AHO example, namely, via the 
quadratic equations of the type (3.7), 

Fk =Ak -BdllFk )Ck+ l · (3.8) 

These t 2 coupled polynomial equations for the t 2 matrix ele
ments of the approximate effective Hamiltonian Jr'!f') may 
be given also the symmetrized form 

Fk (_1_ + _1_) Fk _ Fk _1_ Ak 
Bk Ck+ 1 Bk 

1 
-Ak--Fk+Bk+Ck+I=O, (3.9) 

Ck + 1 

and solved in accord with the general method described here 
in Appendix C. 

The algebraic root of the quadratic equation (3.9) need 
not be symmetric and contains an arbitrary pseudo-orthogo
nal (t X t )-dimensional matrix S. Vice versa, the symmetric 
root F = F T contains only the discrete sign-ambiguity S (t ). 
Its removal is to be based on the MCF origin of the method in 
away illustrated on the t = 1 example in Ref. 12[S(t) = ± 1] 
and on the simplest nontrivial t = 2 example with 
SIt) = (± 1, ± 1) in Appendices A and B. For t>l, similar 
constructions become rather complicated-it is simpler to 
return to the original MCF iteration itself. 15 

For the reasonable values of t, an appropriate elimina
tion of ambiguities will not be difficult whenever we succeed 
in finding an analog of(3.6) and dominant parameter A simu
lating the MCF origin of Fk - Gk. Of course, such an analy
sis depends on J¥'(E). For a numerical illustration, we have 
chosen here the particular example (2.14) with a = 0, t = 2. 
The following results were obtained. 

(1) The proof of Theorem 2 remains essentially the 
same. The parameter A may be treated as a variable acceler
ating the convergence in a trial and error way. 

(2) The numerical test (Table J) shows that the practical 
acceleration of convergence is achieved in a large interval of 
A E ( - 1, + (0). Similar phenomena may be expected also in 
the more general cases. 
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TABLE I. Energy convergence for the various effective interaction correc-
tions [for the harmonic-oscillator potential (2.14) with a = 0 and t = 2]. 

A: - 1.55d - 1.5D" - 1.00" 

'N 
10 2.542 2.711 3.143 
20 2.576 2.742 3.099 
30 2.629 2.775 3.080 
40 2.671 2.799 3.069 
50 2.703 2.818 3.061 

100 2.790 2.869 3.043 
200 2.854 2.907 3.030 
300 2.883 2.924 3.024 
400 2.899 2.935 3.021 
500 2.910 2.942 3.019 

• (N X N )-dimensional truncation. 
b Leading-order effective Hamiltonian. 
C Trial acceleration of convergence. 
dThe "antivariational" energy estimates. 

O.OOb 

3.291 
3.205 
3.167 
3.144 
3.129 
3.091 
3.064 
3.052 
3.045 
3.040 

e Bad choice--deceleration of convergence. 

± 00' - 2.00· 

3.422 
3.293 
3.237 
3.204 
3.182 
3.128 3.505 
3.090 3.316 
3.073 3.248 
3.063 3.210 
3.057 3.185 

(3) There exists an interval [A E ( - 1.55, - 1.50)] such 
that the corresponding energies converge to the exact value 
E = 3 from below with the increasing cutoff parameter N. 
Such an "anti variational" phenomenon seems also quite 
general-it was observed in the t = 1 case in Ref. 12. As a 
perturbation-variational algorithm, it would give the best 
results, but its rigorous foundation (proof of convergence) as 
well as practical implementation (location of the corre
sponding interval of A ) seems an open problem at present. 

IV. FIXED-POINT EXPANSION OF THE EXACT 
EFFECTIVE HAMILTONIAN 

Higher-order corrections to the FP approximation Gk 

_F~l need not always be negligible in the applications. An 
occurrence of large matrix elements in the corrections Gk 

- Fk may indicate that the band matrix 7I"(E ) is not smooth 
enough outside of the chosen model space. Then, we must 
consider the new quantities defined by the subtraction of Fk 
=F~l, 

G~I=Gk _F~l, (4.1) 

and treat them in a recurrent way again. 
In analogy with the preceding section, the specification 

of mapping G ~~ I-+G ~l [combination of Eqs. (2.5), (3.8), 
and (4.1)] and of its fixed points F~l (common values of 
G~~ I and G~l) may be repeated. This leads to the higher 
and higher corrections 

G~ = Gk _F~I_F~I- .,. _F~-ll, 

mappings 

(4.2) 

G~1=A~1_Bd1l(G~\1 +D~l)]Ck+I' (4.3) 

A ~) = Ak - D ~)_" 

D ~l = F~~ I + F~~ I + ... + F~:;: :1, 
and definitions 

F~l =A ~ - Bk [1I(F~1 +D~l)]Ck+ I (4.4) 

of the fixed points with ; = 1,2, .... For the reasonably 
smooth matrices ~, we may expect that such a scheme is 
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convergent, G ~l-+O for ;-+00, in full analogy with the t = I 
example as investigated thoroughly in Ref. 10. 

We may symmetrize Eq. (4.4) (cf. the i = 0 discussion). 
Without any difficulties, we may omit the lower as well as 
upper indices and get the equation 

F(B -I + C-1)F+F(C-1D-B -IA) 

+ (DB -1-AC-1)F 

=DB-1A +AC-1D-B- C, B= C T, ;>0.(4.5) 

In accord with Appendix C, we may generate its algebraic 
solution whenever! is reasonably small. 

For; = 0, the solution of(4.5) or (3.9) was made unique 
in the way indicated in Appendix B. Indeed, via a geometric 
interpretation of the mapping Gk+ I-+Gk in a vicinity of its 
fixedpointsFk = FdS(t )],S(!) = ( ± I, ... , ± I), we may al
ways specify the physical choice of S (t ) and F~hYs(O) as corre
sponding to the variational initialization G N = AN' N> 1 of 
the auxiliary sequence Gk • 

A priori, the unique specification of the i> 0 fixed points 
F ~hYS(ll also should be easy since their matrix elements may be 
expected to be small. More rigorously, this expectation is 
supported not only by the AHO-type examples, but also by 
the general structure of the method. When we rewrite (4.5) in 
the form 

F (i) =A (i)_I_(A (ll+Fli)) I BT "1 (46) 
k kBTi.J.k k FIi) Dill k' I,?, • 

k k + k 

where Ll~) = F~:;::l - F~- II, or 

F(B -I + C-I)F+F(C-1D-B -IA) 

+ (DB -I-AC-I)F 

i>I, (4.7) 

we see that we may always choose the sets of signs 
S(t) = Si'l (t), i> 1, in such a way that the resulting matrix Fill 
is "minimal," IILl ~)" = O("F~hYSI",,2). 

Obviously, the norm of Ll measures the "smoothness" 
of ~(E ) and determines the rate of convergence of our final 
formula, namely, of the FP expansion 

00 

G - ~ Fphyslij 
k - £.. k • 

;=0 

(4.8) 

Thus, we may conclude that this expansion will converge 
very quickly whenever the k-dependence of the submatrices 
A k' B k' and C k + 1 happens to be monotonic or at least suffi
ciently "smooth." In all such cases we get an estimate 

(4.9) 

exhibiting a perturbation-type character of convergence in 
the dimension parameter 11k. Our general construction
diagonalization of the band-matrix Hamiltonians-is com
pleted. 

When we insert (4.8) into (2.4) with k = M> 1, we may 
easily generate the energies as well as the projections of wave 
functions. The details of this algebraic exercise may be found 
in Ref. 9. 
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v. APPLICATIONS 

A. The simplest illustration-tridiagonal HO Hamiltonian 

Theorem 2: For i = 0, the physical HO FP approximant 
to Gk reads 

F~) = H (2 + A )ak - E + Dk ], k> ko(E), 

Dk = { [(2 + A )ak - E ] 2 - 4,1 2b n 1/2 > 0, A> - 1. 

Proof The i = 0 quadratic equation (4.5) has two roots 
F~! ±) = (1 + A /2)ak - E /2 ± Dk/2. They are both real 
for k> ko(E) since 

D~ =(2+A)2a~ +0(k)-4A2k2 

= 16(,1 + l)k 2 + 0 (k ), k> 1. 

One of them is to be eliminated as unphysical. 
In the k> 1 asymptotic region the mapping Gk + I-Gk 

with Gk = AkYk has the asymptotic form 

Y k = 2 + 4,1 -I - 11 Y k + I + 0 ( 11k ), k> 1. 

Its geometric interpretation shows that this mapping is con
tractive for almost all initializations including Y N 

= AN/AN (Fig. 1). This implies that after a sufficient num
ber of iterations, the sequence Y k accumulates near the stable 
fixed point 

Yk-Yk+) = 1 +2A -1(1 +(1 +,1)1/2), ,1>-1 

r. 
(0) 

(b) 

FIG. 1. Geometric interpretation of the HO mapping Gk + I -+Gk • (a) 
A=l/sinh2 x>O, .y±)=exp(±lx). (bl A= -l/cosh2x> -1, 
.y±) = - exp( ± lx). 
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(see Fig. 1 again). This establishes the convergence of the 
MCF expansion (2.12) and eliminates the Y-) root (sign am
biguity) on the variational grounds. Q.E.D. 

Alternative proof of theorem 2: We may omit the vari
ational argument and start from the explicit solution 

Go=O, Xo#O 

of the model-space condition (2.8) with t = Mo = 1. When 
interpreted as a pair of initializations of the recurrences (2.5) 
and (2.7), respectively, it fixes the formal projections (nl"'). 
The independent physical requirement 

11"'11 < 00 

should fix the binding energies. Among the two roots Y ±) of 
the i = 0 equation (4.5), we have to pick out the one compati
ble with the convergence requirement 

which eliminates the non-MCF root Y-) as spurious 
again. Q.E.D. 

In the i = 1 approximation it is sufficient to evaluate the 
quantities 

.J ~) = F~~ I - F~) = 2 + A + [4(2 + A )2(2k + I + ~) 

- 4E(2 + A) - 4,1 2(2k + I + ~)]/(Dk+ I + Dk ) 

= 2 +,1 + 4(1 +,1 )1/2 + 0(1Ik), 

and find the i = 1 solution of (4.5). After the appropriate 
insertions, we obtain the result 

F~:±) = +2k(1 +A)I/2[ -1 ±(1 +0(1Ik))], 

F~)PhYS=F~!+) =0(1), k>1. 

It is compatible with the smallness requirement F phys -.J 1/2 
and does not increase with the increasing model space. The 
next corrections 

.J ~ + 1) = 0 (11k n), n = 1,2, ... , 

become negligible for the large dimensions of the model 
space. 

Our FP expansion converges as a geometric series in the 
HO example. This feature will be preserved also in the more 
complicated systems of a similar character, in spite of more 
complicated technicalities. For t = 2, all the related discus
sion preserves even a non-numerical character-this will be 
proved in the following final section. 

B. Pentadiagonal Hamiltonians and their 
dlagonalization by algebraic means 

Theorem 3: A Schrodinger-type equation (2.1) with the 
pentadiagonal "Hamiltonian" Yl"'(E) may be represented by 
its finite-dimensional equivalents (2.3) + (2.4) with 

[ 

00 (X(11 ylI1)] 
Gk = Z -IU i~O yI'1 7Y1 UZ -1, k>l, (5.1) 

where the diagonal Z and unitary matrix U = U T, as well as 
the matrix elements X(I1, yI'1, and :if11 may be all defined by the 
elementary algebraic expressions. 

Proof First, let us notice that all the quadratic equa-
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tions (4.5) contain the common i-independent factor 
B- 1 + C -I (== matrix A of Appendix C). It is convenient to 
write B = C T and 1/ B + 1/ B T = ZRZ with the arbitrary 
diagonal matrix Z and real and symmetric R. Since the secu
lar equation det(R - E) = ° (ordinary quadratic equation) 
admits the algebraic solution, we may write 

R = ( co~ 'P sin 'P) (E+ ) (c~s 'P 
- sm 'P cos'P E_ sm 'P 

- sin 'P) . 
cos 'P 

To avoid the transpositions, we may insert here the identity 
matrices 

and get 

B-1+C-1=zu(E-

U _ (Sin'P cos'P) 
- cos 'P - sin 'P . 

Using (5.2) and denoting 

F=Z-IU(; ~) UZ-I, 

(5.2) 

(5.3) 

we may simplify the structure of Eq. (4.5) when we insert 
I = ZZ -I and I = UUwhenevernecessary. With respect to 
the possible changes of signs of E ± ' we have to distinguish 
between the four cases, with E _ = ± gi and E + = ±,iz. 
For the sake of simplicity, we shall consider here only one of 
them, say, E _ = - gi and E + = + ~, which gives 

c ~) ( ~gi ~) C ~) + C ~) e !) 
+ (a e) (x Y) + (hi h2) = 0, (5.4) 

b d y Z Vt2 h3 
in place of (4.5). In the AHO case, the coefficients are real 
(Appendix D). 

The latter equation has obviously the form of three in-
dependent scalar relations 

- gi x 2 + lax + ~y2 + 2ey + hi = 0, 

- giy2 + 2by +,izr + ldz + h3 = 0, (5.5) 

- gi xy + bx + ,izyz + ez + (a + d )y + h2 = 0. 

When we denote 

h4 = hi + (a/gIl2 - (C/g2)2, 

h5 = h3 + (b /gl)2 - (d /g2)2, 

h6 = h2 + (ab/gi) - (cd /,iz), 

and, in analogy with Appendix A, 

a+/3=glx-a/g, a-/3=g2y+e/g2' 

Y + 6 = gl Y - b /gl' Y - 6 = gzZ + d /g2' 
(5.6) 

we may distinguish again the various sign combinations. 
Omitting this discussionchere, we obtain the two definitions 

/3 = h4/4a, 6 = h5/4y 

accompanied by the third ordinary quadratic equation 

a6 + /3y = h~2, 
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i.e., an equation analogous to (AS), 

h5P + h4/P = 2h6, P = a/y, 

which defines the two values of the ratio 

P = P ± = (1/h5)[h6 ± (h6 - h4h5)1/2]. 

Finally, an analog of (A6), 

(g2 - gl p."lr + (bg2/g j + cg j/g2ly 

+ !(g2h5 + gjh4/p."l = 0, TJ = ± 1, 

(5.7) 

represents a compatibility of the two independent definitions 
of yin (5.6) and defines the four values of y: 

Y=YE." = 1 (_ bg2 _ agj +E[a2+d2 
2(g2-gjp.,,) gj g2 

+ 2bc + gih j - ,izh3 + 2g jg2TJ(h ~ - h4h5) I! 2) II2 ] , 
E,TJ = ± 1. (5.8) 

The backward insertions are then trivial and give 

z = ZE." = - d /~ + YE.,,/g2 - h5/4g2YE.,,' (5.9) 

etc. We may summarize that the two-dimensional quadratic 
equation (4.5) is completely reducible to the sequence of a 
few one-dimensional ones. Q.E.D. 

The algebraic construction in the preceding proof is 
straightforward and elementary. It is a little bit cumbersome 
and lengthy in practice so that we may assume that the ener
gy- and coupling-dependence of the FP expansion (5.1) will 
be generated by an appropriate symbolic-manipulation pro
cedure in most cases. In a large model space, we may use also 
the asymptotic expansions as a guide to the simplifications. 

VI. SUMMARY 

We have considered the class of physical models based 
on the chaining hypothesis j and described by the multidia
gonal Hamiltonians. We have shown that at least some of 
these models may admit a reasonably simple mathematical 
treatment. Our conclusions are of the following three types. 

(1) As a reformulation ofthe relevant physical informa
tion (interaction between the neighboring basis states only), 
our FP method is an alternative to the standard perturbation 
theories. As a guide how to construct the effective Hamilto
nians in a systematic way, it may even be given sometimes 
the direct perturbative interpretation. In our anharmonic 
oscillator example, the small parameter characterizing the 
convergence of our FP series may be identified with the in
verse dimension 1/ d. 

(2) As a somewhat nonstandard algebraic formalism the 
present method leads to the new explicit, recurrent, or 
asymptotic relations for the wave function and/or for the 
effective interaction. It is based on the special block-tridia
gonal structure of the Hamiltonian and on its geometric 
fixed-point reinterpretation. This may specify, e.g., the limi
tations and/or possible extensions of the classical perturba
tive expansions. Furthermore, in contrast to the standard 
numerical or continued fractional methods (and their results 
equivalent to the present i = ° approximation), the correc
tions to the effective Hamiltonian have an additive charac
ter. This is another analogy with the perturbation theory. 
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(3) As a practical numerical or seminumerical algo
rithm, the present FP approach enables one to save signifi
cantly the computer time. Indeed, besides the acceleration of 
convergence of the ordinary truncation eigenvalue method, 
the complementary "anti variational" lower bounds for ener
gies were obtained in the illustrative example. The existence 
of such a "sandwiching of eigenvalues" seems a more general 
phenomenon 1Z to be investigated more thoroughly in the fu
ture. 

APPENDIX A: ASYMPTOTIC UNIQUENESS OF THE AHO 
FP APPROXIMANT 

Lemma 1: The fixed point of the t = 2 mapping (3.2) is 
unique. 

Proof The mapping gk ( = l/Ik )~gk + 1 ( = l/Ik + I)' 
i.e., 

is assumed to have a fixed point I = Ik = Ik + I' Putting 

T 1 (1 1) fA B) 1= U1/U, U = !i 1 _ l' 1/ = \B D' 

we obtain its symmetrized (f = IT) algebraic definition 

( 6 0) (10 - 20) (10 4 ) 
1/ 0 _ 2 1/ + 1/ 4 _ 6 + _ 20 _ 6 1/ 

+ (-; 
2 ~) = 0, 

which is equivalent to the three coupled scalar quadratic 
equations 

(3A + S)Z = 3(B - 2)Z + 16, 

(3B - lO)Z = 3(D + 3)Z + 64, (A2) 

(3A + S)(3B - 10) = 3(B - 2)(D + 3) - 32. 

In terms of the linear combinations of the four new (primed) 
variables 

3A + S =EM' +B'), J3(B- 2)= Ez(A' -B'), 
(A3) 

3B - 10 = E3(D' + C'), J3(D + 3) = E4(D' - C'), 

E,. = ± 1, i = 1,2,3,4, 

we may reduce the first two items in (A2) to the definitions 

B' = 4IA', C' = 161D '. (A4) 

Considering the third condition in (A2) with 

EI = Ez = E3 = E4 = + 1 

for the time being, we get 

2A 'ID' +D'I2A' = - 2, (AS) 

with the unique and doubly degenerate real solution 
D'= -2A'. 

When we compare the second and the third item in 
(A3), we see that the original parameter B is defined in two 
ways now. Their compatibility requires 

J3(A ' - 41 A ') = 4 - (2A ' + SI A'), (A6) 

and fixes the remaining freedom-this is again a quadratic 
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equation with the degenerate solution. Hence, we have 

A ' = 4 - 2J3, B' = 4 + 2J3, 
(A7) 

D'= -S+4J3, C'= -s-4J3. 
Now, let us vary the signs Ez (by an interchange of A' 

and B', i.e., A '+-+B '), E4 (interchanging D '+-+C '), E1 (by the 
transformation A ' ~ - B " B' ~ - A '), or E3 (changing 
D'~ - C' and C/~ - D '). Obviously, we get 

A' = 4E1 - 2EzJ3, B' = 4£1 + 2EzJ3, 
(AS) 

C' = - SE3 - 4£4J3, D' = - SE3 + 4E4J3. 

Finally, the insertion into (A2) implies that 3A + S = SEt 
= S, etc., so that the resulting solution is unique, 

A = 1, B = - 2, D = S. (A9) 
Q.E.D. 

APPENDIX B: MCF CONVERGENCE IN THE AHO-TYPE 
CASES 

Lemma 2: The matrix continued fraction 

is convergent and equal to 

( 1 -2). 
-2 S 

Its finite approximants have the form 

~(1 
2 1 

1 ) [(S 2) (a - s)] -1 (1 1) 
-1 2 1 + -s Y 1 -1' 

This coincides with the rational mapping 

ii = (a + Ss + 16y + Sp)/(1 + E), 

t=(s+4y+2p)/(1 + E), 

r = (y +p)/(1 + E), 

P =pl(I + E), 

€ = (a + 12S + 37y + 19p)/(1 + E), 

with the two additional auxiliary variables 

All the relations (B4) have the same form 

x = (x + vx)l(Uxx + Vx + 1), 
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with 

Va = Ss + 16y + 5p, Vs = 4y + p, Vy = 0 = vP' 

VE =SS+32y+ ISp, 

Ua = 1, Us = 4, 

Va = 4S + 5y + p, 

Vp = a + 4S + 5y, 

Uy = 5, Up = 1 = Uo 

Vs =a + 5y+p, 

Vy = a + 4S + p, VE + O. 

They all possess also a geometric interpretation similar to 
that given in Fig. 1. We may observe the following. 

(i) a = S = y = 0 is a fixed point of the mapping (B3). 
(ii) The numerical test (Table II) confirms the conver

gence to the zero fixed point. In particular, the trivial initiali
zation of the original quantities f is reflected here by the 
initial choice of a "correction" a = 5, S = 2, and y = 1. 

(iii) From any initial set of the positive values a, S, and y 
such that also p > 0, we get E"> 0 and a > 0, t> 0, r> 0 and 
jJ > 0: The positivity of parameters is preserved by the map
ping [Eq. (B4)]. 

(iv) We see from Fig. 2 that each sequence x = (a, S, y, 
p, or E) should independently accumulate near its stable fixed 
point 

xI +) = [ - Vx + (V~ + 2Uxvx)1IZ]/2Ux, (B6) 

the value of which depends on the remaining parameters. 
(v) In more detail, Eqs. (B3) and (B6) imply the follow-

ing. 
(a) The sequence ofp's is monotonic and decreases 

to zero. 
(b) For a sufficiently smallp, we may partially "lin

earize" Eq. (B3) by omittingp's and see that y starts to ap
proach YI +) in a monotonic way [Fig. 2(a)]. 

(c) Similar procedure ("linearization") may be then 
repeated for S and also for a or E. From Eq. (B6) we see that 
the stationary values xI +) become strictly ordered as soon as 
p..(1. We get 

y-YI+) - [ - Vy + (V; + 20p)1/Z]/1O~(p/5)1/Z>p, 
S-Sl+)-[ - Vs +(V~ +64y)1/Z]/S~rr>y, (B7) 

a-al +)[ - Va +(V~ +4Va)1/Z]/2~(SS)1Iz>s. 

(d) The same type of ordering takes place from the 
very beginning, even for large p's (cf. Table II); and vice 
versa, if the ordering of the deviations is violated by our 
choice of another initialization, the overall convergence 
would be slowed down. Hence, the nonlinearity of the origi
nal relations (B3) is essential and a rate of the overall conver-

TABLE II. Sample of the MCF convergence [Eq. (B4)]. 

M YM SM aM M YM 

0 1.000 2.000 5.000 5 0.0034 
1 0.100 0.400 2.100 10 0.000 5 
2 0.029 0.171 1.362 15 0.000 1 
3 0.012 0.095 1.0l2 20 0.00008 
4 0.006 0.061 0.806 25 0.00004 
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FIG. 2. Two possible patterns of convergence X---+X( + I in Appendix B. (a) 
v < (V + I)/U. (b) v> (V + 1)lU. 

gence is controlled by the convergence of a's or E'S, 

a=a/(1 +a), E=E/(1 + E), (BS) 

in the simplest approximation. This completes the proof. 

SM aM 

0.0419 0.6701 
0.0124 0.3642 
0.0058 0.2501 
0.0034 0.1905 
0.0022 0.1538 
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APPENDIX C: QUADRATIC EQUATION FOR MATRICES 
AND ITS SOLUTION 

For the (t X t I-dimensional matrix F, let us consider the 
equation 

FAF+!(BF+FB T
) + C=O, (C1) 

where A = A T, C = C T, and the symmetric root F = pT is 
to be determined by the algebraic means. 

We shall assume that there exists a matrix D such that 
B = 2DA. Then, obviously, we may write 

(F+D)A (F+D T
) =DAD T 

- C, (C2) 

which is equivalent to (Cl). 
Next, the real and symmetric matrices may be diagona

lized by some orthogonal matrices U and W, 

A = UaU T
, DAD T - C = WbW T

, 

Hence, with an arbitrary matrix S which satisfies the pseu
do-orthogonality relations 

SES T = Tj, (C4) 

and may be constructed in accord with the underlying group 
theory in various ways, we obtain the general solution of(Cl) 
in the form 

F= -D+ WpSa-IU T
• (C5) 

Finally, up to the possible changes of signs, the t (t - 1)12 
independent matrix elements of S become fixed by the 
t (t - 1)/2 symmetry requirements F = FT. 

The above construction may be illustrated by the t = 2 
example of Appendix A once more. We have 

W- 1 ( 1 
J5 -2 

2) _ (~ , b-
1 0 

0) 
0' 

so that the general solution F has the form (C5), 

F=(~j ~3) 

(C6) 

+ 8 ( PI cosh s /6, P2 sinh S /2/3 ), (C7) 

- PI cosh S /3, - P2 sinh S //3 

PI.2 = ± 1, SE(O,oo). 

It is to be complemented by the only symmetry requirement, 

2plcosh S + P2/3 sinh S = 1, (C8) 

which eliminates the variable S. 
The solution of (C8) is straightforward and gives 

eS = lI(2PI + P2/3). 

Hence, the resulting formula coshS = 2p1 implies that 
PI = 1 and, finally, P2 = - sgnS' After the insertion into 
(C7), we see that F = F T is unique and equal to the solution 
obtained in Appendix A. 
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APPENDIX D: AHO EXAMPLE AND EQ. (5.4) 

(i) The AHO t = 2 example may be given an explicit 
form without any computer-using (2.13) together with the 
definition (5.2) and 

Z=b -1/2 n 
(

lib 
n+ I 0 

( 
2bn -(an+ 1 +an+ 2)) 

R = _ (an + I + an + 2) 2bn + 2 • 

The simple prescriptions [n = n(k) = 2k + Mo - 2] 

E± =bn +bn+ 2 

± [(bn+ 2 -bn)2+(an+ 1 +an+ 2 f]1/2, 

tan 2qJ = - (an + 1 + an + 2 )/(bn + 2 - bn - I)' 

specify the explicit AHO form of the FP series (5.1). 
(ii) We may easily verify that E+ > 0 and E_ <0 since 

the corresponding expression 

(2n + 1 + ~)4 - (n + l)(n + 3 )(n + 1 + ~)(n + 1 + i) 
is a positive and monotonically increasing function of k and 1 
in the whole interval of interest (say, for k>O and I> - }). 
Hence, gl and g2 of Eq. (5.4) are both real. The value of the 
angle rp is also a monotonically decreasing function of k and 1 
such that 1T/4<rp<1T/2. On the boundaries, 

tan rp = (1 + 1t)l$J for k = 0 and 1 = -~, and rp-1T/4 for 
k-oo and/or 1_ 00 • 

(iii) The AHO solution admits the alternative forms of 
denotation, e.g., 

U = 0'1 cos ¢ + 0'2 sin ¢, ¢ = rp - 1T/4, 

1 (1 1) 1 ( 1 
0'1 = {i 1 - l' 0'2 = {i - 1 

-1) 
-1 ' 

~ = ~~, 0'10'2 = - 0'20'1' 

This will not be discussed here. 
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A rigorous derivation of the "miracle" identity of three-dimensional inverse 
scattering 

Margaret Cheney 
Department of Mathematics, Stanford University, Stanford, California 94305 
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The large-energy asymptotic behavior of scattering solutions of the three-dimensional time
dependent Schrodinger equation is investigated. The second term of the expansion leads to the 
"miracle" of Newton's three-dimensional inverse scattering theory. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

We consider the time-independent Schrodinger equa
tion in three dimensions 

(Ll) 

where..::1 is the Laplacian, k is a real scalar (k 2 is the energy), 
and the potential V (x) is a real-valued function that decays at 
infinity. Scattering solutions of (Ll) are solutions of the 
Lippmann-Schwinger equation' 

t/J(k,e,x) = exp(ike·x) - f (41Tlx - yl) - 1 

Xexp(ik Ix - yl)v(y)t/J(k,e,y)dy, (1.2) 

where x and yare vectors in R 3 and e is a unit vector in R 3. 

We shall investigate the large-k behavior of these scattering 
solutions. 

The chief goal of previous work on high-energy Schro
dinger scattering has been to find approximate but tractable 
expressions for the scattering amplitude. The most popular 
approximations are the Born, the WKB, and the eikonal 
(Glauber) approximations. These are discussed in Ref. 1. 

Our objective here is to find and use a particular high
energy (large-k ) asymptotic expansion of the scattering wave 
function t/J. It is well known2 that for large energy t/J behaves 
like a plane wave; we find that the second term in the expan
sion is (Theorem) 

t/J(k,e,x) = exp(ike·x) 

X[l +(2ik)-1 fX> v(x-re)dr+O(k-')]'(1.3) 

Fourier transformation in k of the solution t/J gives us a 
solution u of the plasma wave equation 

..::1u - (~)u - Vu = O. (1.4) 
at 2 

Fourier transformation of the asymptotic expansion (1.3), 
moreover, tells us (Corollary) that 

1 100 

u(t,e,x) = o(t - e'x) - - V(x - re)dr H(t - e·x) 
2 0 

+ h (t,e,x). (1.5) 

where H is the Heaviside function and h is continuous. Equa
tion (1.5) is the frequently used3

,4 "progressing wave expan
sion" for solutions of (1.4). We will show that (1.5) is valid 
under mild hypotheses. 

The main point is that (1.5) gives a rigorous derivation 
of a key equation appearing in Newton's three-dimensional 
inverse scattering theory.2,5,6 We shall denote by 1](t,e,x) the 
Fourier transform in k of t/J(k,e,x)exp(ike'x) - 1. The func
tion 1] arises in Newton's theory as the solution of the Mar
chenko equation, which is an integral equation whose input 
is the measured scattering data. The potential V can then be 
obtained from 1] with the help ofEq. (1.5) as follows. As we 
will see (Corollary), Eq. (1.5) tells us that the limit 1](0+ ,e,x) is 
precisely 

1 50
00 

- - V(x - re)dr. 
2 0 

We then use the fact that e·'ij x V(x - re) 
= - (a/ar)V(x - re) to obtain the equation 

V(x) = - 2e·'ijx1](O+,e,x). (1.6) 

This equation is called the "miracle" because the right side 
of(1.6) depends on e, whereas the left side does not; that the 
solution 1] of Newton's Marchenko equation should have 
this property does indeed seem miraculous. In Newton's the
ory, this miracle is actually a consistency requirement on the 
scattering data; it is a characterization of admissible scatter
ing data.5 

II. THEOREMS AND PROOFS 

We shall write y(k,e,x) = tf(k,e,x)exp( - ike·x). We de
note by L ' and L 2 the spaces of integrable and square-inte
grable functions, respectively. 

Lemma 1: Suppose that V is bounded and integrable 
with Ix - y 1- , V uniformly bounded in L '. Then for k suffi
ciently large, 'ijy is uniformly bounded. 

Proof We multiply the Lippmann-Schwinger equation 
[Eq. (1.2)] by exp( - ike'x), obtaining 

y(k,e,x) = 1 - f (41Tlx - yi)- , exp(ik [Ix - yl 

- e'(x - y)])v(y)y(k,e,y)dy. (2.1) 

Next we differentiate (2.1) with respect to x. Mollifier tech
niques similar to those used, for example, in Ref. 7 allow us 
to differentiate under the integral sign. We note that the x 
and y derivatives of 

(Ix - yi)- 1 exp(ik [Ix - yl - e·(x - y)]) 

differ only by a minus sign; accordingly, we replace 'ij x by 
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- v y and integrate by parts. We therefore have , 

Vr(k,e,x) = f ( -41Tlx - yl) - I exp(ik [Ix - yl 

- eo(x - y)])VV(y)r(k,e,y)dy 

- f ( -41Tlx - yl)- I exp(ik [Ix - yl 

- eo(x - y)])v(y)Vy(k,e,y)dy. (2.2) 

After multiplying (2.2) by I V(X)II/2, we can write it as 

I VI I
/
2Vy = (I -K)-Ia, (2.3) 

where 

Kf(x) = f (41Tlx - yl)- I 

Xexp(ik [Ix - YI- eo(x - y)])1 V(X)II/2 

X V(Y)I V(Y)I-I/2f(y)dy, (2.4) 

and 

a(k,e,x) = IV (x) I 1/2 f (- 41Tlx - yl)-I 

Xexp(ik [Ix - yl - eo(x - y)]) 

X V V (y)y(k,e,y)dy. 

Our hypotheses imply that a is an L 2 function whose 
norm is bounded uniformly in e and in k for k large. Because 
(I - K) is invertible for large k (see Ref. 2), the function 
I V 1

1I2Vy is also an L 2 function whose norm is uniformly 
bounded for large k. Moreover, an application of the 
Schwarz inequality to (2.2) shows that for large k, Vy is uni
formly bounded. Q.E.D. 

Lemma 2: Suppose V belongs to L InL 2, and suppose 
that for some xo, both I V I and I V V I are bounded by 
F(lx - xol), where F is a positive function satisfying 
S(f F(t )dt < 00. Then for sufficiently large k, there is a con
stant c such that the following estimate holds: 

Iy(k,e,x) - II<ck -I. (2.5) 

Proof We write the integral in Eq. (2.1) in polar coordi
nates with x - y = (r,B,t/J ): 

y = 1 - (41T) - I 1'0 i"- exp [ikr( 1 - cos B )] 

i
2,,-

X 0 V(x - (r,B,t/J ))r(k,e,x - (r,B,t/J ))dt/J 

X sin B dB r dr. (2.6) 

We make the substitution u = 1 - cos B, and integrate by 
parts in the u integral. We thus obtain 

y = 1 - (2ik )-1 LX) exp(2ikr)V(x - re)y(k,e,x - re)dr 

+ (2ik)-1 1'0 V(x - re)r(k,e,x - re)dr 

+ (41Tik) -11'° f eXP(ikrul(:U) 

X f"-V(x - (r,u,t/J ))r(k,e,x - (r,u,t/J ))dt/J du dr. (2.7) 
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The hypotheses imply that each of the integrals on the right 
side of (2.7) is uniformly bounded. Q.E.D. 

Lemma 3: Suppose V is bounded and integrable, and 
suppose that for some xo, the three functions I V I, I V V I, and 
I V V I are all bounded by F (Ix - Xo I), where F is a positive 
function satisfying S(f F(t )dt < 00. Then for k sufficiently 
large,..::iy is uniformly bounded. 

Proof The proof is similar to the proof of Lemma 1. 
Theorem: Suppose that V is bounded and integrable, 

and suppose that for some xo, the three functions I V I, I V V I, 
and IVVI areallboundedbyF(lx - xol), whereFisapositive 
function satisfying S(f F(t )dt < 00. Then 

y(k,e,x) - 1 = (2ik) -) i'" V(x - re)dr + g(k,e,x), (2.8) 

where for k sufficiently large and for E with 0 < E < !, g satis
fies Igl <ck - ) - E. 

Proof We write (2.7) as y - 1 = I) + 12 + 13, 
In I), we use (2.5), obtaining 

2ikII = - 1'" exp(2ikr)V (x - re)dr + 0 (k -I). (2.9) 

The first term of (2.9) we integrate by parts; this shows that 
I) = 0 (k -2). Similarly, in 12 we also use (2.5), obtaining 

12 = (2ik )-) 1'" V(x - re)dr + O(k -2). (2.10) 

In 13 we interchange the order of integration; for 
o < E < ! we write 

41TikI3 = f (1'" ... drY (1'" ... drY - Edu. (2.11) 

The first factor of (2.11) we integrate by parts; our hypoth
eses and the result of Lemma 3 assure us that the resulting 
integrals are bounded. This shows that 13 = 0 (k - I - E). 

Q.E.D. 
Corollary: Let V satisfy the hypotheses of the above 

theorem. Then 1](t,e,x), the Fourier transform of I/J(k,e,x) 
Xexp( - ike·x) - 1, can be written 

1 i'" 1](t,e,x) = - - V(x - re)drH(t) + h (t,e,x), 
2 ° 

(2.12) 

where H is the Heaviside function and h is continuous and, 
when V gives rise to no bound states, vanishes for t<O. We 
therefore have 

V(x) = - 2eoV1](O+ ,e,x). (2.13) 

Proof We compute 1] using the above theorem: 

(21T) - I L'" exp( - ikt ) [I/J(k,e,x)exp( - ike·x) - 1] dk 

- ~ 1'" V(x - re)dr( +sgn t) 

+ (21T) - I r exp( - ikt )g(k,e,x)dk 
Jlkl> I 

+ (21T) - 1 J: I exp( - ikt )g(k,e,x)dk. (2.14) 

The second term on the right side of (2.14) is the Fourier 
transform of an L I function; this second term is therefore a 
continuous function that decays at infinity. The third term 
on the right side of (2.14), however, is 
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(21T) - I f~ lexp( - ikt )g(k,e,x)dk 

= (21T) - I f~ lexp( - ikt H¢(k,e,x) 

Xexp( - ike-x) - l]dk 

+ (21T) - I f~ I exp( - ikt )(2ik ) -I dk 

X fO V(x - re)dr. (2.15) 

The first term on the right side of (2.15) is again a Fourier 
transform of an L I function. The second term is 

(21T) - I f" V(x - re)dr 

X [f~ I (2ik )-1 cos kt dk - f~ 1(2k )-1 sin kt dk ]. 

(2.16) 

The first term of (2.16) is the integral of an odd function over 
an interval symmetric about the origin and is therefore zero. 
The second term of (2.16), with the change of variables 
s = kt, is 

(21T)-1 1"" V(x - re)dr L S-I sin S ds. 

We note that SOS-I sin s ds = 1T/2. 

We have thus shown that the Fourier transform of 
¢(k,e,x)exp( - ike-x) - 1 is 
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1 ("" ( 1 r.) - 2 Jo V(x - re)dr 2 sgn t -1T- I J/- I 
SInS ds 

+ I (t,e,x), 

where I (t,e,x) is a continuous function that decays at infinity 
in t. However, since ¢(k,e,x)exp( - ike-x) - 1 is analytic in 
the upper half k-plane, its Fourier transform must be zero 
for t negative. Q.E.D. 
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This paper answers the following questions: (1) what are the consequences in the matrix
Marchenko inversion scheme if a given S matrix lacks forward analyticity; and (2) in particular, 
does the condition known as the miracle depend on forward analyticity, and if not, what 
properties of S does it depend on? The answers are (1) if the input S matrix lacks forward 
analyticity then the output S matrix has it anyway, and (2) integrability of kRl,r is sufficient for the 
miracle to occur. It is also found that the matrix-Marchenko procedure simultaneously 
constructs the potentials for two scattering problems which differ only by the signs of their 
reflection coefficients. 

P ACS numbers: 03.65.Nk, 11.20. - e 

I. INTRODUCTION 

The inverse scattering problem for the Schr6dinger 
equation in one dimension, as is well known, is essentially 
solved: If one of the reflection coefficients R [ or R r is given 
as a function of the wave number, and there are no point 
eigenvalues (bound states), then necessary and sufficient 
conditions are known 1-3 for a unique potential to exist, and 
one has well-established construction procedures. If there 
are point eigenvalues then these and their associated norm
ing constants must also be provided. 

From the perspective of higher-dimensional inverse 
scattering problems, however, it is of interest to formulate 
the problem in one dimension alternatively as one in which 
not only R[ or Rr are given, but both are known, and so is the 
transmission coefficient T. In other words the entire 2 X 2 S 
matrix 

(Ll) 

is given. This problem is also solved,4 and the construction 
procedure leads to a consistency condition known as the mir
acle: The solution of a matrix generalization of the Mar
chenko equation must have a certain specified structure in 
order for an underlying potential to exist. 

The following properties are known 1-3 to be necessary 
conditions for S (k ) (where k is the wave number) to be an 
admissible S matrix.5 

(i) S ( - k) = S *(k ). 

(ii) S = qSq, q = (~ ~). 
(iii) sst = 1. 

(iv) [S(k) -1]El,2( - 00,00). 

(v) T(k) is the boundary value of an analytic function 
that is meromorphic in C+, with simple poles at the points 
k = iK if - ~ is an eigenvalue (bound state), and 

lim T(k) = 1. 
Ikl~oo 

These properties also allow a unique determination (by qua
drature) of all of S from a knowledge of either R[ or R" 
together with the point eigenvalues.2 Therefore the miracle 
must happen whenever R[ or Rr is in the class off unctions 

that satisfy the Faddeev-Deift-Trubowitz sufficient condi
tions2

•
3 for inversion, which include conditions (i)-(v). 

There is a sixth condition that should be mentioned. 
(vi) Either (a) S(O) = - q or (b) T(O)#O. 

If Ixl VEL 1 this property follows, possibility (a) being gen
eric and (b) indicating an exceptional "half-bound" state at 
k = 0.1t is part of the sufficient condition ofFaddeev-Deift
Trubowitz.2

-
3 On the other hand, if Ixl VEl: L 1 examples are 

known6 for which (vi) fails. 
We now wish to study the consequences in the inversion 

via the matrix-Marchenko equation4 if property (v), which is 
generally referred to as/orward analyticity, is not satisfied. 
Does the miracle depend on this property, and ifnot, what 
goes wrong? We note that without (v) it is impossible to con
struct all of S from one of the reflection coefficients. There
fore the reconstruction of the potential from R[ or Rr alone 
cannot work. Indeed, the derivation of the Marchenko equa
tion that utilizes only R[ or R" depends on (v). What is the 
status of (vi)? 

The questions to be answered here have analogs in high
er dimensions, where the mirade plays a crucial but rather 
obscure role. The alternative of solving the inverse problem 
from partial data by an analog of the inversion from R [ or R r 

in one dimension is not known to exist in higher dimensions, 
and any clarification of the miracle and of forward analytic
ity in R may lead to a better understanding of their roles in 
Rn 

, n > 1. While forward analyticity is known to be neces
sary for admissibility of S, it never appears to be utilized in 
the higher-dimensional generalization of the Marchenko 
procedure. 

Before we begin the study it is important to realize that 
the S matrix plays two different roles in frequency-domain 
scattering theory: The first comes from the asymptotics of 
the "physical" solution of the Schr6dinger at large Ixl; let us 
call this the asymptotic S matrix. Its definition allows the 
transmission and reflection coefficients to be related to ob
servations. The second is to connect the "outgoing wave" 
solutions to the "incoming wave" solutions; let us call this 
the/unctional S matrix. It is the second role that makes the 
inversion procedure possible. The Marchenko equation and 
its generalizations utilize this, and only this, role of the S 
matrix. Therefore it is important to check that a solution of 
the inverse problem in which the functional S matrix enters 
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as initial information, has asymptotics at large Ix I that also 
agree with this S matrix, i.e., that the asymptotic S matrix of 
the output equals the functional S matrix that served as in
put. 

With these remarks in mind we pose the following prob
lem: Given an S matrix that satisfies properties (i)-(iv) but 
not (v) or (vi), what can we say about the solution of the 
matrix-Marchenko equation in relation to a Schrodinger 
equation? Can the miracle occur? Are the asymptotic and 
functional S matrices equal? For simplicity, we shall study 
this problem only for the case of no bound states. 

The answers we find are as follows. If kR I r 

E L I( - 00,(0) then the miracle will necessarily occur. Th~s 
the miracle is independent offorward analyticity and (in one 
dimension) is brought about by a simple integrability condi
tion. Consequently a potential in a Schrodinger equation 
that leads to the given S matrix will exist, even without (v). 
What is more, the matrix solution of the matrix-Marchenko 
equation with a given S matrix that satisfies (vi),(a) simulta
neously leads to the solution of a problem with an S matrix 
that violates it. Therefore it is somewhat misleading to call 
(vi),(a) generic; it is generic only for a rather artifically re
stricted class of potentials. 

We also find that if the functional S matrix does not 
satisfy (v) then the asymptotic S matrix of the constructed 
solution of the Schrodinger equation is not equal to it. The 
two S matrices differ by a factor that makes the asymptotic S 
matrix satisfy (v), even though the functional S matrix does 
not. 

In Sec. II we show the connection between integrability 
of kR 1•r and the miracle. We also show there how a solution 
of the matrix-Marchenko equation for a problem with 
(vi),(a) leads to a solution of a problem that violates it. In Sec. 
III we examine the asymptotics of the solution of the matrix
Marchenko equation if (v) fails. 

II. INTEGRABILITY AND THE MIRACLE 

The physical solution of the Schrodinger equation in R, 

tl/' + k 2tjJ = VtjJ, (2.1) 

is defined by the Lippmann-Schwinger equation 

tjJ(k,x) = exp(ilkx) i - _1_' f'" dy eik Ix - yl V (y)tjJ(k,y), (2.2) 
2k - '" 

where tjJ is a two-component column vector, i = t:), and 
1= (6 _ r). If Ixl VEL I( - 00,(0) the function y(k,x) 
= exp( - ilkx)tjJ(k,x) is known to have the following proper

ties. 
(1) For each fixed x, and all kER, y is a continuous func

tion of k, with 

r(k,x) = i + 0 (11k), 

k~± 00. 

(2) Y is the boundary value of an analytic function that is 
meromorphic in C+, with simple poles at k = iK if - ~ is a 
bound-state eigenvalue. 

We shall assume that there are no bound states; in that 
case the analytic continuation of y is holomorphic in C+. 
Furthermore, lim lk I~", r(k,x) = 1. 
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The solutions t/J(k,x) and t/J( - k,x) = tjJ*(k,x) of(2.1) are 
related to one another by 

tjJ( - k,x) = S -I(k )qtjJ(k,x), (2.3) 

in which the 2 X 2 matrix S is the functional S matrix. Equiv
alently we have 

y( - k,x) = Sx -I(k )qy(k,x), 

where 

Sx (k) = ei1kx S (k )e- i1kx. 

It is convenient to replace (2.3') by the the equation 

(2.3') 

rx ( - k) = Sx -I(k )qrx (k )q, (2.4) 

where Fx (k ) is a 2 X 2 matrix such that y(k,x) = rx (k ) i and 
with analogous asymptotic and analytic properties. A simple 
rewriting of (2.4) gives, by the use of (i) and (iii), 

rx(k) -1 = [Sx(k) - 1 ]q[rx(k) - l]q 

+ Sx(k) -1 + q[rx( - k) -1]q.(2.4') 

Equation (2.4) on the real axis, together with the analyt
ic and asymptotic properties of Fx (k) in C+, constitutes a 
Riemann-Hilbert problem. It is solved by defining the Four
ier transforms 

gx(a) = (_1 )f'" dke- ika [Sx(k)-l], (2.5) 
21T - '" 

;x(a) = (_1 )f'" dke- ika [rx(k)-l] (2.5') 
21T - '" 

and replacing (2.4') by its Fourier transform 

;x (a) = gx (a) + q;x ( - a)q + I:", d!3 gx (a +13 )q;x (fJ )q. 

The analyticity of Fx (k) implies that ;x (a) = 0 for a < O. 
Therefore for a > 0 

;x(a) =gx(a) + f" d!3gJa +!3)q;x(!3)q (2.6) 

and also 

q;x(a)q= -gx(-a)- i'" d!3gx(!3-a)q;x(!3)q· 

It follows that 

1
. d [;x(a) + q;x(a)q] l' d [gx(a) - gJ - a)] 
1m = 1m ---''--------=-
aID dx aID dx 

If dgx (a)/dx is continuous at a = 0 then the right-hand side 
vanishes and we have 

-=d;,-,,-x-=(O_+-=) _. d;x (a) _ (d;x (0 + )) - -hm--- -q q. 
dx aID dx dx 

(2.7) 

On the other hand, continuity of dgx(a)/dx follows from 
integrability of 

d (Sx - 1) . ( 0 R r e
2ikx

) 
----=21k 2'kx . 

dx -R/e- I 0 

Therefore, if kR/ and kR r are inL I( - 00,(0) then dgx/dx is 
a continuous function of a and hence we have (2.7). 

Now the use of the matrix-Marchenko equation (2.6) 
andof(2.5') and (2.7) leads to a Schrodinger-like equation for 
the square matrix IjI (k,x) = exp(iIkx}rx (k ), 
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4JI" + k 24J1 = 4Jlr, 

where r is the 2 X 2 matrix 

r(x) = -2/~tx(0+), 
dx 

and by (2.7), 

qrq=r. 

This implies that r is of the form 

r = (AI A2), 
\;.2 Al 

(2.8) 

(2.9) 

(2.10) 

and such a r has the eigenvectors i (with eigenvalue 
V = Al + A2 ) and 1 i = i (with eigenvalue U = Al - A2 ). 

Therefore, multiplication of (2.8) by i leads to the Schri::i
dinger equation for t/J = 4JI i with the potential V (x) = Al 
+ A2 while (2.9) becomes 

V(x)i = - 21 ~ tx(O +)1. (2.9') 
dx 

The equality of the two components on the rhs of (2.9') im
plied by that of those on the lhs, is the miracle.4 Thus abso
lute integrability of kR/.r together with properties (i)-(iv), is a 
sufficient condition for the miracle to occur. 7 

On the other hand, multiplication of (2.8) by i leads to 
the Schri::idinger equation with the potential U = Al - A2 
and (2.9) becomes 

U(x)i = - 2 ~ tx(O +)1. (2.9") 
dx 

Again a miracle occurs automatically because of (2.10). The 
pair of functions that are the components of S = I4JI i, which 
satisfy the Schri::idinger equation with the potential U given 
by (2.9"), obey the relation 

s( - k,x) = [/S(k)I] -lqS(k,x). (2.3") 

This means the potential U is associated with a functional S 
matrix in which the two reflection coefficients R/ and Rr 
differ by factors of - 1 from those associated with V of (2. 9'), 
and the transmission coefficient is the same. If T (0) ¥= 0, then 
both U and Vare exceptional, but if T (0) = 0 then the reflec
tion coefficients for U have the "wrong" value + 1 at k = 0 
if those for V have the "right" value - 1, or vice versa. It 
follows that the functions Al (x) and A2 (x) must be such that 
IxIAIE£L I and IxIA2 E£L I. 

III. THE ASYMPTOTIC S MATRIX 

We now assume that a continuous functional S matrix 
with properties (i)-(iv), and such that (S - I)E L I, is given 
and the Riemann-Hilbert problem posed by (2.4) is solved, 
so that Fx (k ) satisfies (2.4'). The analyticity and asymptotics 
of Fx (k) imply that 

Fx(k) -1 =~foo dk'[Fx(k') -1] 
2m - 00 k ' - k - iE 

in the limit as E to. Therefore by (2.4') 

Fx(k) = 1 + ~foo dk'[Sx(k') -1]qFx( - k')q 
2m - 00 k' - k - iE 

or 
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4JI (k x) = eik1x + _1_ 
, 21Ti 

X f_oooo dk' ei1k-k')Ix[S(k') - 1]q4JI( - k ',x)q 

k' - k - iE 
(3.1) 

In order to examine the limit of 4JI as x- ± 00 we use 
the fact that if/(k) is continuous and integrable then 

lim _1_ foo dk' I(k ')eik'X 
EIO 21Ti - 00 k' - k - iE 

= {/(k )eikx + o( 1), as x_ 00 , 

0(1), as x_ - 00. 

As a solution of (2.8) 4JI must have the asymptotic form 

4JI(k,x) = A ± eikx + B ± e- ikx + 0(1), as x_ ± 00 

(3.2) 

and (2.4) implies that 

A ± ( - k) = S - I(k )qB ± (k )q. (3.3) 

By equating coefficients of exp(ikx) and exp( - ikx) we find 
from (3.1) that 

(1 - L )B + = 0, (3.4) 

B + (k) = L + ~ foo dk ' L [1 - S ( - k ')]B + (k ') 
2m - 00 k ' - k - iE 

(3.5) 

whereL = (g ~). 
Let us call If + (If -) the class of complex-valued func

tions l(k)EL I( - 00,00) that are boundary values of func
tions holomorphic in C + (C -) and such that I(k)-o as 
Ik 1-00; JY± are the classes of2 X 2 matrices with entries in 
If ±. Then (3.5) implies that 

L (B+ -I)EJY+, L [S( - k)B + (k) -I]EJY-. 
(3.6) 

By (3.4) B + has the form 

B+ =~ ~). 
Using (Ll) and (i) we conclude from (3.6) that lEIf + ,J
= T*/EIf - ,(g - l)EIf + ,(g _ - 1) = (T*g - l)EIf -. Let us 

assume first that T(O)¥=O, i.e., we have an exceptional case. 
Then the pair g,g _ solves a standard Riemann-Hilbert 
problem, which has a unique solution ifand only if the index 
of T is equal to zero. 8 Furthermore, if that is the case then the 
only solution of the problem which/andl _ must solve is the 
trivial solution I = 1- = O. 

The index n of Tis obtained from its phase. If T = 1 T 1 eil> 
then 8(0) - 8( 00 ) = 1Tn. But the properties (ii) and (iii) of S 
imply that the determinant of S is given by det S = TIT *. 
Therefore det S = e2il>,and the index equals the number of 
bound states, by the Levinson theorem.9 Thus the assump
tion that there are no point eigenvalues is equivalent to the 
assumption that the index of T is equal to zero. We may 
therefore conclude that g is uniquely determined by T, and 
1= 0: B + = gL. If (T - l)EIf + then g = 1. 

In the generic case we have T(O) = O. We then define 
T'=(l +ialk)Twith a>O and pose the standard Rie
mann-Hilbert problem with the boundary condition g'_ 
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= T I *g'. Again the Levinson theorem implies that the index 
vanishes and there is a unique solution pair g/, g'-- . The pair 
offunctions that solves the original problem is then given by 
g=g/,g_ =g'_/(I-ia/k). 

This solution is unique, even though T I, g/, and g'_ de
pend on the arbitrary positive constant a. Suppose there 
weretwozero-freesolutions,gl_ = T*gl,gz_ = T*gz. Then 
gl-/gz- =g/gz, from which we can conclude by Liou
ville's theorem that gl = gz. (The singularity at k = 0 is re
movable.) That the functions g _ and g that emerge from T I 

are zero-free (i.e, g vanishes nowhere in C+ andg_ nowhere 
in C-) follows from the fact that the functions g' and g'-
which uniquely solve the standard Riemann-Hilbert prob
lem are necessarily zero-free. 10 

Thus we find that in all cases B + = gL. 
In the same manner we find from (3.1) that A_ 

= g (1 - L), i.e.,A_ = qB+q. Finally, (3.3)is used to obtain 
A + andB_. With the use of these results (3.2) may be rewrit
ten in the form 

{(:~;:~~Iex ~e - ilex) + o( 1), as x - 00, 

cP (x) = ( 'Iex 'Iex 
ge' R/g*e-. ' ) + 0(1), as x_ - 00. o Tg*e-'Iex 

A vector solution cP of the Schrodinger equation with the 
potential V = ri is obtained from cP by allowing it to act on 
the vector i:if; = cP i. Thus if; has the asymptotics 

Rrg*e'lex -ilex) + 0(1), as x - 00, 
+ge {(

Tg*eilex 

if;(x) = ( 'Iex ge' 

Tg*e - ilex 

+R/g*e-il + o( 1), as x - - 00. 

The asymptotic S matrix is therefore given by 

Sa = (g*/g)S (3.7) 

and if; differs from the physical solution by a factor of g. 
We note that the diagonal elements of Sa are Tg*/g 

= g!./g. Since the unique solution g of the Riemann-Hil-
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bert problem posed by g _ = T *g is necessarily free of zeros 
in C +, the diagonal elements of Sa are boundary values of a 
function in /f+. Thus the asymptotic S matrix that emerges 
from the inversion has property (v), even though the func
tional S matrix that served as input does not have it. The 
function if; that satisfies (2.3) with the given functional S ma
trix differs from the "physical" solution of the Schrodinger 
equation by a factor g(k), so that if;( - k,x)/g( - k) 
= q{ [g( - k)/g(k )]S(k )J* if;(k,x)lg(k) and Sg*/g satisfies 

(v). In other words, the function if; that satisfies (2.3) does not 
satisfy the correct boundary conditions as a function of x; the 
function that does is if;/g. 
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We relate three-dimensional scattering theory for the time-independent Schrodinger equation 
without spherical symmetry to scattering theory for the plasma-wave equation (PWE). We review 
a recent inverse scattering method for the PWE and find the corresponding method for the 
Schrodinger equation. We then review Newton's three-dimensional Marchenko method for the 
Schrodinger equation and transform it to the corresponding PWE method. The resulting time
domain hyperbolic method clarifies the role of causality in Newton's important recent work. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

The inverse scattering problem is of fundamental im
portance to physics because it gives an explicit, nonparame
tric way of inferring the properties of an object (described by 
an interaction potential) from a scattering experiment. The 
most complete and systematic study of inverse scattering has 
been made for the scattering of particles governed by the 
time-independent Schrodinger equation. Exact methods for 
solving the inverse problem were found for the case of 
spherically symmetric potentials by Gel'fand and Levitan, 1 

Marchenko,2 Kay and Moses3 and others. For nonspherical
ly symmetric potentials in three dimensions there are two 
results that are relevant to this paper. One, an exact solution 
that has been available for some time, uses the Born approxi
mation for high-energy scattering in the nearly forward di
rection. A second, more recent result is a generalization by 
Newton4 of Marchenko's one-dimensional method to three 
dimensions. 

For one-dimensional quantum inverse scattering, the 
connection between the Schrodinger equation and a related 
hyperbolic wave equation, the plasma-wave equation (PWE) 
has been noted.s Recently, Morawetz,6 Callias and Uhl
mann,7 and DeFacio and Roses have proposed exact inverse 
methods for the PWE with a three-dimensio:qal potential. 
These methods give considerable physical insight into the 
general features of inverse scattering methods; in particular, 
the hyperbolic methods clarify the role of causality. 

People working on the PWE have remarked that the 
PWE could be used to study the quantum-mechanical in
verse scattering problem. The purpose of this paper is to 
establish the connections between the Schrodinger and the 
PWE inverse scattering methods. The connection we use can 
also be applied to the direct problem, although we will not 
pursue this aspect of the problem. 

The structure of the paper is as follows. Section II con
tains the basic facts about scattering theory for both the 

8) Permanent address: Department of Physics and Astronomy, University of 
Missouri, Columbia, Missouri 6521 I. 

Schrodinger equation and the PWE; connections between 
the two are established. The well-known completeness rela
tion for the Schrodinger equation is translated to the plasma
wave case and is found to result in a generalization of the 
Radon transform. In Sec. III an exact near-field plasma
wave inverse method proposed by DeFacio and Rose and by 
Callias and Uhlmann is reviewed, and the corresponding 
inverse method is developed for Schrooinger scattering. The 
derivation of the Newton-Marchenko equation for Schro
dinger scattering is reviewed in Sec. IV. This is followed by a 
time-domain version and an explanation of correspondences 
between time- and frequency-domain quantities. Finally, we 
conclude the paper with a discussion and summary of our 
results. 

II. BASIC FACTS ABOUT SCATTERING THEORY 

Three-dimensional quantum scattering theory starts 
from the time-independent Schrodinger equation 

(..::1 +k 2
_ V)t/I=O. (2.1) 

Here L1 is the Laplacian and V is a real-valued function, 
which in this paper we will take to be smooth, positive, and of 
compact support. Thus, we assume that V gives rise to no 
bound states. Scattering solutions ofEq. (2.1) are determined 
by the Lippmann-Schwinger equation 

t/I ± (k,e,x) = exp(ike·x) 

+ J Gl(k,ix - yi)V(y)t/I±(k,e,y)dy, 

(2.2) 
where e is a unit vector denoting the direction of incidence 

G o± (k,r) = - (41Tr)-1 exp( ± ikr). (2.3) 

The + sign corresponds to the outgoing radiation condi
tion, while the - sign corresponds to the incoming radi
ation condition. Examination ofEq. (2.2) shows that t/I+ and 
t/I- are related via 

(2.4) 

and 
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f/!(k,e,x) = f/!*( - k,e,x), (2.5) 

where the star indicates complex conjugate. We write the 
outgoing wave function as 

f/!+(k,e;.x) = exp(ikej·x) + Ixl-1A (k,es,e j ) 

Xexp(ik Ixl) + h (k,e;.x), (2.6) 

where x = Ixles and A is the scattering amplitude 

A (k,es,e j ) = - (417")-1 J exp( - ikes·x)V(x)f/!(k,e;.x)dx. 

(2.7) 

It can be shown that for each k, the remainder h (k,e;.x) is a 
uniformly square-integrable function of x. 

The wave functions f/! ± form a complete set in the sense 
that they give rise to an eigenfunction expansion, which is a 
decomposition of an L 2 function fin terms of the f/!'s. If the 
potential has no bound states, the expansion takes the form9 

f(x) = (21T)-3 ("" ( f/!±(k,e,x) 
Jo JS2 

x J f/!H(k,e,y)f(y)dy d 2e k 2 dk, (2.8) 

where S2 denotes the unit sphere in R 3. Iffis real valued, 
then using the fact that f/!±(k,e,x) = f/!H( - k,e,x), we can 
write the complex conjugate of (2.8) as 

f(x) = (217r 3 
["" I, f/!±(k,e,x) 

X J f/!H(k,e,y)f(y)dyd 2ek 2 dk. 

Equations (2.8) and (2.9) together give 

f(x) = (16r)-1 f"""" I, f/!±(k,e,x) 

(2.9) 

X J f/!H(k,e,y)f(y)dy d 2e k 2 dk. (2.10) 

A time-independent equation such as (2.1) can be relat
ed to equations in the time domain. We shall use the Fourier 
transform 

I(t) = (21T)-1 f"" "" exp( - ikt )f(k )dk (2.11) 

to obtain from (2.1) the plasma-wave equation 

[~- (:t 22
) - V(X)]u = 0, (2.12) 

where u = ;Po Note that we are using the circumflex to de
note both Fourier transforms and unit vectors. We have thus 
transformed (2.1) into a hyperbolic equation. The solutions 
of(2.12) that interest us are those that correspond to Schro
dinger's scattering solutions, namely those defined by the 
formal analog of the Lippmann-Schwinger equation (2.2) 

u±(t,e,x)=15(t-e-x)+ J JGo±(t-t',lx- yl ) 

V() ±('~ )dt'd (2.13) X y u t ,e,y y, 

where 

G o± (t,r) = - 15(r + t )(41Tr)-1 (2.14) 

and 
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U ± (t,e,x) = (21T)-1 f"""" exp( - ikt )f/!± (k,e,x)dk. (2.15) 

In writing (2.15), we have extended the wave function f/! to 
negative values of k via (2.5). As in the frequency domain, the 
outgoing solution u + and the incoming solution u - are re
lated by 

(2.16) 

The time-domain integral equation can be used to de
scribe a scattering experiment as follows. At large negative 
times the system is prepared with an incident pulse UO(t, 

e,x) = 8 (t - e-x), propagating along the e direction. Because 
the potential has compact support, the (distributional) solu
tion of (2.12) for large negative times is identically equal to 
8 (t - e-x). This stipulation takes the place of both initial con
ditions for (2.12), so that (a lat )uO = 8' for large negative 
times. The incident field then collides with the target in the 
neighborhood of the origin and scatters in an outgoing 
spherical wave plus the incident pulse propagating in the 
forward direction. After the collision of UO with the poten
tial, the field is measured, typically on a large sphere enclos
ing the origin. These measurements are the scattering data 
from which we will infer the potential. 

The far-field scattered wave can be described by the 
impulse response function R which is defined to be 

R (e;.es,r) = lim Ixl(u(t,e;.x) - 8 (t - ej·x)), (2.17) 
t,lxl~"" 
T~ t-Ixl 

where the scattering direction is given byes = x/lxl. The 
impulse response function can be expressed explicitly in 
terms of the potential and the field u by using Eq. (2.13). We 
carry out the t-integration and use 

Ix - yl = Ixl - es·y + O(lxl- I
), 

obtaining 

R (e;.es,t) = - (41T)-1 J u+(t + es·y,ej,y)V(y)dy. 

(2.18) 

This formula shows that the impulse response is precisely 
the Fourier transform of the scattering amplitude 

R (e j ,es ,t ) = (21T) -I f"" "" exp( - ikt)A (k,es ,ej )dk. (2.19) 

The Fourier transform (2.11) can also be used to convert 
the frequency-domain eigenfunction expansion (2.8) into a 
formal time-domain one 

f(x) = (16r)-1 f"""" I, f/!±(k,e,x) f f"""" exp( - ikt) 

X u ±(t,e,y)dtf(y)dy d 2e k 2 dk 

= - (8~)-1 foc ( u ± (t,e,x) 
- 00 JS2 

X (:t 22
) f u±(t,e,y)f(y)dyd

2
edt, (2.20) 

u being real because of the extension of f/!(k,e,x) to negative 
frequencies, Eq. (2.5). 

This is a generalization of the Radon transform inver-

Rose, Cheney, and DeFacio 2996 



                                                                                                                                    

sion formula lO in the following sense. We can write (2.20) as 
the pair of equations 

i ± (t,e) = f u ± (t,e,y)f(yjdy, (2.21) 

fIx) = - (8r)-1 foo i 2U ± (t,e,x)( iJ12 'Ii" ± (t,e)d 2e dt. -ooS att 
(2.22) 

If the u's are chosen to be the free space wave functions [i.e., 
u ± = 0 (t - e·x)], then the pair (2.1.) and (2.22) reduce to 

i(t,e) = f o(t - e·y)f(y)dy, (2.23) 

fIx) = - (8r)-1 i (iJ12)i(t = e·x,e)d 2e. (2.24) 
S2 at 

Equation (2.23) is precisely the Radon transform, and (2.24) 
is the Radon transform inversion formula. 

1110 EXACT NEAR-FIELD INVERSE SCATTERING 

Recently, Defacio and Rose have introduced an exact 
inverse method for the time-domain PWE which depends on 
near-field data. We will review this result and then derive the 
equivalent result for the Schrodinger equation. We also dis
cuss the connection between the near-field results and the 
related Born approximation for solutions of the Schrodinger 
equation. 

The review of the time-domain near-field inverse meth
od starts with a discussion of the "fundamental identity." 
This result was first used in one-dimensional inverse scatter
ing by Balanis5 in 1972. Later the corresponding result for 
the three-dimensional case was found by Mora wetz, 6 Callias 
and Uhlmann,7 and by DeFacio and Rose.8 

The fundamental identity is based on the progressing 
wave expansion 

u(t,e,x) = o(t - eox) + B (e,x)H (t - eox) 

+ D (e,x)E (t - eox) + F (t,e,x). (3.1) 

Where His the Heaviside function [H(y) = 1 ify> O],E(s) is 
sH (s), F is a continuously differentiable function that is zero 
for t < e·x, and Band D are as yet undetermined. The heuris
tic principle underlying this expansion is that high-frequen
cy signals are not scattered much by the potential. 

The transport equations for the PWE are then deter
mined by substituting Eq. (3.1) into (2.12) and equating or
ders of singularity. The terms proportional to 0 " and 0 tare 
trivially zero. The term proportional to 0 yields 

V(x) = - 2e·VB(e,x), (3.2) 

which can also be written 

V(x) = - 2e·V lim [u(t,e,x) - 0 (t - e·x)]. 
f_e.x+ 

This simple equation will be referred to as the fundamental 
identity. It is an expression of the fact that Eq. (2.12) is inde
pendent of the variable e, which we have introduced in the 
boundary conditions. The fundamental identity relates the 
potential to the jump in the scattered field at the wave front; 
if we knew this jump in the field for all points x (including 
points within the support of the potential) we could recon
struct V from Eq. (3.2). Normally, however, we are unable to 
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make measurements within the support of V. The fundamen
tal identity can be used to construct a more practical exact 
near-field inversion method as follows. 

Let us suppose that the support ofthe potential is con
tained in a sphere Sb of radius b. Further suppose that the 
jump in the scattered field on the characteristic surface, 
B (e,x), is measured for all points on Sb' Then the potential 
can be determined from a simple linear inverse method in
volving the Radon transform. We proceed by constructing 
the Radon transform of V fromB (e,x). In particular we shall 
obtain the integral of V over the plane x·w = t, where w is a 
unit vector normal to the plane. We choose the incident di
rection ei so that ei is perpendicular to w. The vectors ei and 
ei Xw are then both perpendicular to wand are therefore 
both parallel to the plane x·w = t. As r varies with sand t 
held fixed, the vector tw + s(ei xw) + rei thus sweeps out a 
line L (t,w,s) that is contained in the plane x·w = t and that 
has direction ei • This line L intersects the sphere Sb at two 
points, namely those given by 

p± (t,w,s) = tw + s(ei xw) ± (b 2 - t 2 - s2)1/2ei . (3.3) 

We integrate (3.2) along the section of L contained in the 
sphere Sb; this results in 

f
b2 - (2 _s'1"2 

V (tw + s(ei xw) + rei )dr 
_ (b 2 _ (' _ s'1'/2 

= 2 [B (ei> p _(t,w,s)) - B (ei> P + (t,w,s))]. (3.4) 

The first term on the right side of(3.4), moreover, is zero; this 
follows from integrating (3.2) alongL from - 00 top _. Inte
gration over the s variable then gives us 

f

b' - (')'" fb' - (' - s')'" 

ds dr V(tw + s(ei Xw) + rei) 
_ (b' - (')'/2 _ (b 2 _ (' _s')'/2 

f
b2 -('I,/2 

= 2 B (ei , p + (t,w,s))ds. 
_(b 2 _t 2 )1/2 

(3.5) 

The left side of (3.5) is precisely the integral of V over the 
section of the plane x·w = t that is contained in the sphere 
Sb' Since Vis zero outside Sb' this is the Radon transform 
V(t,w) = So (t - x·w)V(x)dx. To obtain the potential Vitself, 
we merely invert the Radon transform using Eq. (2.24). 

V(x) = (21T)-2 L (:r2
2) 

(3.6) 

The vector ei appearing on the right side of (3.6) depends on 
W, so it will be removed by the w integration. Because the 
incident direction ei can be any vector perpendicular to W, ei 

need only vary in a single half-plane to provide enough infor
mation to effect the reconstruction (3.6) exactly. 

We can translate this method into a frequency-domain 
one for the Schrodinger equation as follows. We apply the 
Fourier transform to Eq. (3.1), obtaining the large-k asymp
totic expansion 

f/!(k,e,x) = exp(ike·x) [1 + B (e,x)(ik ) -I + o(k -I)]. (3.7) 

The foregoing inversion method leading to Eq. (3.6) can 
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therefore also be applied to the Schrodinger equation case. 
The quantity B (e,y) must here be extracted from high-energy 
measurements. This method, in fact, depends entirely on 
high-energy data. It is related to another high-energy inver
sion method, one which is based on the Born approximation. 

We recall that the Born approximation of the scattering 
amplitude A (k,e"e;) is 

(3.8) 

This approximation is valid for large k in the sense that the 
difference between (3.8) andA (k,es,e;) vanishes as k becomes 
infinite. Expression (3.8) is precisely the Fourier transform of 
- f(2r). We therefore denote expression (3.8) by 
- V(qq)(2r), where q = qq = k (e, - e;). Because approxi-

mation (3.8) of A (k,e"e;) is exact in the k-+oo limit, we ob
tain V from the scattering amplitude via 

lim 
k~co 

(3.9) 

q = k(e, - ei ) 

Inversion of the Fourier transform then gives us the poten
tial itself. 

To understand the relation between the Born inversion 
method and the near-field inversion method given by (3.6), 
let us consider a fixed direction of incidence e;. E,guation 
(3.9) allows us to construct the Fourier transform V(q) for 
any finite q perpendicular to e; (see Fig. 1). We then Fourier 
transform over q = Iql. This gives 

V(t,q) = (21T)-1 fO co dq exp(iqt) J V(x)exp( - iqq·x)dx, 

(3.10) 

which is precisely the Radon transform (2.23). From the 
Born approximation for a single angle of incidence e;, we can 
thus construct the integral of Vover any plane whose normal 
is perpendicular to e;. 

This is precisely the same information we obtain from 
the near-field method discussed above. In fact, Eq. (3.5) also 
gives us V(t,@), where @ is perpendicular to e;. 

The Born and near-field inverse methods are similar in 
the following respects. First, they both depend exclusively 
on high-frequency data. Second, both depend entirely on for
ward or near-forward scattering data. Third, measurements 
at a single angle of incidence provide the same information 
for both. Last, both can be expressed in terms of the Radon 
transform. II 

The two methods are different however, in that one (the 
Born method) uses far-field data, whereas the other uses 
near-field data. 

Finally, we note that the asymptotic expansion (3.7) can 
be computed entirely in the frequency domain. It is valid 
under less restrictive hypotheses on V than we use in this 
paper. Explicitly, the result 12 is as follows. 

Theorem: Let Vbe bounded and integrable with I V (x) I, 
IVV(x)1 and 1.1 V(x)l,all bounded by F(lx - XoI)forsomeXo, 
where F is a positive function satisfying So' F (t )dt < 00. 

Then tP(k,e,x) = exp(ike·x) [1 + (2ik )-1 Sa V(x - re)dr 
+ g(k,e,x)], wherefor Ik I > 1 andanYEwithO<E < ~,gsatis

fies Igl < elk I-I-E. 
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FIG. 1. In the limit as k-+QO, the relation q = k (fl, - ei ) forces e, to ap· 
proach ei and forces q and ei to become perpendicular. 

IV. NEWTON'S MARCHENKO EQUATION IN THE 
FREQUENCY AND TIME DOMAINS 

We review briefly the derivation of the Newton-Mar
chenko equation for the time-independent Schr6dinger 
equation. We then interpret the elements of the derivation in 
the time domain, thus obtaining a Marchenko equation for 
the plasma-wave equation. 

A. Frequency-domain derivation of Newton's 
Marchenko equation 

The Newton-Marchenko method rests on the follow
ing relation between the scattering amplitude and the wave 
functions 

,V(k,e,x) = tf-(k,e,x) - (2m)-lk L A (k,e',e)tf-(k,e',x)de'. 

(4.1) 

Equation (4.1) can be derived as follows. 13 The relation 

(-.1-E)-I=(-.1 +V-E)-I 

+ (-.1 _E)-IV( -.1 + V -E)-1(4.2) 

for E = k 2 ± iE can be written 

( - .1 + V - k 2 + iE)-1 

= - (I - Go( ± k + iE)V)-IGO( ± k + iE), (4.3) 

where Go(k) is the integral operator with kernel 
Go(k, Ix - Y\)o Application of(4.3) to V(x)exp(ike·x) and use 
of (2.2) results in 

tf±(k,e,x)=exp(ike'x)- lim (-.1 + V_k2±iE)-1 
E....o+ 

x (V(x)exp(ike·x)). (4.4) 

Subtraction of the + and - equations of (4.4) gives 

= lim [( - .1 + V - k 2 _ iE)-1 
E....o+ 

- ( - .1 + V - k 2 + iE) -1]( V (x)exp(ike·x)), 
(4.5) 

which by Stone's formula I 4 is equal to 2k 
X P(k'l (V(x)exp(ike·x)), where P(k'l is the spectral projec
tion. The eigenfunction expansion (2.8), however, gives us an 
explicit formula for the spectral projection; it is merely (2.8) 
without the integration over k. Accordingly, we apply the 
inner integral of (2.8) to the function/Ix) = V(x)exp(ike·x). 
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Equation (2.8) actually contains two eigenfunction expan
sions, one in terms of "'+ and the other in terms of ",-. We 
choose the "'- expansion for our present purpose. We can 
now write Eq. (4.5) as 

",+(ke,x) - ",-(k,e,x) = - ik 2- 311"-2 

X L, ",-(k,e',x) f ",-*(k,e',y) 

X V(y)exp(ike·y)dy d 2e', (4.6) 

which is precisely (4.1) because A (k, - es ' - ej ) = A (k,e;.es ) 

(reciprocity). 
The Marchenko integral equation is derived4 as follows 

from (4.1). First we subtract off the large-k asymptotic form 
of", and then take the Fourier transforms in k. We use identi
ty (2.4) to write (4.1) as 

",+(k,e,x) = "'+( - k, - e,x) - (211"i)-lk 

X r A (k,e',e)",+( - k, - e',x)d 2e'. (4.7) 
Js' 

We multiply (4.7) by exp( - ike·x) and write 

P (k,e,x) = "'+(k,e,x)exp( - ike·x) 

obtaining 

p(k,e,x) =P( - k, - e,x) - (2ml- lk r A (k,e',e) 
JS2 

Xexp(ik(e' - e)·x).8( - k, - e',x)d 2e'. (4.8) 

We subtract 1 from both sides of(4.8) 

p(k,e,x) - 1 =P( - k, - e,x) - 1 - (211"i)-lk 

X L A (k,e' ,e)exp(ik (e' - e)·x)d 2e' 

- (211"i)-lk r A (k,e',e)exp(ik (e' - e)·x) 
JS2 

X[,8(-k,-e',x)-I]d 2e'. (4.9) 

We now write 

1](a,e,x) = (211")-1 Loooo exp( - ika)(p(k,e,x) - l)dk, 

(4.10) 

M(a,e,e',x) = (211")-2 Loooo exp[ - ik(a + (e - e')ox)] 

X ikA (k,e',e)dk. (4.11) 

In this notation the Fourier transform of Eq. (4.9) is 

1](a,e,x) = 1]( - a, - e,x) + r M(a,e,e',x)d 2e' 
Js' 

+ Joo r, M(a - 8,e,e',x) 
- 00 Js 

X 1]( - 8, - e',x)d 2e' d8. (4.12) 

Analyticity of P in the upper half k-plane4 implies that 

1](a,e,x) = 0 for a < 0, (4.13) 

which in tum implies that Eq. (4.12) for a > 0 is 
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1](a,e,x) = Loo r M(a + 8,e,e',x)1](8, - e',x)d 2e' d8 
o JS2 

i M( A A, )d2 A
' + a,e,e,x e. 

S2 
(4.14) 

This is Newton's Marchenko equation. The potential can be 
recovered from the solution 1] of (4. 14) via 

V(x) = - 2e·Vx 1](0+,e,x). (4.15) 

This is the "miracle" of Newton.4 When this equation ap
pears as a requirement on the solution of (4.14), it certainly 
appears miraculous because the right side involves e while 
the left side is independent of e. Newton has shown,4 how
ever, that it is actually a characterization of admissible scat
tering data in the following sense. Roughly, if the scattering 
amplitude is such that Eq. (4.14) has a unique solution, and if 
this solution is miraculous, then the solution corresponds via 
(4.10) to a solution of the Schrodinger equation that has the 
correct (given) scattering amplitude. In this context, (4.15) is 
a complicated constraint on the data, a constraint that must 
be applied after the most difficult and expensive part of the 
reconstruction [namely, solving (4.14)] has been carried out. 

B. Time domain analog of Newton's Marchenko 
equation 

We Fourier transform Eq. (4.1): 

u+(t,e,x) = u-(t,e,x) - (211")-11 Joo u-(r,e',x) 
S2 - 00 

x(:JR(e,e',t-r)drd 2e" (4.16) 

In (4.16) we use (2.16) and write u+(t,e,x) = 8(t - e.x) + USC 

(t,e,x), obtaining 

uSC(t,e,x) 

= USC( - t, - e,x) - (211")-1 r (!...)R (e,e',t - e.x)d 2e' 
JS2 at 

- (211")-IL2J~ 00 uSC(r, - e',xl( !)R (e,e',! + r)drd 2e'. 

(4.17) 
We then use the fact that 

u(t,e,x) = 0 for t < e·x 

(causality!) to obtain for! > e·x 

uSC(t,e,x) 

= -(211")-1 r (!...)R(e,e',t-e'.x)de'-(211")-1 
Js' at 

(4.18) 

X r 2 r."" uSC(r, - e',x) (!... )R (e,e',t + r)dr d 2e'. 
Js Je.x at (4.19) 

Equation (4.19) is precisely Eq. (4.14), with a = t - e·x and 

1](a,e,x) = u+(a + e·x,e,x) - 8(a) = uSC(t,e,x), (4.20) 

M(a,e,e',x) = - (211")-1( :a )R (e,e',a + (e - e')·x) 

= - (211")-1( :t )R (e,e',t - e'·x). (4.21) 

Correspondences (4.20) and (4.21) allow us to apply the 
Newton-Marchenko inversion method to the PWE, and in 
doing so we obtain insight into the workings of the method. 

Application ofthe Newton-Marchenko method to the 
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PWE proceeds as follows. First, we measure the impulse 
response. The Marchenko equation [Eq. (4.19)] is then 
solved for the scattered field; finally, the potential is recov
ered via the fundamental identity (3.2). Correspondence 
(4.20), in fact, shows that the "miracle" (4.15) is precisely the 
"fundamental identity" (3.2). 

The time-domain theory helps us understand the work
ings of Newton's Marchenko method. We see that the Mar
chenko equation (4.14) or (4.19) allows us to compute from 
far-field data the entire wave field at all points in space. The 
crucial "triangularity" property (4.13) is precisely causality 
(4.18). Moreover, we know from Newton's characterization 
result4 that solving the Marchenko equation makes use of all 
the data. 

Once the solution has been computed, however, the po
tential is obtained via (4.15) from the high-frequency asymp
totic expansion of the wave field. In the time domain this 
corresponds to using only values of the scattered field on the 
wavefront t = ej"x. In fact, the fundamental identity allows 
recovery of the potential from uSC(ej"x,ej>x) for a single direc
tion of incidence. The Newton-Marchenko method is there
fore not economical because its intermediate steps involve 
computation of the entire scattered field for all x,t, and ej • 

However, because the Marchenko equation makes use of all 
the data, this method is presumably less sensitive to high
frequency error than are the methods of Sec. III. 

v. DISCUSSION AND SUMMARY 

We have seen that the Schrodinger equation in quan
tum mechanics is related to the PWE by means of the Four
ier transform. As a consequence, inverse scattering methods 
developed for one equation may be applied to the other. In 
this paper we have transformed an exact near-field inversion 
method for the PWE to one for the Schrodinger equation. 
Similarly, we have Fourier transformed the Schrodinger 
Newton-Marchenko method to the time domain. In doing 
so we discovered that Newton's "miracle" is precisely the 
time-domain "fundamental identity" which relates the po
tential to the jump in the scattered field at the wavefront. In 
the frequency domain, we found that the miracle and the 
fundamental identity are asymptotic high-energy results. It 
is important to note, though, that they are high-energy limits 
of the entire solution of the Schrodinger equation, and not 
just of the scattering amplitude. 

In general, the time-domain results seem intuitively 
more understandable. This is because the hyperbolicity and 
the straight characteristics of the PWE allow us to express 
causality in a natural way. 

In this paper we have emphasized the inverse problem 
when discussing the connection between the two wave equa
tions. However, the same connection is also valid for direct 
scattering. For example, numerical and approximate solu
tions of one problem can be used to construct corresponding 
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solutions for the other problem. Recently, so-called "march
ing-in-time" methods,15 which take advantage of causality, 
have been developed for hyperbolic wave equations. These 
methods can therefore also be used to obtain numerical solu
tions to the Schrodinger equation. 

Numerical implementation of the inverse scattering 
methods, however, has not yet been investigated, but the 
derivatives appearing in Eqs. (2.24) and (4.19) indicate possi
ble stability problems due to high-frequency error. This sug
gests that prior data and regularization techniques such as 
those used in tomography may be of considerable use. 
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We derive new series and integral representations for the Coulomb transition matrix in 
momentum space, (PITe Ip'), and for its partial-wave projections, <PITellP') (/ = 0,1, ... ), to be 
denoted by Te and Tel' respectively. We also consider hypergeometric-function representations 
for Te and Tel and discuss their analytic continuation to the whole complex k plane (k 2 is the 
energy). The new integrals are essentially S~ cosh rt (p - cos t ) -I dt for Te and S~ cosh rt 
X QI (uu' + vv' cos t )dt for Tel' where r is Sommerfeld's parameter and p,u,u' ,v, and v' are 
variables depending on the energy and the momenta; related integrals follow from these. A well
known and convenient series representation for Te consists essentially of the sum 
l:nyn(n2 + i)-I, where y depends on the energy and the momenta. We derive its analog for Tel, 
the corresponding sum being l:n (n2 + i)-IQ 7(u)P 1- n(u'), 1 < u' < u. This sum is a new member 
of the family of sums of products of Legendre functions that can be evaluated in a relatively simple 
closed form; other members of this family have been recently obtained by the author. With the 
new representations for Te and Tel we derive a set of twenty-four optimal inequalities (containing 
two conjectured inequalities) for these Coulomb T matrices, presumably covering all cases 
relevant for physics. For the proof of these inequalities several different representations, and in 
particular the newly derived ones, would appear to be indispensable. Many of the inequalities are 
new. They are valid for fixed real Coulomb strength and fixed real energy¥=O. Because of the 
complexity of exact closed forms for Te and Tel' approximations are needed for numerical 
calculations; the most natural one consists of replacing the Coulomb T matrix by the Coulomb 
potential. Our inequalities are useful for estimating the accuracy of this approximation. 

PACS numbers: 03.65.Nk, 11.20.Dj, 02.30. + g 

1. INTRODUCTION AND SUMMARY 

A. Background 

Almost two centuries ago C. A. Coulomb I presented 
experimental evidence for the existence of the inverse-square 
law of forces for repulsive (in 1785) and attractive (in 1787) 
electrical charges. Since then, Coulomb's law and, more gen
erally, interactions between charged particles have been 
studied extensively, in the context of classical mechanics and 
quantum mechanics,2-37 respectively. With the advent of 
quantum theory the Schrodinger equation became a major 
object of study. Its two-particle solution with the Coulomb 
potential consists of the Coulomb wave functions, in position 
space (r space, or coordinate representation). 

In the quantum-theoretical description of interactions 
between more than two particles, the two-particle off-shell 
transition (T) operator is important. It can be defined by 
T(E) = V + V(E - H)-IV, whereEistheenergy, V the po
tential operator, and H the Hamilton operator. Accordingly, 
much research has been devoted to this subject, especially 
for the Coulomb potential. The full Coulomb T operator is 
denoted by Te, and its partial-wave projection by Tel' 
1= 0,1, .... The momentum representation (p space) has cer
tain advantages over the coordinate representation. For in
stance, the Coulomb Hamiltonian in the momentum repre
sentation exhibits a hidden special (additional) symmetry, 
which can be described by an 0 4 algebra.6,7,9-11 By using this 
special symmetry, Schwinger9 derived an integral represen-

tation for Te. Hostler8 obtained the same representation in a 
different way. 

For research on charged-particle scattering and the 
Coulomb T matrix the reader is referred to in particular 
those references cited in Refs. 17-20. Recently much work 
has been done on inequalities21-24 for the Coulomb Tmatrix 
in momentum representation, and on explicit closed expres
sions for various scattering quantities related to the Cou
lomb T matrix, especially those associated with Coulomb
plus short-range potentials.25-33 

The use of Te in exact form in numerically solving 
three- or more particle equations is cumbersome and time 
consuming, and hence expensive. This is due to the relative 
complexity of Te (inp space: (pi Te Ip'»), so that satisfactory 
approximations have been sought. The most obvious ap
proximation consists of replacing Tc by the Coulomb poten
tial operator Vc , which considerably reduces the complexity 
since (pi Vc Ip') has a very simple form. The accuracy of this 
approximation can be estimated well by some ratio of Tc and 
Vc' In this paper we shall derive a large number of inequal
ities (mostly optimal) for Rc and Rei, covering all relevant 
cases; here Rc is the ratio of Tc and Vc in momentum space, 
and Rei is the ratio of their partial-wave projections. Some
what surprisingly, it turned out that new representations for 
Rc and Rei are necessary to prove these inequalities. In sev
eral cases a specific representation is needed to prove each 
inequality. Therefore, we shall begin (in Sec. 2) by deriving 
these new representations. 
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B. Introductory remarks 

The two major subjects of this paper are (i) inequalities 
and (ii) new representations for the full- and partial-wave 
projected Coulomb Tmatrices in momentum space, denoted 
by (PITe Ip') and (PITc/ [P') (I = 0,1, ... ), respectively. Units 
are taken such that fz = 1 = 2m, where m is the reduced 
mass; the energy variable E =k 2 is suppressed. It is more 
convenient to study the closely related Coulomb ratios Re 
and Rc/. These dimensionless ratios are defined by 

Re: = Rc/: = 1 for s = 0, 

and 

(Ua) 

Re: = (PITe Ip')/(plVe Ip'), p#p', 

Rei: = (PI Tel [P')/(PlVeI [P'), p#p', 

(Ub) 

(Uc) 

for s#O. Here s is the Coulomb strength parameter, and Ve 
and Vel are the full- and partial-wave projected Coulomb 
potential operators, respectively. The denominators of these 
ratios are real positive and have a simple closed form, see Eq. 
(1.2) 

The study of Re started in Ref. 18, p. 96; cf. Ref. 21. 
This Re study was substantially extended in Ref. 22, where 
many numerical values of IRe I and IRell have been dis
played; it is interesting to note that some conjectures could 
be "derived" from these graphic computer representations. 

For the Coulomb potential one has the well-known ex
pressions 18 

and 

Ve(r)=Vc/(r) = 2ky/r - 2s/r, 

(PlVe Ip') = - S1T-
2 Ip _ p'I- 2

, 

(1.2a) 

(1.2b) 

(PlVeI [P') = - 2s(1Tpp,)-1 Q/((p2 + p,2)12pp'), (1.2c) 

where y is Sommerfeld's parameter, which depends on the 
energy k 2 according to r= - s/k. For s> 0 the Coulomb 
potential is attractive, and for s < 0 repulsive. 

The momenta p and p' will be taken real positive 
throughout this paper; the energy k 2 is in general complex 
with k #0, Re k>O, 1m k>O, and 1m k!O whenever neces
sary. For positive energy we have k > 0 and for negative ener
gy we take K: = - ik > O. Analytic continuation of Re and 
Rei into the whole complex k plane will be considered in Sec. 
12 only. 

Complex energy plays a role in the various representa
tions for Re and Rc/. In contrast, the inequalities for Re and 
Rei to be discussed apply to either negative or positive energy; 
in this case we take s,k, and I to be fixed (seJR, either K > 0 or 
k > 0, and leN), whereas p, p', and the angle () between p and 
p' (0,(},1T) are supposed to vary on their respective domains. 

At k = 0, k = p, and k = p', Re and Rei are singular. 
These singular points may be considered as boundary points; 
they separate the various regions to which the respective 
inequalities apply. The positive-energy case is thus split up 
into two different cases (S and A, see Secs. 23 and 24); togeth
er with the negative-energy case (N) three essentially differ
ent cases result. Further, each one of the dichotomies (i) at
traction/repulsion, (ii) Re/ReI' and (iii) upper bound/lower 
bound yields a factor of two, thus generating a total oftwen
ty-four different inequalities. Despite the fact that these in
equalities are optimal, the given boundary functions have-
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with a few exceptions-a simple form. 
As part of the study of these inequalities we shall study 

the zeros of Re and of Rc/ for positive energy (Secs. 18-20), 
and various limits (Secs. 21 and 22) to prove their optimality. 

The most interesting results obtained on the twenty
four inequalities for Re and Rei are summarized in Tables I 
and II and Figs. 3 and 4, see Secs. 23 and 24. An intriguing 
unsolved problem concerns the conjectured inequalities (c 1) 
and (c2) (cf. Sec. 17), 

(el) 

IRe I, IBca(iy)l, (1.3) 

(e2) 

IRell < I Bel (iy) I, (1.4) 

where y> 0, (p, p')eS (see Sec. 23), and Bel is a relatively 
simple function (see Sec. 13). We contend that Eqs. (1.3) and 
(1.4) are valid. If valid, they are optimal. When their right
hand members are replaced by 1, they are easy to prove, but 
not optimal. 

The most interesting new representations for Re and Rei 
are given by Eqs. (2.7), (3.14), and (4.2). The new integrals 
reduce to 

for Re: fTCOSh yt(p-costj-Idt, (1.5) 

for Rei: fTCOShytQ/(Uu'+VV'cost)dt, (1.6) 

and the new series for Rei to 
00 

I (n 2 + y)-IQ7(u)Pl-n(U'), 1 <u' <u; (1.7) 
n=O 

for the notation see Sec. 1.C. Note that no such simple series 
representation for Rei has been known until now, other than 
the so-called Sturm series, or Weinberg series,34-39 which 
converges only for negative energy (see Sec. 10 and cf. 
Sloan34). 

Various Special Functions and their properties will be 
used frequently in this paper. For these we refer to Refs. 40-
43, which may be considered as standard references for the 
special functions of mathematical physics. 

We note that the sum (1.7) constitutes a new member of 
a family of sums of products of Legendre functions that can 
be evaluated in a relatively simple closed form.44,43 

Further details and several proofs and derivations are 
given in Appendixes A-Z of Ref. 32. A survey of Coulomb 
formulas may be found in Ref. 33. 

Finally we point out that for Coulomb plus separable 
potentials the associated T matrix Tes/ is easily expressed in 
terms of Tel and simple functions; further, for Tesl inequal
ities similar to those for Tel can be derived.45 

C. Conventions and notations 

We shall use the same conventions and notations as in 
previous related work18,22,27; the most relevant of these as 
well as new notations will be given below. 

The sets of the complex, real, integer, and natural 
numbers are denoted by C, JR, Z, and N, respectively; a prime 
indicates that zero is omitted: C': = C\ [OJ, JR': = R\ [OJ, 
Z': = Z\ [OJ, N': = N\ [OJ, where: = means "is defined 
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by." Further, B ( , ) is the beta function, 

B(y,z): = r(y)r(z)/r(y + z), 

and f/J( ) the logarithmic derivative of the gamma function 
r( ), 

f/J(z): = r '(z)/ r (z). 

F iy and F I.iy are defined by 

Fiy(z): = 2FI(I,iy;1 + iy;Z) 

and 

FI.iY(Z): = (I + 1 + iy)- 1
2F1(I,iy -I;iy + 1+ 2;Z), 

respectively, where ~I is Gauss' hypergeometric func
tion.40--43 IF1(a;c;z) is the confluent hypergeometric function, 
satisfying the confluent hypergeometric differential equa
tion, and U(a,c,z) is a second solution ofthis equation.40 C~ 
is Gegenbauer's polynomial, andp~a,l3) Jacobi's polynomial. 
p~(z) and Q~(z) (v,,u,zeC) are the (associated) Legendre func
tions40--43 "off the branch cut," i.e., ZEt( - 00, + 1], 

When veN, both p~ and Q~ have the cut [ - 1, + 1]; 
when ,u = 0, p~==p'v has the cut ( - 00, - 1]; and when 
,u = 0 and veN, P v is Legendre's polynomial so that it has no 
branch cut at all. 

Further, C-;:;;0.5772 is Euler's constant, and 

Eo: = I, En: = 2, neN', 

(z)n: = r(z + n)/r(z), nEZ, zEtZ, 

(1 -z)n = (- Itr (z)/r (z - n), nEZ, zEtZ, 

(2n)l!: = rn!, neN, 

(2n - 1)l!: = (2n)!/(2n)l!, neN. 

Some special symbols and abbreviations in connection with 
lthe Coulomb potential are 

3: = 1 for p > k; : = exp(1T1') for p < k; 

3': = 1 for p' > k; : = exp(1T1') for p' < k, 

C ~ : = e - "i'r (1 + iy)r (1 - iy), iyEtZ' 

= e- "i'1T1'/sinh 1T1', iyEtZ, 

I ( r)-I cly : = n 1 +"2 ,iyEtZ', 
n=1 n 

c . = limc = n°O (1 + r)-I 
ooY' I~oo Iy 1 n2 

= 1T1'/sinh 1T1', iyEtZ. 

In connection with the momentum variables p, p', p, 
and p' it turns out to be practical to use several interrelated 
although redundant variables because (i) the notation is sim
plified and offers typographical advantages and (ii) it is pre
ferable to work with real variables. We shall use as "stan
dard" notation 

3003 

a: = (p - k )/(p + k ), a': = (p' - k )I(P' + k ), 

u: = (p2 + k 2)12pk, u': = (p'2 + k 2)12p' k, 

v: = (p2 _ k 2)/2pk, v': = (p,2 - k 2)/2p' k, 

w: = (p2 + p,2)12pp'; u2 - v2==1, uu' - vv'=w; 

q2: = Ip - p'1 2 = :p2 + p,2 - 2pp' cos 8, 

x 2: = 1 + 4q-2pp'vV', Re x<;O, 
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y: = (x + 1)I(x - I), x = (y + 1)/(y - I), 

y = - ei(j! , x = i tan(tp/2), O<;tp < 1T, 

l): = -In( - y);;>O when - 1<y<0, 

~: = -lny>O when O<y< 1, 

{j~ - i1T, P = cosh {j or p = - cosh ~. 

For convenience some of these definitions will be occasional
ly repeated where applied. 

Remark: We shall consider Re and Rel as functions of 
various (independent) variables, which may differ on differ
ent occasions, depending on the purpose we have in mind. 
For instance, in Sec. 12 we shall consider Re (s,k) and 
Rel (s,k ), in Sec. 15, Re (y) and Rel (y), and in Sec. 16, Re (jJ;y) 
and Rei (p' /k;w;y). Although not strictly mathematically 
correct this notation is convenient and should not give rise to 
misunderstanding if restricted to the proper context. 

D.Summary 

Representations (mostly new) for Re and Rel are de
rived in Secs. 2-5 and 7-12. Inequalities for Re and Rel are 
discussed and partly derived in Secs. 6 and 17-24. In connec
tion with these inequalities certain auxiliary functions, viz., 
the Coulomb boundary function Bel' IRe I, IRel I, and the 
Coulomb modulus functions Me and Mel are discussed 
(Secs. 13-16). As part of the inequalities, the zeros of Re and 
Rel for positive energy are derived in Secs. 18-20, and limits 
from which the optimality of the inequalities follows are de
rived in Secs. 21 and 22. 

The most important results obtained in this paper are 
given by the following equations: (2.7)-(2.9), (3.14)-(3.16), 
(4.2), (4.4), (6.1), (7.5)-(7.8), (8.2); especially convergence of 
the series in (9.1) and (10.1)-(10.3); (11.11), (11.15), (12.1), 
(12.2), (12.8)-(12.19), (12.21), (12.24), (13.1), (13.10), (13.15)-
13.23), (14.7), (15.7), (16.10), (16.12), (16.15)-(16.24), (17.1), 
(17.2), (17.8)-(17.10), (17.16), (19.4), (19.10), (19.16), (19.24), 
(19.30), (20.14), (20.30), (20.46)-(20.49), (20.69)-(20.71), 
(21.9), (21.11)-(21.13), (21.17), (21.20), (21.21), (22.5), (22.8), 
(22.11), (22.13), (22.14), (22.21), (22.26)-(22.30), and (22.42)
(22.44). 

A concise synopsis of inequalities for and limits of Re 
and Rel is given in Tables I and II, cf. Figs. 3 and 4 (Secs. 23 
and 24). 

2. NEW INTEGRAL REPRESENTATION FOR R c 

In this section we shall derive a new integral representa
tion for Re [Eqs. (2.7)-(2.9)] by using l8 

Re = 1 - iyfP + 1)100 

e- iyt 

X(jJ+cosht)-ldt, Reiy> -1, (2.1) 

where 
p: = (1 + y2)/( - 2y); - 1<y<O:p>l; 

for convenience we shall take yeR' and p> 1. Putting 
p=cosh {j with {j > 0 we get 

cosh {j + cosh t = 0 ¢} 

t = ± {j + i1r(2n + I), nEZ. (2.2) 
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FIG. 1. Contour for Rc integral representation (Sec. 2). 

Let us consider in the complex t plane the rectangular con
tour that runs from the origin 0 to p > 0, then to p + 2iTr, 
next to 2iTr, and finally from 2itr back to the origin (Fig. I). 
Denoting this contour by C and takingp-oo we find 

i = (00 _ (21Ti _ i27ri
+ 00. 

c Jo Jo 27ri 
(2.3) 

Inside C the integrand on the right-hand side of Eq. (2.1) is 
analytic except for a simple pole at t = 0 + itr. Its residue is 
easily evaluated, and with Cauchy's theorem we have 

Le - iyr /( p + cosh t )dt = - 21Tie7rYe - iy/; /sinh O. (2.4) 

Furthermore, 

i
2""+ 00 

21Ti e - iy' /( p + cosh t )dt 

= e21TY Loo e - iyr /( p + cosh t )dt. 

From (2.3)-(2.5) we find directly 

Loo e - iy' /(p + cosh t )dt 

= [I - e21TY ] - 1 [ _ 21TielTY e - iy/; /sinh 0 

(2.5) 

+ f7rie - iy' /( p + cosh t )dt ]. (2.6) 

By inserting (2.6) into (2.1) we obtain 

Rc = 1 + C~e1TYe-iY/;(1 + cosh o)/sinh 0 

(C~) 5027r eY'dt 
= - (I + cosh 0) , (2.7) 

21T 0 (cosh 0 + cos t) 

where C~: = 21Ty/(e27rY - 1). Noting that 

O<e-/; = - y< 1; 

(1 + cosh o)lsinh 0 = (1 - y)/(1 + y), 

we reduce (2.7) to 

Rc = I + C~elTY( - y)iY(l - Y)l(1 + y) 

y(l-yf(7r coshytdt -1<y<O. 
- sinh 1TY Jo I + y2 + 2y cos t ' 

(2.8) 

Equations (2.7) and (2.8) give useful and interesting new re
presentations for Rc. By analytic continuation and by 
further simple operations one can obtain other representa
tions which are, however, not essentially different. In parti
cular, representations for Rc valid for 0 <y < 1 are arrived at 
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by replacing 

elTY( - y)iY_lr (2.9) 

in Eq. (2.8) and in related representations. The proof of Eq. 
(2.9) follows by deriving the sign of the infinitesimally small 
imaginary part of ± y, using the convention 1m k W. 

3. NEW INTEGRAL REPRESENTATION FOR ReI 

In this section we shall derive a new integral representa
tion for Rc/ [Eqs. (3.14)-(3.16)] by using l8 

Rc/Q/(w) = Q/(w) - iy Ltir-1Q/(t)dt, Re iy> -/- 1, 

(3.1) 

where 

t: = uu' - uu'(t + 1/t )12; (3.2) 
for convenience we take k > O. Just as in Sec. 2 we shall apply 
contour deformation. 

For reducing (3.1) it seems natural to use the well
known expansion 

Qy(uu' - (u 2 - 1)1/2(u'2 - W12 cos t/!) 
00 

= I ( - qn€n Q ~(u)P y- n(u')cos nt/!, (3.3) 
n=O 

1< u' < u, t(JElR, - vE£N'. 

However, the condition that t/! be real prevents us from di
rectly inserting (3.3) into (3.1). Therefore, we first deform the 
contour of integration in (3.1). This wi11lead to a new integral 
representation for Rc/, from which we shall derive in Sec. 4 a 
new series representation by using (3.3). 

Let us consider the region It 1<1 in the complex t plane. 
We need to know the "nonanalyticities" of Q/ (t ), expressed 
in terms of t. As is well known, Q/ is analytic except for the 
branch cut [ - 1, I]. We use 

a: = (p - k)l(P + k), a': = (p' - k )I(P' + k), 

and assume that 

O<p' <k<p & k 2<pp', 

which implies 

-1<a'<O<a<I;O< -a'/a<1. 

Then the condition - I <t < I is equivalent to 

- 2< - uu'(t - a'/a)(t - a/a')I(2t )<0, 

(3.4a) 

(3.4b) 

(3.4c) 

from which we derive the following two branch cuts in the 
complex t plane: 

1/(aa')<t<a/a' < - I, (3.5a) 

- I <a'/a<t<a'a <0. (3.5b) 

When pp' < k 2 (ceteris paribus), we only have to interchange 
a/a' and a' / a, so that the branch cuts in this case are given by 

1/(aa')<t<a'/a < - I, 

- I <a/a'<t<a'a<O. 

(3.5c) 

(3.5d) 

Letf(z) be analytic on Izl < I except for a branch cut, 

b<z<c, - 1 <b<c<O. 

We shall reduce the integral sbzP -1(z)dz by contour defor-
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'l+i'1 Re z 

FIG. 2. Contour for Rei integral representation (Sec. 3). 

mation. The branch cut and the contours are displayed in 
Fig. 2, where llW is understood. We have, on the one hand 

JI -.'" ( - z'f -1(z)dz = - 2i sin 1Tf-l tzl' -1(z)dz, 
I+~ 1 

along 0 

(3.6) 

and on the other hand, 

= II -i", (_ z'f -1(z)dz + (( - z'f -1(z)dz. (3.7) 
1+.", Jc 

big circle B 

The last integral is obviously equal to 

2i1TD: = limic( -z'f-If!(z + iE) - f(z - iE)]dz; (3.8) 
EIO b 

by putting 

z = ei'l', O<rp<21T=? -z = eil'l'-1T), -1T<rp -1T<1T, 

the next to last integral is reduced to 

i2~ 0 [eil'l' -1T)]1l-1(ei'l')d (ei'l') = - ie - i1T1l i21Teill'l'f(ei'l')drp. 

'I' (3.9) 

By combining Eqs. (3.6)-(3.9) we obtain 

i
ll. i

21T
. . sin 1Tf-l zll-1(z)dz = - 1TD + -e - ·1T1l e'Il'l'f(e''I' )drp. 

o 2 0 

(3.10) 

Now we take f-l = iy.!(t) = Q/ (uu' - ~vv'(t + 1/t)), in
sert (3.10) into (3.1), and obtain (putting for convenience 
rp-.21T - rp) 

RciQ/(w) = Q/(w) + C~etrrD 
(21T 

- C~(21T)-IJo eY'I'Q/(uu' - vv' cos rp )drp. 

(3.11) 

By using the well-known equality40 

Q/(x + iO) - Qdx - iO) = - i1TP/(X), - 1 <x < 1, 

we have been able to derive D in closed form from Eq. (3.8), 
where b = a' / a and c = a' a must be taken, so that 

2D = ['o( _ t )iY- Ip/(UU' _ vv'(t + 1/t )/2)dt. (3.12) 
a'/a 

We have found that 

using t: = rp - 1T in the integral, we derive 

Rc1Q/(W) = C~e2trrQt(u)P/-iY(u') + Q/(w) 

- C~etrr1T-li1T cosh ytQ/(uu' + vv' cos t )dt, 

vv'<O; O<p'<k<p & k 2<pp'; l<u'<u. (3.14) 

The condition k 2 <pp' used in the derivation is essen
tial. Whenpp' <k 2 we have 0 < - a/a' < 1 sothatthebranch 
cut of Qdt), see (3.1), inside It 1<1 now becomes: [a/a',aa']. 
In this case we find the same expression as in (3.14) but with u 
and u' interchanged, i.e., 

Rc1Qdw) = C~e2trrQ t(u')P /- iY(U) + Q/(w) 

- C~etrr1T-li1TcOSh ytQ/(uu' + vv' cos t)dt, 

(3.15) 

vv' < 0; 0 <p' < k <p & pp' < k 2; 1 < u < u'. 

This follows from (3.14) by applying the transformation (t d, 
see Sec. 23. It is clear that for pp'-.k 2, hence u'-.u, either of 
these two expressions may be taken, so that (3.14) and (3.15) 
are also valid for pp' = k 2, u' = u. Note that always p=!=p', 
because p = p' implies w = 1 which means that Q/ (w) is not 
defined in this case. Note further that k> O. 

By analytic continuation (cf. Sec. 12) we obtain the de
sired general expression for Rc/ from (3.14) and (3.15). In 
particular, when k <p' <p, hence vv' > 0 and u > u', we ob
tain the expression given on the right-hand side ofEq. (3.14), 
but with one difference, viz., the factor e2trr in the first term 
on the right-hand side must be replaced by etrr , i.e., 

Rc1Q/(W) = C~e1TYQ~Y(u)P /-iy(U') + Q/(w) 

- c~etrr1T-li1TcOSh yt Q/(uu' + vv' cos t)dt, 

(3.16) 

vv'>O; O<k<p' <p; k 2<pp'; 1 <u' <u. 

To prove this we first consider the factor Q/ (uu' + vv' cos t) 
in the integrand, where - 1 <cos t< 1. Since 

uu - vv' = w = (p2 + p'2)/(2pp') > 1, p=!=p', (3.17) 

uu' + vv' = 1 + (pp' - k 2)2/(2k 2pp');;.1, (3.18) 

the argument of Q/ in the integral is, when the energy is 
positive, always ;;.1, so that no problems can arise from its 
branch cut [ - 1,1]. 

Second we consider P /- iY(U'): 

P /- iY(U') = (u' - 1 )iY/2 1 
u'+1 r(l+iy) 

X 2F1( -/,/ + 1;1 + iy;(l - u')/2). (3.19) 

Since (u' - l)/(u' + 1) = (a')2, we get either a factor (a,)iY or 
( - a,)iy corresponding to a' > 0 or - a' > 0, respectively. 
From the definition, a': = (p' - k )II p' + k), we see that 
Im( - a') W when 1m k W. Hence, 

( - a,)iY, - a' > ~ - trr(a')iY, a' > 0, 

and therefore, 

(3.20) 

D = etrrQ ~Y(u)P /- iY(U'), 1 < u' < u, (3.13) P /- iY(U'), - a' > ~ - trrp [- iY(U'), a' > 0, (3.21) 

see Appendix D of Ref. 32. Substituting (3.13) in (3.11), and which completes the proof. 
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Related integral representations follow easily with the ing 
help of symmetries of Rei, see Sec. 23 and Appendix S of Ref. P 1- ir(u')~ -""P 1- ir(ul), 
32. 

4. NEW SERIES REPRESENTATION FOR RCI 

In Eqs. (3.14)-(3.16) we have given an interesting new 
integral representation for Rei' These expressions are useful 
for further investigations of Rei' In particular, one can easily 
derive new series representations for Rei as we shall show in 
this section. The argument of Q/ in Eqs. (3.14)-(3.16) now 
has a form which makes application ofEq. (3.3) possible, as 
discussed after Eq. (3.2). 

Under the conditions of Eq. (3.14), including the case 
ppl = k2, 

VVI<O; O<p'<k<p & k2<pp'; 1 <ul<;u, 

we have 

v = (u 2 - 1)1/2>0, VI = _ (U /2 - 1)1/2 <0. 

We substitute Eq. (3.3) in the integral on the right-hand side 
ofEq. (3.14), and use 

iff ( - 1 )nr sinh rrr 
cosh rt cos nt dt = , nEN. 

o (n2 + f) 
(4.1) 

Then we obtain 

RelQ/(w) = C~e2""Q:r(u)P/-ir(u') + Q/(w) 

00 

- f ~>n(n2 + f)-IQ7(u)p/-n(u ' ), (4.2) 
n=O 

vv' <0; O<p' <k<p & k 2<pp'; 1 <u'<;u 

[u' = u only if pp' = k 2]. 

Here Eo: = 1 and En: = 2 for n = 1,2, ... ; note that 
u - u' = (p - pl)(Pp' - k 2)1(2kpp'). Related series represen
tations for this "symmetric" case (vu' < 0) follow easily from 
the symmetries of R e/, see Sec. 23 and Appendix S of Ref. 32. 

The proof of the convergence of the infinite sum in Eq. 
(4.2), in particular for the borderline case u = u', is arrived at 
by considering the asymptotic behavior (i.e., for n-oo) of 
the terms of this sum; see Appendix C of Ref. 32. 

A series representation for the "asymmetric" case, 
when vv l > 0, may be derived either from Eq. (4.2) by analytic 
continuation, or from Eq. (3.16). In the latter case one needs 
a slightly modified version of Eq. (3.3), viz., 

00 

Qy(uu' + vul cos rp) = IE" Q ~(u)P y- "(u')cos nrp, (4.3) 
n~O 

v=(u2 _1)1!2>0, v'=(u,2_1)1/2>0; l<u' <u. 

By using Eq. (4.1) we obtain 

RelQ,(w) = C~e1rYQ t(u)P ,- ir(U') + Q/(w) 

- y i: (- WEn(n2 + f)-IQ7(u)P /-n(u l), 
n=O 

(4.4) 

It is interesting to observe that the right-hand side ofEq. (4.4) 
is obtained from the right-hand side ofEq. (4.2) by substitut
ing 
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P /- "(u')-( - l)"P /- "(u'). 

Other series representations for this "asymmetric" case 
(uul > 0) follow easily from the symmetries of Rei; see Sec. 23 
and Appendix S of Ref. 32. 

5. SECOND DERIVATION OF THE NEW SERIES 
REPRESENTATION FOR Rcl 

In this section we shall give a second proof ofEqs. (4.2) 
and (4.4). In this case we use the hypergeometric-function 
representation of the full Coulomb Tmatrix in three dimen
sions l8

: 

(plTc Ip') = krrr- 2q-2[l + x-II(y)], 
00 

I(y) = - c~/r + I EnfY"/(n2 + f), (5.1) 
n~O 

X< -1, O<y<l; y=(x+ 1)1(x-1). 

The corresponding expression for - 1 <y < 0 is obtained by 
putting 

/r = e1rY( - yyr since ImytO. (5.2) 

The condition 0 <y < 1 given in (5.1) is satisfied when 

O<k<p'<p; O<a'a<al/a<l. (5.3) 

According to the definition of the partial-wave projection 
Tel of Te we have 

Rei = 2rr{ (PI Vel \PI) }-I f I (pi Te Ip')p/(cos ())d (cos ()), 

(5.4) 

where () is the angle between p and pl. By inserting 

(PlVeI \PI) = 2kr(rrpp,)-IQt!w), 

and (5.4) into (5.1) we get 

1 II RelQt\w) = Q/(w) + - X-I 
2 -I 

xI(y)Pdcos B)(w - cos B)-Id(cos B), 
(5.5) 

where 

w: = (p2 + p'2)/(2pp'), w = uu' - uv', 

q2: = Ip - p'1 2 = 2pp'(w - cos B). 

By using [recall (5.3)] 

cos £I = w - 2vv'(x2 - 1)-1 

= uu' - vv'(y + l/y)l2; 

cos £I = l<:>y = a'/a, 

cos £I = - l<:>y = ala <a'/a, 
we derive from (5.5) 

(5.6) 

1 ['Ia ( 1 ( 1 )) RelQ/(w) = Q/(w) - - PI uu' - -uu' y +-
2 ~ 2 Y 

XI(y)y-1 dy. (5.7) 

Since I(y) contains the variable y in the form Jf', where 
J.i = ir and J.i = 0,1, ... , respectively, it suffices to evaluate the 
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integral 

2D(P): = [~/ap/(uu' _ ~ vv'(Y + ~ )'1'-1 dy. (5.8) 

In Appendix D of Ref. 32 we obtain [cf. Eqs. (3.12) and (3.13) 
with p' __ k 2Ip'] 

D(p)=e- i1J"I'Qf(u)p/-I'(u'), l<u'<u. (5.9) 

From Eqs. (5.1) and (5.7)-(5.9) we easily find 

2 • .,2 00 EnD (n) 
RclQ,(w) = Q/(w) + CoD (IY) - r I 2 f 

n=O (n + ) 
= Q,(W) + C6e"1'Qt(u)p,-ir(U') 

00 

- f I (- ItEn(n2 + f)-IQ7(u)P /-n(u,), 
n=O 

vv'>o, 1 <u' <u, O<k<p' <p, (5.10) 

which coincides with Eq. (4.4). Bear in mind that 
u - u' = (p - p')(Pp' - k 2)1(2kpp'), (5.11) 

so that k <p' <p implies u' < u. 

6. THE SUPREMA 1 AND ~c,;- 1/2 OF IRc,1 
In this section we shall prove the inequalities 

IRcl I < C 61 C ~ iY) 1 ' Y < 0, 

(6.1) 

IRcll < 1, Y>O, 

valid for k <p' <p; note that 

1 C ~ iY) 1 = c/; 1/2. 

In view of the transformation invariances of Rcl (see Sec. 23) 
the region of validity of (6.1) is easily extended to 

k <p' &k <p or p < k &p' < k, i.e., (p,p')EA. 

Equation (5.10) is very convenient for proving (6.1). We dis
tinguish a real part R ;, and a remaining complex part R ~, of 
Rcl: 

Rcl = R~, + R ;" YER', (6.2) 

R ~,: = C6e"1'Qt(u)p ,- ir(u,)!Q, (w), (6.3) 
00 

R ;/: = 1 - [Q/(w)] -If I (- l)nEn (n2 + f)-I 
n=O 

into (6.4) we obtain 
00 

R;/ = 2[Q,(w)] -I I n2(n2 + f)-I( - l)n 
n=1 

x Q 7(u)P ,- n(u,) > 0; 
(6.8) 

hence, by (6.6) and (6.8), 

° <R;/ < 1 - Q/(u)p,(u')!Q,(w) < 1. (6.9) 

We use the following two basic inequalities (see Appendix B 
of Ref. 32) 

Ir(1 + iy)P;'(z)I.;;;Pv(z), z> 1, v;>O, YER', (6.10) 

and 

r(1 + v)e"1'IQ:?,(z)1 < Ir(1 + v + iy) I Qv(z), 

z> 1, v> - 1, YER', (6.11) 

where R' : = R'\ ! ° 1; equality holds in (6.10) if and only if 
v = 0, cf. 

r (1 - iy)P :r(z) = (z + 1 )ir12(z - 1) - iy12. 

From Eqs. (6.2), (6.3), and (6.9)-(6.11) we have 

IRcll.;;;R;, + C6e"1'IQt(u)P ,-iY(u')IIQ,(w) 

<R;/ +c6Ir(l+ 1 +iyHl!r(1 +iy)}-II 

X Q/(u)P/(u')IQ/(w) 

(6.12) 

where 1]/ is defined by 

1]/: = Q,(u)p/(u')lQ/(w). (6.13) 

From (6.9) it follows that ° < 1]/ < 1. Furthermore, we have 

C6IC~iY)I{:~: ;:~ (6.14) 

Hence, by (6.12)-(6.14) 

y<o, 

(6.15) 

(6.16) 

which completes the proof of (6.1). Both these upper bounds 
are suprema so that these inequalities are optimal; see Sec. 22 
and Ref. 23. 

X Q 7(u)P /- n(u'). (6.4) 7. HYPERGEOMETRIC-FUNCTION REPRESENTATIONS 

Since u,u', and ware real and greater than 1 we have FOR Rc 

Q,(w»o, p/-n(u»O, 

(- WQ7(u»0, n =0,1,2, .... 
(6.5) 

Hence all terms of the infinite sum in Eq. (6.4) are positive, so 
that R ;/ < 1. By separating off the n = ° term we have the 
stronger inequality 

R;, < 1 - Qdu)p/(u')lQ/(w) < 1, (6.6) 

which will be useful below. Inserting the equality (Ref. 40, 
pp. 178 and 179) 

00 

I (- ItEnQ7(u)p/-n(u') = Q/(w), 1 <u' <u, (6.7) 
n=O 
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In this and the following section we shall briefly discuss 
a number of representations for Rc and Rei' expressed in 
terms of the Gaussian hypergeometric function 2FI' 

First of all, from Ref. 18 we have 

Rc = 1 - (1- y)(1 + y)-I[FiY(Y) - Fiy (l!y)] (7.1) 

=y(1 + y)-IFo,iY(y) + (1 + y)-IFo,iY(l!y), (7.2) 

y=l= - 1, yE[O, (0). 

Here 

Fiy(y): = 2FI(I,iy;1 + iy;y), 

and FO,iy is a particular case (viz., for I = 0) of the function 
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FI.iY(y): = (I + 1 + iy)- 1
2F1(I,iy -I;iy + 1+ 2;y). (7.3) 

By applying the equality 

F _ iY( y) + Fiy(l/y) = 1 + r(1 + iy)r(1 - iyj( - yry (7.4) 

to Eg. (7.1) we obtain 

Rc = C~e1T7'( - y)iY(1 - y)l(1 + y) + 1 

- [(1- y)l(1 + y)J[FiY(Y) + F -iY(y) - 1] (7.5) 

= [(1 - y)/(1 + y)] [C~e1T7'( - yyY + 2/(1 - y) 

-Fiy(y)-F_iy(y)], (7.6) 

-1<y<O; vv'<O[p'<k<p; pp'#k 2 ifO=0]; 

by analytic continuation: 

y complex, Y# - 1, yEt[O, 00). 

Further, 

Rc = C~/Y(l - y)l(1 + y) + 1 

- [(1 - y)/(1 + y)J[FiY(Y) + F -iy(y) -1] (7.7) 

= [(I-y)l(1 +y)J[C~yiY+2/(I-y)-FiY(Y) 

-F_ iy (y)],O<y<l; vv'>O[k<p'<p]; (7.8) 

by analytic continuation: 

y complex, YEt( - 00 ,0], yEt[I, 00). 

8. HYPERGEOMETRIC·FUNCTION REPRESENTATIONS 
FOR Rei 

Analogous representations for Rei follow from Ref. 27, 
p. 1267. The analog ofEq. (7.1) is 

2RelQ,(w) = - Cly [.7I/(iy) + '6'1 + 2Y,Qo(w)], 

cl; I: = (I ~ iY)(1 ~ iY) = )J/l + ~). 

(
w + 1) (p + p' )2 2Qo(W) = In -- = In --, , 
w-l p-p 

.7/: = Fiy (aa')P \ - iy,iY1(U)P\ - iY.iY1(U') 

+ Fiy(l/(aa')jp\iy. - iY1(U)P\iY, - iY1(U') 

- Fiy(a'/a)p\iY, - iY1(U)P\ - iy.iY1(U') 

- Fiy(a/a')P\ - iY';YI(u)P\iY. - iY1(U'), 

(8.1) 

and '6' I and Y I are simple rational functions, given explicit
ly in Ref. 27. In particular, '6'0 = Yo=O, and for real k and 
y we have 1m 2" I = ° and 

1m '6'1 = - 2y-1 Imp\iy,-iY1(u) Imp\iy,-iY1(u'). 

From Eq. (8.1) we obtain an analog of(7.5) or (7.6), by using 
Eq. (7.4). Just as in Sec. 6, it is convenient to distinguish a 
complex part R ~I and a remaining real part R ~I (for k > ° 
and yreal) 

ReI=R ~l + R ~/' 

- YCI; IQI(w)R ~I 
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XP\iy, - iY1(u')lm[ aiYP)iY. - iY1(U) j, 

- YCI; IQ/(w)R ~I 

= (y/2)Re '6'1 + yQo(w)YI 

+ 1m P\iy, - iYI(u)Re P)iY, -iY1(U') 

+ Im{P\ - iY,;YI(u') [P\ - iy,iYI(u)Fiy(a'a) 

- P\iy, - iY1(u)Fiy(a'/a)]}, 

Note that 

lim R ~l = 0. 
at _0 

(8,2) 

(8.3) 

A representation analogous to (7.7) or (7.8) is obtained 
by replacing, in the expression for R ~/' e7TY( - a,)iy by (a')iY; 
the resulting representation is valid for 

O<a' <a; vv'>O; O<k<p' <p; YER. (8.4) 

In this case Eq. (8.3) is still valid. 

9. SERIES REPRESENTATIONS FOR Re VALID FOR 
NEGATIVE ENERGY 

In this section we shall discuss some series representa
tions for Rc that are valid for negative energy [see the remark 
on the allowed values of K, at the end of this section]. In Sec. 
10 analogous series representations for Rei will be consid
ered. The series to be discussed are known in the literature as 
Sturmian series, and also as Weinberg series,38,39 see the re
ferences cited by Sloan.34 Some of these series for the Cou
lomb T matrix mentioned in the literature are divergent, 
whereas for others "the convergence is conditional at best" 
(Ref. 34, p. 1016; see also p. 1020). As it does not seem to be 
known whether these series, in certain cases, are divergent or 
convergent-and if convergent, to which values-it is 
worthwhile to consider them here again. To be more specific: 
We shall prove, by using Abel's theorem on power series, 
that the series in Eqs. (9.1)-(9.3) and (10.1)-(10.3) do con
verge, and moreover to the correct values. For the Coulomb 
ratio Rc we have 

R = I _4_ ~ S/K CI (X2+ 1) (9.1) 
c + 2 £.. n-I 2 1 1 - x n ~ 1 n - S/K x -

4 I' 2:00 

nne 1 (X2 + 1) =---lm t nl--
1 - x 2 

t 11 n ~ 1 n - S/K - x 2 
- 1 

= 1 + 2(1 + cos qJ) ntl (~) (n - ~) -1 

XC! _ d - cos qJ), 

where (9.3) is merely (9.1) in another notation, and 

K= - ik > 0, x 2 < 0, 

x 2 : = _ (p2p'2 + K4 + 2K2pp' cos 0 )I(~q2), 

q2: = p2 + p,2 _ 2pp' cos 0, 

(x2 + l)/(x2 - 1) =: - cosqJ, O<qJ<1T, 

- s/K=iyER, - 1 + s/KEtN. 
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The connection with Eq. (2.1) is obtained by taking 

x = i tan rp/2; y = (x + 1)/(x - 1) = - ei'P, 0 <rp <1T; 

bear in mind that 

p>O, p'>O, and q>O 

is assumed throughout. Note further that 

C~( -z) = (- ItC~(z), (9.4) 

and 

C ~ _ 1 (cos rp) = sin nrp Isin rp, n = 1,2, ... , (9.5) 

so that (9.3) with (9.5) inserted reminds us of the well-known 
formula 

'" (2). I (- It -I - sm nrp = rp, -1T<rp <1T. 
n~ 1 n 

(9.6) 

Clearly the limit rp-o (x-o) may not be taken after the 
summation symbol in (9.3). 

To prove Eqs. (9.1) and (9.3) one may use Eq. (2.1), 
which is easily rewritten as 

Rc = 1 - 2iy(1 + cos rp)f(t2 + 1 + 2t cos rp)-Itir dt. 

(9.7) 

To ensure convergence here we take 

- ir==slK < 1. (9.8) 

Further we use the well-known formula 

'" (t 2 + 1 + 2t cos rp)-..t = I C~_ II - cosrp)tn- I, 
n=l 

It 1< 1, A #0. (9.9) 

Then it is straightforward to obtain34 

Rc = 1 + 2 ( ~)( 1 + cos rp)lim I t n (n - ~) -1 
\; ttln~1 K 

(9.10) 

It takes only one further step to derive (9.3) from (9.10). With 
this aim we invoke Abel's theorem on power series. 

(i) If the power series l:O'anzn converges for z = e, it 
converges absolutely for Izl < lei· 

(ii) Ifl:O'anzn converges for z = r> 0, thenS, defined by 

'" S(z): = Ianzn, O,;;;;;z';;;;;r, (9.11) 
o 

is continuous on [O,r]. This is most explicitly designated by 
"Abel's theorem on continuity up to the circle of conver
gence." 

With this theorem and Eqs. (9.5) and (9.6) one easily 
verifies that the limit and the sum in Eq' (9.10) may be inter
changed, which proves Eq. (9.3). Clearly the condition sl 
K < 1 of (9.8) may be relaxed in (9.10) and in (9.3). One must 
only avoid the values SIK = 1,2,3, ... , which correspond to 
the Coulomb bound-state poles of the T matrix. It is also 
clear that rp must be real with 0 < rp < 1T, cf. Eq. (9.5); this 
implies that either K must be real or 

~ = pp'eiU( - 1T<a <1T)& cos a + cos 0>0. (9.12) 

Equation (9.2) follows similarly; here it is not allowable 
to interchange lim and l: because the resulting infinite sum is 
clearly divergent. 
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10. SERIES REPRESENTATIONS FOR RCI VALID FOR 
NEGATIVE ENERGY 

In this section we shall discuss some Sturm-type series 
representations for Rei' which are valid for negative energy 
only. They are the natural analogs of the series for Rc given 
in Sec. 9; there we have given some preliminary remarks 
about these Sturmian series. First we give the formulas and 
then their convergence and validity will be proved. 

The partial-wave analogs of Eqs. (9.1 )-(9.3) are 

Rei = 1 + (l!)2 [2Q,(w)) -I( - vv'/4) -1- I 

'" SIK (n-I-l)! 
X I 

n ~ 1+1 n - SIK (n + /)! 

C 1+ I (u )c1+ I (u') X n-I-I --;; n-I-I -;/' 

Rei = (/W[2QI(w)] -iI - vv'/4)-I-1 

X I n (n - 1- I)! 
n~I+1 n -SIK (n +/)! 

C 1+1 (U)CI+I (u') X n-I-I -; n-I-I J' 
which is essentially Eq. (12) of Ref. 27, p. 1274, and 

Rei = I + (l!)2 [2Q,(wl] -1(4 sin X sin X ')1 + I 

(10.1) 

(10.2) 

X I'" SIK (n-I-I)!C 1+1 ( ) --- -cosx 
I (n + I) '. n-I-I 

n~I+ln-SK 

xc~~L I (cos X '), 

where (1O.3a) is just (10.1) rewritten, and 

- eix = a = (p - iK)/(p + iK), 

_ cos X = ulv = (p2 _ ~)/(p2 + ~), 
sin X = 2pK/( p2 + K2), 

- cos X' = u'lv' = (p,2 _ ~)/(p'2 + ~), 
sinx' = 2p'K/(p,2 + K2), 

- l/vv' = sin X sin X' > 0, 

(1O.3a) 

O<X<1T, O<X'<1T, X#X', p#p', u#u', 

K= - ik > 0, - SIK=iYER, - 1- 1 + SIKEEN. 

'" For I = 0, Eq. (1O.3a) reduces to 

Rca = 1 + (_2_) I (~) (n - ~) -I sin nx sin nx'. 
Qo(w) n~1 nK K 

(1O.3b) 

As noted by Sloan,34 it is convenient to apply the addi
tion theorem for Gegenbauer polynomials.41 Then it is easy 
to derive from, e.g., the integral representation (2.1), Eqs. 
(10.1)-(10.3) at an earlier stage, viz., these equations with the 
substitution 

'" '" 
I 

n~l+ I 

---~.lim I (n .... 

tTln~I+1 
(10.4) 

So it suffices to prove that limit and sum may be inter
changed here. In other words, one has to prove the (condi
tional) convergence of the series in (10.1)-( 10.3), and further 
that the series converge to the correct values; this problem 
was left open by Sloan.34 

(i) We shall first prove that the infinite series in Eqs. 
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(1O.1HlO.3) are convergent. In fact, the sum in (10.2) is only 
conditionally convergent, whereas the sums in (10.1) and 
(10.3) are absolutely convergent [note that the terms of the 
sum in (10.2) are just a factor n bigger]. To this end we use a 
formula for the asymptotic behavior, for large n, of the Ge
genbauer polynomials,41 

C~~L dcosx) 

= (nI2)1 (/!) - I(sin X) - 1- I sin(nx - 11'112) 

+ O(nl
- I), n-oo, (10.5) 

valid uniformly for 0 < E<X<1I' - E < 11'. By using Eqs. (9.4) 
and (10.5) we obtain from Eq. (10.2) 

RelQI(w) 

'" ( s)- I 2: n--
n=I+1 K 

(10.6) 

f (n - ~) -I [cos(nx - nx/) 
n=I+1 K 

- ( - IV cos(nx + nx')] [1 + 0 (!)]. (10.7) 

These series converge since 0 < X < 11', 0 < X I < 11', and X 1= X I, 
cf. 

'" 2: n- I cos(2mp) = -In(2 sin fP), 0 < fP < 11'. (10.8) 
n= 1 

This proves that the sum in Eq. (10.2) is conditionally (but 
not absolutely) convergent. It follows easily that the sums in 
Eqs. (10.1) and (10.3) are absolutely convergent; their terms 
behave like n- 2 for large n. 

(ii) Second we shall prove that the sums in Eqs. (10.1)
(10.3) converge to the correct values, i.e., that the right 
members are equal to their respective left members. To this 
end we recall Abel's theorem on power series, which has 
been set out in Sec. 9. We denote the infinite sums including 
the factor tn, see Eq. (10.4), in shorthand notation by ~A n tn. 
In (i) we have proved that ~n converges; with Abel's 
theorem we then have 

(10.9) 

Since the left member is equal to the left members of Eqs. 
(10.1), (10.2), and (1O.3a), respectively, it follows that limit 
and sum may be interchanged. 

This completes the proof of Eqs. (10.1 H 10.3). 
For more details on convergence properties of the Stur

mian expansion of the Coulomb T matrices, in particular 
near the special points p = 0, pi = 0, and p = pi, see Sloan34 

and references cited therein; for numerical results showing 
bad convergence of these expansions, see Chen and Ishi
hara. 36

•
37 

The residues of Rei at K = sin, n> I, follow directly 
from Eq. (1O.3a): 
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lim (siK - n)Rc/ 
K-+sln 

= _ n(/!)2(n -1- 1)![2(n + I)!QI(W)]-I 

X (4sinX sin X 'V+ IC~~L 1 (cos X ) 

xC~~L I(COSX ' ), 

K = sin, n = / + I, / + 2, .... 

(10.10) 

Since 0 <X < 11' and 0 <X I < 11', this residue is different from 
zero when n = I + 1 so that Rei has always a pole at K = sl 
(I + 1). However, the residue may vanish when n > 1 + 1; 
this occurs at the well-known zeros of the Gegenbauer po
lynomial C ~ ~ 11_ I on ( - 1,1). For simplicity we shall con
sider the 1 = 0 case: Then we have 

I· (s )R _-_2_si_n_n.:.cXL...:...si ...... n_n..<:!X~' 1m --n c()= 

K-sln K Qo(w) 
(10.11) 

Defining 

Xm,n : = 1I'mln; n> 1; m = 1,2, ... , n - 1, (10.12) 

we see that for X = X m,n' and for X I = X m,n' the residues of 
Rc() at K = sin, sl2n, s/3n, ... are zero. At these points R<.f) is 
continuous in K. This remarkable fact indicates that no sim
ple inequalities exist, apart from those to be enumerated in 
Sec. 24, for Rei for negative energy in the case of attraction. 

11. INTEGRAL REPRESENTATIONS FOR Rc VALID FOR 
NEGATIVE ENERGY 

The integral representation for Re given by Eq. (2.8) is 
not directly suitable for negative energy. In this section we 
shall modify this equation such that analytic continuation in 
particular to negative energy becomes possible; see Eq. 
(11.11). This representation may be useful for deriving in
equalities for Re for negative energy and s > K, in the future; 
in the collection of inequalities in Sec. 24 we consider only 
s <K (note that Re has a simple pole at s = nK, n = 1,2, ... ). 

We begin by inserting 

C 6 e"T = 1T1' Isinh 1I'y, 

y = - e - s, 8> 0 

into Eq. (2.8), which yields 

Re sinh 1TY = sinh 1I'Y + 17('(- y)iY(1 - y)/(1 + y) 

_ ('(1 - y)2fT(1 + y2 + 2y cos t )-1 

(11.1 ) 

X cosh ytdt( - 1 <y<O) (11.2) 

= sinh 1T1' + 1T1'e- iyS(eS + 1)1(es - 1) 

- r(l + cosh 8 )f'(COSh b - cos t )-1 

X cosh yt dt (8 > 0). (11.3) 

We shall use the auxiliary formulas41
.4

2 

r iff cosh rt dt = sinh 1TY, (11.4) 

("'(cosh 8 ± cos t)- Idt = _._11'_, 8> 0, (11.5) 
)0 smh 8 
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and 

i17(COSh8-COSt)-I(1 + cos t)dt= (e/: 1)' 8>0. 

(11.6) 

Then we obtain from Eq. (11.3) 

and 

Rc = 1 + y(sinh 17/')-1(1 + cosh 8) 

X 117(COSh 8 - cos t ) -I(e - iy6 - cosh yt )dt, 

(11.7) 

Rc sinh 17/' = y 117(COSh 8 - cos t)-I(1 + cos t) 

X [e - i
y6(e6 + 1)/2 - cosh yt ]dt. (11.8) 

We wish to perform analytic continuation to arbitrary nega
tive energy. Then 8 becomes purely imaginary, so that the 
integrand in Eq. (11.8) becomes singular (nonintegrable). We 
remove this singularity beforehand, by adding the term 
cos y8 - cos y8 =0 inside the square brackets on the right
hand side ofEq. (11.8). By using Eq. (11.6) we obtain in this 
way 

Rc(1Ty)-1 sinh 17/' 

= (e6 _ 1)-I(e6 - iy6 _ e iy6) 

+ 1T- l !o17(l + cos t )(cos y8 - cosh yt) 

X (cosh 8 - cos t )-1 dt. (11.9) 

Now we are in a position to perform analytic continuation to 
negative energy: K= - ik > O. Then x and 8 become purely 
imaginary, and Iyl = 1. Putting (cf. Sec. 9) 

a: = iyelR'\Z, x = i tan rp/2, 

y =(x+ 1)/(x-l)= _ei'l' = _e- 6, 

8 = - In( - y) = - irp, 0 < rp < 1T, 

we get at once from (11.9) 

R = ~[sin(!-a)rp 
c sin 1Ta sin !rp 

(11.10) 

1 L17(1 ) cos arp - cos at dt] +- +cost , 
1T 0 cosrp-cost 

(11.11) 

o <rp < 1T. 

This is a very convenient representation valid for negative 
energy; only those values of K for which a==.iy== - S/K is an 
integer are to be excluded. Note that the integrand in (11.11) 
is continuous when the isolated singularity at t = rp is re
moved. As is well known, Rc has bound-state poles (only) at 
S/K = 1,2,3, .... So we expect that the singularities of the re
presentation (11.11) at a== - s/ K = 0,1,2, ... can be removed. 
It can be seen upon inspection that 

limRc=l, 
a~ 

(11.12) 

as expected. NowletneN': = {1,2, ... j; then we have to prove 
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that 

1T sin(! - n)rp [ 
+ 0 (1 + cos t) 

sin !rp 

X (cos nrp - cos nt )/(cos rp - cos t )dt = 0, 

neN'. 

One easily verifies that (11.13) is equivalent to 

(17 (cos nrp - cos nt ) dt 
Jo (cos rp - cos t) 

(11.13) 

=1Tsinnrp/sinrp,neN,O<rp<1T, (11.14) 

which equality is proved in Appendix E of Ref. 32. 
It is interesting to observe that the equality (11.13) can 

be used to derive the residue of Rc at a = - n from Eq. 
(11.11): 

lim (~ - n) Rc = lim - (a + n)Rc 
slK--n ~ a_ - n 

= ( _ Itn[ sin(~ + n)rp + 1T- I (17 ... ] 
sm!rp Jo 

= ( - Itn [sin(! + n)rp - sin(! - n)rp ]/sin!rp 

= ( - tr2n sin nrp cot !rp. (11.15) 

The same expression for this residue is easily obtained from 
Eq. (9.3), with the aid ofEqs. (9.4) and (9.5) 

C ~ _ I ( - cos rp) = ( - It - I sin nrp /sin rp. 

The residue ofRc given by (11.15) is different from zero when 
n = 1 so that Rc has always a pole at K = s. However, the 
residue may vanish when n > 1. Defining 

rpm,n: = 1Tm/n; n> 1; m = 1,2, ... , n - 1, 

we have from Eq. (9.3), 

Rc(rp = rpm,n) = 1 - 2 cot(1Tm/2n) 

(11.16) 

X i: '( -lts(KN -S)-I sin(1TNm), 
N=I n 

(11.17) 

where the prime indicates that the terms for N = n,2n,3n, ... 
are to be omitted. Clearly Rc is continuous in K at K = sin, 
s/2n, s/3n, ... in this case. This remarkable fact indicates that 
no simple inequalities exist, apart from those to be given in 
Sec. 24, for Rc for negative energy in the case of attraction. 

12. ANALYTIC CONTINUATION OF 
REPRESENTATIONS FOR Rc AND RCI 

In this section we shall discuss the analytic continu
ation with respect to k of representations for Rc and Rei' 
Several representations given in preceding sections are valid 
for Re iy> - 1 and Re iy> -/- 1, respectively (and 
1m k;>O). Further analytic continuation is in the first in
stance prevented by the Coulomb bound-state poles at 
iy = - n, wheren = 1,2, ... for Rc andn = / + 1, / + 2, ... for 
Rei' These poles are easily recognizable in the appropriate 
formulas below, where the residues at these poles will also be 
given. So in the complex k plane we have the following. 

for Rc:n = 1,2, ... , 
(i) Poles at k = is/n; t' R . _ / 1 / 2 

lor eI.n - + , + .... 
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The remaining singularities of both Re and Rei in the com
plex k plane consist of the following. 

(ii) An essential singularity at k = 0. 
(iii) Branch points at k = p, k = - p, k = pi, and 

k= -p'. 
(iv) Branch cuts connecting these branch points. 

When ° <p' <p the most convenient choice for these branch 
cuts is ( - 00, - p], [ - p',O], [O,p'], and [p, (0). 
Throughout this section we assume that ° <p' <p and we 
shall denote the four branch cuts, excluding the branch 
points, by {j ± 1 and {j ± 2 according to: 

{j_z:kE( - 00, - p), {j_I:kE( - p',O), 

{j2:kE( p, 00 ), (j + 1 :kE(O,p'). 
(12.1) 

(Note that p = pi is allowed only for R e, provided () > 0.) The 
discontinuities of Re and Rei across these branch cuts will be 
given below. 

This section is the only one where we take the lower half 
of the complex k plane into account, 1m k < 0. In all other 
sections we restrict ourselves to 1m k;;.O, Re k;;.O, and k #0, 
and for k > ° the limit 1m k!O is implicitly understood. 

Remark: We indicate those variables of the Coulomb 
ratios that are useful for the discussion in question. For in
stance, below we shall discuss Re =Re (s,k ), whereas in Sec. 
16 we shall deal with Re(P;Y)' Although this notation is not 
consistent, it is the most convenient, and in the right context 
no misunderstanding is possible. Note further that Y- - s/ 
k where sand k are the basic, independent variables. 

Analytic continuation of representations for Re and Rei 
follow easily from their hypergeometric-function represen
tations; see Secs. 7 and 8, respectively. A particularly useful 
equality in this connection is 

F.y(z) +F _iy(l!Z) 

= 1 + (1Ty/sinh 1TY)( - z) - iy, ZEt[O, (0). 

Alternatively one can use the series representations given by 
Eqs. (5.1) and (4.4) [cf. Eq. (3.16)], where one should also be 
aware of the branch cuts of Q iY(u) and P ,- iY(U '), which are 
given by Ik I = p and Ik I = p', respectively. Next we are go
ing to give some interesting results that were derived in Ap
pendix G of Ref. 32, to which the reader is referred for more 
details. 

For Re we have 

Re(s) - Re( - s) = (ry/sinh 1TY) 

X(l- y)(l + y)-I[( _ y)iY _ (_ y)-iY], 

(12.2) 

which expression has a branch cut for ° <y < 1, i.e., on {j ± 1 

and {j ± 2' When - 1 <y < ° (the "symmetric" case, cf. Sec. 
23) Rc has no branch cut and we have 

Rc(s)-Re(-s)=Rc(s)-R~(s), -1<y<O. (12.3) 

When the energy is negative we have Iyl = 1 so that we may 
put 

y = - ei"', O<Cp<1T. 

Putting further 

a: = iy = - S/KER'\Z, 

we have from Eq. (12.2) 
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(12.4) 

(12.5) 

Re(s) - Re( - s) = - 21Ta(sin 1Ta)-1 sin cpa cot(cp/2). 
(12.6) 

This result also follows easily from Eq. (11.11). The residues 
at the poles of Re follow directly from Eq. (12.6) [cf. (11.15)] 

lim (!.. - n)Re = ( - l)n2n sin ncp cot(.£), (12.7) 
K~sln K 2 

K = sin, n = 1,2, .... 

The discontinuities across the branch cuts {ji also follow 
from the hypergeometric-function representations. We de
fine 

.J (s,k): = 21TYX- 1IyliY, 

kER, k #0, k # ±p, k # ±p'. 

Then.J is invariant under p+-top' and 

lim [ Re (s,k + iE) - Re (s,k - iE)] 
EIO 

for = { .J (s,k) 
-.J (s,k) for kE{j_1 

Further, for pi < k <p we have 

.J (s,k) +.J (-s,k) 
= 21TYX- I(lyliY -Iyl-iy) 

(12.8) 

(12.9) 

= - 2 sinh 1TY[ Re(s) - Re( - s)], pi < k <po (12.10) 

It may be noted that 

.J ( - s, - k ) = .J (s,k). (12.11) 

For the Coulomb ratios Rei we have obtained32 [in ana
logy with (12.2)] 

ReI(s) - Re,( - s) 
= - 2iyQ t(u)Q ,- iY(u')lQ, (w), pi < Ik I <p 

- 2iyQ ,- iY(U)Q t(u')lQ,(w). (12.12) 

(The identity here is valid whenever these functions are de
fined.) The conditionp' < Ik I <p stems from the branch cuts 
of Q / iY(U) and Q ,± iY(U'), which are Ik 1= p and Ik 1= p', 
respectively. An expression with broader validity can be giv
en in terms of the Jacobi polynomials P \iY, - iy ), see Appendix 
G of Ref. 32. When p' < k <p, R e, has no branch cut and we 
get the interesting relation 

ReI(s) - R eI ( - s) = ReI(s) - R :its), pi < k <p, (12.13) 

which is the natural analog of(12.3). 
The residues at the poles follow from (12.12), but more 

readily from Eqs. (10.1) or (10.2) [cf. (10.10)] 

lim (!.. - n)ReI = - n(1 Win - 1- I)! [2(n + l)!Q,(w)] -I 
K_sln K 

x( - 4/VV')'+ Ic~~L 1 (u/v) 

XC~~I'_I(U'/V'), K=s/n, 

n = I + 1,1 + 2,00' . (12.14) 

The discontinuities of Rcl across the branch cuts {j; fol
low from the hypergeometric-function representations given 
in Sec. 8. We define 

.J,(s,k,p,p'): = - 21Tye1Tf'P ,- iY(U')Q ;Y(u)/Q,(w), 

kER, k #0, k # ±P, k # ±p', p>O, p'>O. (12.15) 
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Then..1 1 is not invariant under p~p'; it is even in k, 

..1 /(s,k,p,p') = ..1 I (s, - k,p,p'), (12.16) 

and for I = 0 we find 

..1o(s,k,p,p') = 21T[Qo(W)] -lla'liY sin (y Inial). (12.17) 

Across the ~i we have [bear in mind (12.1) and 0 <p' <p] 

lim [Rc/(s,k + iE) - Reds,k - iE)] 
<'10 

= ..1 I (s,k,p,p') for kEl>l; 

= -..1 /( -s,k,p,p') for kE~_I; 

= - ..1 I (s,k,p',p) for kE~2; 

=..1 /( -s,k,p',p) forkEl>_2' (12.18) 

Interestingly enough, the partial-wave analog of Eq. (12.10) 
has a very similar form: 

..1 /(s,k,p,p') + ..1 /( - s,k,p,p') 

= - 2 sinh 1TY[ Rc/(s) - R e/ ( - s)], p' < k <p. 
(12.19) 

Finally we give some interesting limits: 

lim ..1 (s,k) = ± 21T(~)la'l +isl\ k~O, p---.oo p 
(12.20) 

and 

lim p' lim..1 (s,k) = 21TS sgn(k). (12.21) 
p'-oo p--oo 

The factor sgn(k) arises from the convention 18 that Re x,O. 
It would disappear if we were to follow the convention 

x;SO if k~O, (12.22) 

in which case..1 (s,k) would be even in k, just as ..11 (s,k,p,p'). 
For..1 1 we have obtained [cf. (22.18) and (22.39)] 

lim ..1 /(s,k,p,p') p---.oo 

= - 2ry(k/p')'+ Ip ,-iY(u')r(1 + 1 + iy)/l! (12.23) 

and 

~im p' lim ..1 /(s,k,p,p') = 21TS4- /(2/'), p --- 00 p--+- 00 

(12.24) 

which is the natural partial-wave analog ofEq. (12.21). 

13. THE COULOMB BOUNDARY FUNCTION Bel 

The Coulomb boundary function Bel is a limiting case 
of the Coulomb ratios Rei (for alII) and Re (for 1= 0). We 
expect that it will play an important role in inequalities for 
Re and Rei [see the conjectures (cl) and (c2) in Sec. 17]. In 
this section we shall briefly discuss the function Bel' For a 
more extensive study of Bel the reader is referred to Appen
dix H of Ref. 32. 

We define the function Bel' 1=0, 1, ... by 

BeI(z) = 1 - 2z loo e-2z'(cosh t)-2/-2 dt, 

Rez> -1- 1. (13.1) 

Analytic continuation with respect to z will be considered 
below. Several other representations for Bel can be derived 
from Eq. (13.1); for example, through integration by parts we 
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get 

Bedz) = (21 + 2) loo e - 2z. (cosh t) - 2/- 3 sinh t dt, 

Rez> -1-1. 

According to Eq. (22.11) we have 

Bediy) = lim lim Rei, (13.2) p---.oo p'-+O 

where p and p' may be interchanged, and the order of the 
limits may be reversed. For 1= Owehave [see Eqs. (21.9) and 
(21.10)] 

(13.3) 

where y ~ - 1 corresponds to either 

pp'-.k 2&e-.D, 
or 

p-.D&p'-.oo or p'-.D&p-.oo, anye. (13.4) 

It is noteworthy that BcO is a limiting case of Re as well as 
Rei ~ 0 • We mention further the integral representations 

BcO(iy) = 1 - (ry/sinh 1TY)[ 2iy + (2/1T) 

X i1T (cosh yt - 1)(1 - cos t)-I dt ] (13.5) 

= (ry/sinh ry)[ - 2iy + 1 

4 ('"12 ] - -; Jo cot2 t sinh2 yt dt . (13.6) 

These results follow from Eq. (2.8) by evaluating the limit in 
(13.3), and also from Eqs. (3.14) and (3.15) by performing the 
limit in (13.2), for I = O. Application of the limit in (13.2) to 
Eq. (3.14) seems impossible for I > O. However, we have been 
able to derive the general -I analogs of Eqs. (13.5) and 
(13.6) in a different way; see Eq. (13.22) below. 

Interesting series representations for BcO are 
00 

BcO(iy) = 1 - 2iy + 4yZ L (- Inn + iy)-I 
,,~I 

= - 2iyry/sinh ry + 1 - 4yZ 
00 

X L [2n(2n - 1) - yZl 
,,=1 

X [ {(2n - W + yZ} 

X(4n2+yZ)]-I. 

(13.7) 

(13.8) 

By using these expressions we have been able to prove the 
conjecture (c2)' for I = 0, i.e., 

ry/sinh ry< IBcO(iy)l, y>O. 

Here we shall give certain relevant information about 
Bel for I = 0, 1, .... Proofs can be found in Ref. 32. 

Several hypergeometric-function representations fol
low from Eq. (13.1), e.g., 

Bc/(z) = 1 - 2z(z + 1+ 1)- 1
2F I(1,z -I;Z + 1+ 2; - 1) 

= (21 + 2)(z + 1+ 1)-I(z + 1+2)-1 

XzFI(2,z -I;Z + 1+ 3; - 1). (13.9) 

From these and similar relations one can easily obtain 
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various series and integral representations, and the equality 

Bet! - z) = Bc/(z) + 4/+ IzB (I + 1 + z,1 + 1 - z), 
(13.10) 

which is useful for analytic continuation. From this relation 
one finds 

1m Bc/ (iy) = - 2y41r (l + 1 + iy)F (I + 1 - iy)/(21 + 1 )!, 

YER. (13.11) 

The asymptotic behavior of B c/ (iy) follows from Eq. (13.1) by 
integrating by parts 

Bet!iy) = - (I + 1)(2y)-1 - (I + 1)(1 + 3114)y-4 

+ O(y-6), y-H/J. (13.12) 

Further, 

Re Bc/(fy) = 1 - 4b l y + 0 (t), y-G, 

bo = In 2, lim 21bl = 1, (13.13) 
I~", 

and bl is strictly decreasing in I. The numbers bl can be cal
culated from the recursive relation 

(21 + l)b l = - (21)-1 + 21b l _ P 1=1,2, ... , (13.14) 

which follows from the recursive relation for Bc/ 

(21 + I)Bc/(iy) = 1 + 2(1 + YII)Be,l_ diy), 

1= 1,2,.... (13.15) 

The quantity Ir(1 + 1 + iy)I- 2 Re BcI(iy) is strictly de-
creasing in yon [0, (0), from (I !)-2 to - 00. Hence, Re Bc/(iy) 
possesses one and only one positive zero y, which we denote 

bYYI' 

ReBc/(iY/)=O, 1=0,1,.... (13.16) 

We have found that 

Yo S 0.90, 

(21 + 1)/4 < 11 <l + 1, 1=0,1, ... , 

and 

lim 1-111=z", ~0.855, 
I~", 

where z '" is the only positive zero z of the function 

(13.17) 

(13.18) 

(13.19) 

IFI( - !;!;z)=e' [ 1- 2zjFI(I;~; -z)]. (13.20) 

Further, 

lim ReBcdiJi/) = e-ZjFj( - !;!;Z), z>O. (13.21) 
1_", 

The generalization to 1=0, 1, ... of the integral repre
sentation (13.6) reads 

Bcdiy)/B (I + 1 + iy,1 + 1 - iy) 

= (21 + 1)!(/!)-2 - 4' [2fY 

4 (1712 ] + -;; Jo (sinh yt Isin t f(cos t fl + 2 dt , 

1= 0,1, .... (13.22) 

Representations for IBc/(iy) 12 can be given analogously with 
those for IReI 12. In this connection we mention the interest
ing equality 

(13.23) 
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14. REPRESENTATIONS FOR IRel 

In this section we shaH give some representations for 
IRe 1

2
, valid for positive energy in the "symmetric" case (cf. 

Sec. 23) 

k>O, YElR, 

(14.1) 
-1.;;;y<O; p:=(I+y2)/(-2y);;;,1. 

In this case IRe I is even in y. The representations given below 
may be useful for deriving inequalities for IRe I. 

By using Eq. (2.1), 

L'" e-iytdt 
Re = 1 - iy(p + 1) , 

o (p + cosh t) 
(14.2) 

and after performing integration by parts we obtain 

Re = l'" g(t)e - iyt dt, YElR, (14.3) 

where 

g(t): = (p + l)sinh t (p + cosh t )-2, t;;;,o; (14.4) 

wedefineg(t): = o for t < O. Clearly gisa real and continuous 
function; so it can be seen by inspection that IRe I is even in y. 
It follows that (cf. Appendix F of Ref. 32) 

IRe 12 = 2a l'" cos(ayx) l'" g(t )g(t + ax)dt dx 

= 2a 1'" g(t) 1'" cos(ayx)g(t + ax)dx dt, (14.6) 

a> 0, yER, g(t )ER. 

Here a is an arbitrary positive parameter. Taking a = 1 and 
inserting Eq. (14.4) we obtain 

IRe 12 = 2(p + w l'" COS yx l'" sinh t 

X sinh (t + x)(p + cosh t)-2 

X [p + cosh(t + x)] -2 dt dx. (14.7) 

By integrating by parts we obtain some related representa
tions for IRe 12. Note in particular that 

2( P + 1)2 i'" sinh t ( P + cosh t ) - 2 

X L'" sinh (t + x)[ P + cosh(t + x)] -2 dx dt = 1, 

(14.8) 

which corresponds to Rc = 1 for y = O. By using (14.8) we 
obtain from (14.7) 
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IRe 12 = 1 - 4(p + 1)2 1"0 sin2 (r;) 100 
sinh t sinh(t + x) 

X(p + cosh t )-2[ P + cosh(t + x)] -2 dtdx (14.9) 

= - 1 + 4( p + 1)2 100 
cos2 ( r; ) 

X 100 
sinh t sinh(t + x) (p + cosh t )-2 

X [p + cosh(t + x)] -2 dt dx. (14.10) 

Further we have derived from Eq. (14.7) 

and 

IRe 12 = 1 - 2r(p + 1)2 i oo 
sin yx i oo 

sinh t 

X(p + cosh t)-2[ p + cosh(t + x)] -I dt dx, 
(14.11) 

IRe 12 = 1 - 2y(p + 1) loo sin yx(p + cosh X)-I dx 

+2y1(p+ If 100 
cosyx 100 

(p+cosht)-I 

X [p + cosh(t + x)] -I dt dx. (14.12) 

All these representations are valid under the conditions giv
en by Eq. (14.1). 

15. REPRESENTATIONS FOR I ReI I 
This section runs parallel to Sec. 14. Here we shall give 

some representations for IRelI2, valid for positive energy in 
the "symmetric" case [cf. Sec. 23] 

k>O, YER, VV' <0. (15.1) 

In this case IRell is even in r. The representations given be
low may be useful for deriving inequalities for IRell. 

We begin by Eq. (3.1), 

RelQ/(w) = Q/(w) - iy f i'Y- 1 Qds)dr, 

(15.2) 
s: = uu' - vv'(r + 1Ir)/2 = uu' - vv' cosh t, 

where r = e - '. With the new variable of integration t, we 
obtain through integration by parts, 

Rei = i oo 
g/(t)e - i'Y' dt, YER. 

where 

g/(t): = vv' [Qdw)] -I sinh tQ /(uu' - vv' cosh t). 

(15.3) 

t>O; (15.4) 

we define g/(t): = 0 for t < O. Note that only in Q; the prime 
indicates the derivative; further, uu' - vv' = w, and s> 1 
when vv' < 0 so that Q/(s) is real in this case. It is clear thatg/ 
is a real and continuous function; so it can be seen by inspec
tion that IRc/ I is even in r. It follows that (cf. Appendix F of 
Ref. 32) 

g/(t) = (21T)-1 f:oo Rc/(y)ei'Y'dy, tER, (15.5) 

where 

Rc/(y)=Rc/. 

and that 

IRc/ 12 = 2a 100 
cos(ayx) i OO 

gIlt )gIlt + ax)dt dx 

= 2a i oo 
g/(t) i oo 

cos (ayx)g/(t + ax)dx dt. 

(15.6) 

a > 0, YER, g/ (t )ER. 

where a is an arbitrary positive parameter. Taking a = 1 and 
inserting Eq. (15.4) we obtain 

IRc/ 12 = 2(VV')2 [Q/(w)] -2 1"0 cos yx i oo 
sinh t sinh (t + x) 

X Q ;(uu' - vv' cosh t) 

X Q /(uu' - vv' cosh(t + x))dt dx. (15.7) 

Just as in Sec. 14, related representations follow by perform
ing integration by parts. In particular we have 

2(VV')2 [Q/(w)] -2 i oo 
sinh tQ ;(uu' - vv' cosh t) 

X i oo 
sinh(t + x)Q ;((uu' - vv' cosh(t + x))dx dt = 1. 

(15.8) 

which corresponds to Rei = 1 for y = O. By using (15.8) we 
obtain from (15.7) 

IRc/ 12 = 1 - 4[~]2 (00 sin2 (E..) (00 sinh t sinh (t + x)Q ;(uu' - vv' cosh t)Q ;(uu' - vv' cosh(t + x))dt dx (15.9) 
Q/(w) Jo 2 Jo 

[ 
vv' ]2 (00 (x) (00 

= - 1 + 4 Q/(w) Jo cos
2 T Jo sinh t sinh (t + x)Q /{uu' - vv' cosh t)Q ;(uu' - vv' cosh(t + x))dt dx. (15.10) 

Two different representations following from Eq. (15.7) are 

3015 

IRe/12= 1-2YVV'[Q/(W)]-2l
oo 

sinyx loo sinht 

X Q /(uu' - vv' cosh t) 

X Q/(uu' - vv' cosh(t + x))dt dx, (15.11) 
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I 
and 

IReI 12 = 1 - 2y[Q/(w)] -I i oo 
sin yxQ/(uu' - vv' cosh x)dx 

+ 2y1 [Q/(w)] -2 100 
cos(yx) lOO Q/(uu' - vv' cosh t) 

X Q/(uu' - vv' cosh (t + x))dt dx. (15.12) 
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All these representations are valid under the conditions giv
en by Eq. (15.1). 

16. THE COULOMB MODULUS FUNCTIONS Me AND Mel 

In this section we shall introduce and discuss the so
called Coulomb modulus functions Me and Mel' We assume 
that 

(16.1) 

Then vv' < 0, and IRe I and IRell are even in y. It is convenient 
to regard yas an independent variable (note that k is fixed). A 
second independent variable of Rc is p: 

p: = cosh 8: = (1 + y2)1( - 2y);;;' 1, 

where 

(16.2) 

p= lqx=Oqpp'=k 2&0=0. (16.3) 

The following two representations are basic to this section 
(cf. Secs. 14 and 15, and Appendix F of Ref. 32): 

Re(P;Y) = fO g(t)e~'Yt dt, YElR, (16.4) 

ReI(p'lk;w;y) = L" gdt)e ~ 'yt dt, YElR, (16.5) 

where 

g(t): = (p + l)(p + cosh t )-2 sinh t (16.6) 

and 

gilt): = vv'[Q/(w)] -IQ ;(uu' - vv' cosh t )sinh t (16.7) 

for t;;;.O; further we define g(t): = g/(t): = 0 for t < O. Equa
tion (16.4) follows from Eq. (2.1), and (16.5) from (3.1) by 
integration by parts. (We might take Re iy> - 1 and 
Re iy> -1- 1, respectively; however, the realness of y is 
essential below.) The choice of the variables p'lk and w in 
Eq. (16.5) is convenient for later derivations. For the mo
ment we note that this choice is allowable since p, and hence 
u and v, can be expressed in terms of p' of w according to 
[note that p' <p] 

(16.8) 

The functions g and g/ are real and continuous as can be 
seen by inspection. It follows from the theory of Fourier 
transforms that 

g(t) = (217')-1 f:oo Re(p;y)e'Ytdy, tElR, (16.9) 

gilt) = (217')-1 f: 00 Re/(p'lk;w;y)e'Yt dy, tER (16.10) 

Moreover, the norms of Fourier-transformed functions are 
equal. Defining the Coulomb modulus functions Me and Mel 
by 

Mc(p): = 17'-1 100 

IRc(p;yW dy, (16.11) 

Mc/(p'lk;w): = 17'-1 100 

IRc/(p'lk;w;yW dy, (16.12) 

we find directly (cf. Appendix F of Ref. 32) 
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Me(P) = 100 

g2(t)dt, (16.13) 

Mc/(~;W) = 100 

g7(t )dt. (16.14) 

These two equations are very convenient since they offer an 
opportunity to evaluate the right-hand members of Eqs. 
(16.11) and (16.12). We have derived many interesting rela
tions involving Me and Me/' respectively, see Ref. 33. Here 
we mention only 

Me(P) = h~hFI( - P;~;(p - 1)1(p + 1)), 

Me ( p) is strictly decreasing in p on [1, 00 ), 

Me(l) = 17'-1 100 

IBcO(iyW dy, 

Mr;ax = Me(1) = 1s, 

and for Me/' 1=0, 1, ... 

(16.15) 

(16.16) 

(16.17) 

(16.18) 

(16.19) 

M (L. w) = (00 [ Q;(t + w) ]2(t 2 _ 2tvV')1/2 dt 
eI k' Jo Q/(w) , 

(16.20) 

_ _ 1 (00 ( 17'y )21 (I + iY) 12 
MeI(1 ; 00) = 17' Jo sinh 17'y I dy 

= (I + 1)1(4/ + 6), (16.21) 

MeI(O+; 00) = 17'-1 100 

IBeI(iYW dy 

= (I + 1)2B (21 + 2,n, 

XB (21 + 2,~hFl( - pI + 2;21 + ~;~), 

(16.22) 

0<1"< 1. (16.24) 

17. FIVE CONJECTURES 

The Coulomb modulus functions Me and Mc/ intro
duced in the preceding section are useful, among other 
things, for supporting the following two conjectured in
equalities: 

(cl): IRe 1<IBcO(iy)l, YElR', (p,p')ES, (17.1) 

where equality holds iff pp' = k 2&0 = 0, and 

(c2): IRell < I Bel (iy) I, YElR', (p,p')ES. (17.2) 

In this section we shall discuss these two conjectures, one 
conjecture (c2)' related to (c2), and two conjectures concern
ing Mel' Just as in Sec. 16 we takep' < k <po 

As stated in (16.16), Me (p) is strictly decreasing in p for 
1 <p < 00. Let us suppose that a certain PoE[ 1,00 ) exists such 
that 

(17.3) 
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for all pE[ 1, 00 ) and YER. Then clearly 

Me(p)<Me(Po) (17.4) 

for all p, according to Eq. (16.11). From the monotonicity of 
Me ( p) it then follows that Po must be equal to 1. 

Hence, if (17.3) holds with Po independent of y, it fol
lows that Po = 1 and that the supremum (with respect top) of 
IRe(P;y)1 is the maximum given by 

IRe(l;y)1 = IBcO(iy)l, YER. (17.5) 

It follows that, under the above condition, the inequality 
(17.1) is valid and optimal. 

Now we are going to discuss the connection between 
(17.2) and the function Mel introduced in Sec. 16. We have 
proved33 that for fixed w (hence: varyingp' and p) 

Max MeI(P' ;w) = MeI(~;W)' w fixed, (17.6) 
O<p'<k k p 

and 

Equation (17.7) leads to our third conjecture, 

(c3): M eI (I-;w) is strictly increasing in w on (1,00), 
(17.8) 

Continuing with (17.6) we observe that p'lk = kip implies 
that 

w=cosha, a: =2 In(plk»O, 

so that the right member of (17.6) may be rewritten as 

MeI(k Ip;w) = MeI(e - a/2;cosh a), a> O. 

This leads to our fourth conjecture, 

(c4): MeI(e - a/2;cosh a) is strictly increasing in a on 
(0,00). (17.9) 

A direct corollary of ( 17 . 6) and (17,9) is 

Mc/(p'lk;w)<M~?: = Mc/(O+;oo), (17.10) 

for all p and p' subject to 0 <p' < k <p. Here 

(17.11) 

Let us suppose that a pair (Po,pb) exists such that 

IRc/(p'lk;w;y) I < IRc/(PbIk;wo;Y) I (17.12) 

for all y, p', and w [where p' < k <p and wo: = (P~ + pb2)1 
2PfiJb ]. Then clearly 

Mel ( p' I k;w) <Mel (pb I k;wo). 

It follows directly from (17.10) that we must have 

pb to and wo-+ + 00. 

By using further the equality (Sec. 16) 

M~~P = 1T-
1 fO IBeI(iyW dy, 

(17.13) 

(17.14) 

we obtain: If (17.12) holds with Po and pb independent of y, 
then the supremum (with respect to p and p') of IReI 
(p'lk;w;y)1 is given by 

IRc/(O+; + oo;y)1 = IBc/(iy)l. (17.15) 

This clarifies the connection between the conjectures (c4) 

3017 J. Math. Phys., Vol. 25, No.1 0, October 1984 

and (c2). The inequality given by (17.2) is clearly optimal, if 
valid. 

Finally we point out that a consequence of (c2) is 

(c2)': C~eTrYci:;: 112 < IBc/(iy) I, YER', (17.16) 

where 

_ 112 = I (I + iY) I 
c ly I' (17.17) 

cf. Eq. (22.23). 
We have been able to prove each one of the conjectures 

(c2)', (c3), and (c4) for 1=0 (only). 

18. THE ZERO FUNCTIONS Ze, 2';;, AND~, AND THE 
ZEROS OF Re AND Rei FOR POSITIVE ENERGY 

In this section we shall introduce the zero functions 
Zc> Z~, and Z~, and give some preliminary information 
about the zeros of the ratios Re and Rc/ for positive energy 
(k> 0). A more detailed study will be undertaken in Secs. 19 
(for Re) and 20 (for Rc/). We take k and y fixed, and consider 
p, p', cos () p.p', and I as variables. A remarkable fact to be 
proved in the following sections is that Rc/ possesses an inti
nitenumber of zeros (VI = 0,1, ... , Vk > 0) VYER': = R'\ I OJ, 
whereas in contrast Re possesses zeros only for a discrete set 
of values of y. We define, for k > 0 and any real y, 

(18.1) 

Z~(y): = inf IRe(p,p';();yl!, (p,p')ES, 
P.P',IJ 

(18.2) 

Z~(y): = inf IRe(p,p';();y)l, (p,p')EA, (18.3) 
p,p',1J 

where "inf' denotes the greatest lower bound, and the re
gions S and A are defined in Sec. 23. Clearly 

Ze(Y) = min(Z~(y),Z~(y)); 

further, since Re-l for y = 0 (Sec. 1), 

Ze(O) = Z~(O) = Z~(O) = 1. 

(18.4) 

(18.5) 

These zero functions playa role in the discussion of (i) zeros 
of Re and (ii) inequalities for Re. In Ref. 24 we have proved 
that the inequality 

IRel>l, y<O, (p,p')EA, (18.6) 

holds and that it is optimal. This implies that 

Z~(y) = 1, y<O. (18.7) 

Since IRe I is even in y when (p, p')ES, we have 

Z~(y) = Z~( - y), yER. 

However, in the "asymmetric" case, (p, p')EA, IRe I is not 
even in y, so that Z ~ is not even in y, 

In Sec. 23 subregions Sj and Aj (i = 1,2,3,4) are intro
duced. TheSj can be transformed into one another, and simi
larly theA j, by the transposition (t1):p+-+p' and the inversion 
(t2): p-+k 2Ip&p'-+k 2Ip'. Since Re is invariant under these 
transformations, we may in many cases restrict ourselves to 
one particular subregion Sj' and A i> respectively. For exam
ple, if (p,p') were to be restricted to any Sj instead of to S, on 
the right-hand side of Eq. (18.2), the result would be the 
same. Note in particular that the borderline So, correspond-
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ing to pp' = k 2 (see Sec. 23) need not be taken into account 
here: It can be reached by a limiting process, so that the same 
infimum in Eq. (18.2) is obtained, whether or not we include 
the curve pp' = k 2. 

In Sec. 19, we shall first study the symmetric case and 
then [Eq. (19.13) fI] the asymmetric case. The zeros of Rc to 
be derived there, y:. and Y::, are also zeros of Z ~ (y) and 
Z~(y), respectively. The reverse statement is also true since 
the infima are in fact minima; see Eqs. (19.12b) and (19.32b). 

In Sec. 20 a similar study will be made for deriving the 
zeros of Rei' l = 0, 1, ... , for positive energy. As stated earlier, 
Rei has zeros for all y#O; therefore, introducing zero func
tions Zel for the partial-wave case would make no sense (they 
would be identically zero). Although the approach in Sec. 20 
is in principle the same as in Sec. 19, the formulas are more 
complicated and less transparent. Therefore, we consider 
first the symmetric case SOuS I for l = 0 and next for generall 
[starting at Eq. (20.30)], and finally the asymmetric case AI 
for generall [Eqs. (20.50)-(20.71)]. 

The main results of Secs. 19 and 20 are given by Eqs. 
(19.4), (19.10), (19.24), (19.30), (20.45)-(20.49), and (20.69)
(20.80). 

19. THE ZEROS OF Rc FOR POSITIVE ENERGY 

In this section we shall derive the zeros of Rc for posi
tive energy. Preliminary remarks have been made in Sec. 18. 

For the derivations in this section, the new representa
tions given in Secs. 2 and 11 are most helpful. We distinguish 
(i) the symmetric case and (ii) the asymmetric case (cf. Sec. 
23), and we begin with the symmetric case, which is relative
ly simple. 

(i) For Rc in the symmetric case we use Eq. (11.9), slight
ly rewritten as 

R e (1Ty)-1 sinh 17/' = - i coth(8 12)sin y8 + cos y8 

- 1T- I[(1 + cos t )(cosh yt - cos y8) 

X (cosh 8 - cos f)-I dt, 

8 = -In( - y»O; - 1 <y<O. 

Here y is real; since IRe I is even in y it suffices to consider 
positive values of y only. It can be seen upon inspection that 
Re can be zero only if sin y8 = 0&8 > O. Further, 

(cos y8 = - 1)=>(Re <0). (19.2) 

Thus we must have cos y8 = + 1, and so (note that Re = 1 
for y= 0) 

y8 = 2n1T, n = 1,2, .... (19.3) 

Hence a necessary condition for Re to be zero is 

8 = 8n : = 21Tnly, n = 1,2,... . (19.4) 

We insert (19.4) into (19.1) and denote the left-hand side of 
the resulting equation by h ~ (y), 

h ~(y): = (17/')-1 sinh 17/'Re [8 = 8n : = 21Tnly] , (19.5) 

y>O, n = 1,2, ... , 

where the superscript s stands for "symmetric." Then 
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h~(y)= 1-1T- l fT(1 +cost) 

X (cosh yt - 1) [cosh(21Tnly) - cos t ] -I dt, 
(19.6) 

y>O, n = 1,2, .... 

Defining h ~ (0): = I(Vn) we see that h ~ (y) is continuous in y 
on [0, co ). Further, h ~ (y) is strictly decreasing in yand strict
ly increasing in n when y> 0, and 

lim h ~(y) = 1, limh ~(y) = - co, n = 1,2, ... , 
riO y--+oo 

limh ~(y) = 1, y>O. (19.7) 

Clearly h ~ (y) has just one zero y, which we denote by y:. 
[again s stands for "symmetric"], for each n = 1,2, .... These 
zeros are also the zeros of Reo occurring when 
8 = 8n = 21TnlY:., according to Eq. (19.4). In this way we 
have determined the infinite number of zeros of Re in the 
symmetric case: There exists an infinite sequence of pairs, 
{ (y,8 ) J n , for which Re = 0; the y's for which Re = 0 accu
mulate at y---+ co and at y---+ - co. 

An approximation formula for the zeros y:. is easily 
derived: First we have from Eq. (19.6) the approximate equa
tion 

1T COSh( 2;n):::::: fT (1 + cos t )cosh yt dt 

= y-l(1 + y)-I sinh 1Ty, 

where (19.8a) holds provided 

(19.8a) 

(19.8b) 

1T- I SyS21Tn. (19.8c) 

Further approximation gives 

exp(17/' - 21TnlY)::::::1Ty(1 + y)::::::1TY, n = 1,2, .... 
(19.9) 

The approximate solutions of Eq. (19.9) for n = 1,2, ... are 
given by [cf. Ref. 24] 

y::::::y:. ::::::(2n)1/2 + (41T)-lln(8rn3) + 0(1), n---+co. 
(19.10) 

In Ref. 24 a comparison has been made between these ap
proximate values and the exact values for n = 1,2,3, and 4, 
which shows that Eq. (19.10) gives accurate values even for 
the first few zeros. 

The zero function Z~(y) introduced in Sec. 18 is zero 
when Re = 0 in the symmetric case. Including the negative 
zeros, we have 

Z~(y)=O for y= ±y:., n=I,2, .... (19.11) 

We recall that y:. are the zeros of h ~(y); see Eqs. (19.5) and 
(19.6). To prove Eq. (19.11) we observe that 

Z~(y) = inflRe I, y fixed. 
8;;.0 

(19.12a) 

In fact, the infimum here is a minimum, i.e., it is attained; 
consequently the zeros ± y:. of Re coincide with the zeros of 
Z~. 

To prove that 

Z~(y) = min IRe I, y fixed, (19.12b) 
8;;.0 
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we take y > 0 and note that IRe I is a continuous function of 0; 
hence, it suffices to prove that the infimum in Eq. (19.12a) 
does not originate from 8-+ 00. Since 

it is sufficient to prove that, for any fixed y> 0, 

30> 0: IRe I < rylsinh ry. 

Taking (once again) 0 = on = 21'nly, we see that it is suffi
cient to prove that [cf. Eq. (19.5)] 

3n:lh :(y) I < 1, (19.12c) 

which is easy since h ~ (y) is strictly increasing in nand 
h ~(y)tl as n_oo(Vy> 0) according to Eq. (19.7). 

(ii) In the remaining part of this section we shall deter
mine the zeros of Re for positive energy in the asymmetric 
case (cf. Sec. 23). This task is quite similar to the correspond
ing one for the symmetric case which has just been complet
ed. 

First we reduce Eq. (19.1), which holds for the symmet
ric case; by using 

[(1 + cos t)(cosho - COSt)-1 dt = 21T(eli 
- 1)-1, 0>0, 

we obtain [cf. Eq. (11.9)] 

Re(ry)-I sinh ry = e- iyli coth(o /2) 

-l'-lfTCOSh yt(1 + cos t)(cosh 0 - cos t)-I dt, 

(19.l3) 

o = - In( - y) > 0; - 1 <y < O. 

A suitable representation valid for the asymmetric case, 
when 0 <y < 1, can be obtained from Eq. (19.l3) by analytic 
continuation. As stated in (2.9), the correct replacement in 
this process is 

(19.14) 

which one finds by determining the imaginary part of ± y, 
bearing in mind that 1m k>O by convention. With 

;: = -lny[ >0 when O<y< 1] 

we find that (19.14) comes down to 

8-;- il'. 

(19.15) 

(19.16) 

Further, we shall use c ocy for notational simplicity. From 

- I _ (I + iY)(1 - iY) _ III ( r) 
Cly - - 1 +-

I I n~ I n2 ' 
(19.17) 

we find 

• oc ( r)-I 
C"'Y: = hm Cly = II 1 + '2 

1-00 n = I n 
(19.18) 

= rylsinh ry = F(1 + iy)F(1 - iy) = C~e""'. (19.19) 

From Eq. (19.l3), (19.15), (19.16), and (19.19) it is straightfor
ward to derive 

3019 J. Math. Phys., Vol. 25, No.1 0, October 1984 

c:;;;Re = exp( - iy; -ry)tanh(; 12) 

+ l'-lfTcOSh yt (1 + cos t )(cosh; + cos t )-1 dt, 

(19.20) 
; = -lny>O; O<y< 1. 

This representation for Re, valid for the asymmetric case and 
for arbitrary y, is convenient to determine the zeros of Re. In 
this case IRe I is not symmetric in y so that we have to distin
guish positive and negative values of y. From Ref. 24 we 
have 

(19.21) 

so that Re has no zero for y < 0 (Coulomb attraction). There
fore, we shall assume in the remainder of this section that 
y> 0 (Coulomb repulsion). 

From Eq. (19.20) it is clear that Re can be zero only if 
e - iy; = ± 1. Since C oc y > 0, VyeR, we have 

(e- iY; = 1)~(Re >0). (19.22) 

In this case Re has no zero, so we put e;y, = - 1, 

y; = (2n - 1)1', n = 1,2,... . (19.23) 

A necessary condition for Re to be zero is clearly 

; = ;n: = (2n - l)l'ly, n = 1,2, .... (19.24) 

We insert Eq. (19.24) into Eq. (19.20) and denote the left
hand side of the resulting equation by - h : (y), 

- h :(y): = c:;;;Re [; =;n: = (2n - l)l'ly], 

y>O, n = 1,2, ... , (19.25) 

where the superscript a stands for "asymmetric". The reason 
for the minus sign is that by this convention h : (y) has prop
erties similar to those of h ~ (y); see Eq. (19.7); it follows that 

h :(y) = exp( -ry)tanh[(n - !)l'ly] 

- l'-I[COSh yt (1 + cos t) 

x [COSh{(2n ~ 1)1'} + cos t r I dt, (19.26) 

y>O, n = 1,2, .... 

Defining h :(0): = I(Vn) we see that h :(y) is continuous in y 
on [0,00 ). Further, h : (y) is strictly decreasing in yand strict
ly increasing in n when y> 0, and 

limh :(y) = 1, limh :(y) = - 00, n = 1,2, ... , 
YIO y-oo 

(19.27) 

lim h : (y) = e - ".", y>O. 

Clearly these properties of h : (y) are similar to those of h ~ (y) 
mentioned below Eq. (19.6). 

The discussion of the symmetric case following Eq. 
(19.7) can be repeated here, mutatis mutandis: For each 
n = 1,2, ... , h: (y) has just one zero y, which we denote by 1-:. 
These zeros are also the zeros of Re, occurring when 
; =;" = (2n - 1)1'11-:, according to Eq. (19.24), and they 
accumulate at y- + 00. 

An approximation formula for the zeros 1-: is obtained 
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by approximating Eq. (19.26), 

h ~(r) = 0 
:::}exp( -1TY)tanh[(n - !)17/r]1TCOsh[(2n - 1)1T/r] 

;:::: LTCOSh rt (1 + cos t )dt 

= r-I(l + r)-I sinh 1Tr; 

hence, 

exp[21Tr - (2n - 1)1T/r] ;:::: 1Tr(1 + r) 
;::::~, n = 1,2, ... , 

provided 

IS rS (2n - 1)1T. 

(19.28) 

(19.29a) 

(19.29b) 

The approximate solutions ofEq. (19.29a) for n = 1,2, ... are 
given by (cf. Ref. 24) 

r;::::t:, ;::::(n - !)1/2 + (81T)-lln(~n3) + 0(1), n-oo. (19.30) 

According to Ref. 24, Eq. (19.30) gives accurate values even 
for the first few zeros. 

The zero function Z~(r) introduced in Sec. 18 is zero 
when Re = 0 in the asymmetric case, 

Z~(r)=O for r=t:" n=I,2, .... (19.31) 

The proof follows by observing that 

(19.32a) 

cf. Eqs. (19.11) and (19.12). More precisely, the zeros t:, of 
Re coincide with the zeros of Z~, since the infimum in Eq. 
(19.32a) is in fact a minimum: 

(19.32b) 

cf. Eq. (19.12b). To prove this, we note that IRe I is a contin
uous function of ;; hence, it suffices to prove that the infi
mum does not originate from either;-o or ;-00. Now we 
have 

IRe I-C6 for ;-oo(yW); 

_1 for ;J,O(ytl). 

Since C 6 < 1 for r> 0, it is sufficient to prove that, for any 
fixed r>O, 

3;>0:IRel <C6· 

Taking (again); =;n = (2n - 1)1T/r, we see that it is suffi
cient to prove that [cf. Eqs. (19.19) and (19.25)] 

3n:lh ~(r)1 <e~1T1', (19.32c) 

which is easy since h ~ (r) is strictly increasing in nand 
h ~ (r)te -1T1' as n-oo (Vr> 0) according to Eq. (19.27). 

20. THE ZEROS OF RCI FOR POSITIVE ENERGY 

In this section we shall derive the zeros of Rei for posi
tive energy. We shall use the new integral representations 
derived in Sec. 3. It is also possible to use the new series 
representations derived in Secs. 4 and 5, but this would give 
no additional new results (cf. Appendix Z of Ref. 32). 

The discussion in this section runs parallel to the one in 
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Sec. 19. However, the formulas below turn out to be much 
more complicated. 

First we shall investigate the symmetric case; then IReI I 
is even in r so that it is sufficient to consider r> 0 only. As 
usual we have k> 0 and lEN = ! 0, I, ... }. According to the 
transformation invariances of Rei to be discussed in Sec. 23 
we may restrict ourselves to anyone of the subregions Si 
(i = 1,2,3, or 4), combined with a part of So; we choose i = 1: 

o <p' < k <p&k 2 <pp'. 

Then v>O, v' <0,1 <u'<u, and [cf. Eq. (3.4)] 

-1<a'<O<a<l, 0< -a'/a<l, 

(u - 1)1(u + 1) = a2, (u' - 1)1(u' + 1) = ( - a')2, 

where a: = (p - k)l(P + k), a': = (p' - k )I(P' + k). We 
shall use the integral representation given by Eq. (3.14), 
which also holds for pp' = k 2: 

RelQ/(w) = C 6e21T1'Q;Y(u)P /-iY(U') + Q/(w) 

- c6e1TY1T-ILTcOSh rtQ/(uu' + vv' cos t )dt, 

O<p' <k<p&k 2<pp'; 1 <u'<u; vv' <0. 

The integral here is real since 

uu' + vv' cos t >uu' + vv' 

(20.1) 

= 1 + (pp' - k 2)2/(2k 2pp') > 1, (20.2) 

and Q/(z) is real for z> 1. So the first term on the right-hand 
side of Eq. (20.1) is the only complex-valued term. We shall 
use the equalities 

2r(1 + 1 - ir)sinh 1Tre1TYQ;Y(u) 

= i1Tl! [aiyp\iY. - iYI(u) _ a - iYP\- iy.iY1(U)], (20.3) 

O<a< 1, 

r (I + 1 + ir)P /- iy(U') 

= /!( - a,)iYPVY.-iY1(u'), - 1 <a' <0 (20.4) 

= /!(a,)iyp \iY. ~ iY1(U'), 0 < a' < 1. (20.5) 

In this way we obtain from Eq. (20.1) 

RciQ/(w) = C/yC6 e1T1'( - a,)iyp\iY. - iY1(U') 

Xi(2r)-1 [aiyp\iy. - iYI(u) _ a ~ iYp\- iY.iY1(U)] 

+ Q/(w) - C6e1T1'1T-111Tcosh. rt 

x Q/(uu' + vv' cos t )dt, (20.6) 

O<a<l, -1<a'<O; l<u'<u; vv'<O. 

It is convenient to rewrite the last two terms on the right
hand side of Eq. (20.6); performing integration by parts we 
find 

Q/(w) - c6e1TY1T-ll1TCOSh rt Q/(uu' + vv' cos t)dt 

= - vv'(sinh 1Tr) -I L1T

sinh r t sin t Q ;(uu' + vv' cos t )dt. 

(20.7) 

Note that only in Q; does the prime indicate a derivative. 
For notational convenience we introduce some abbrevia-
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tions, which will be used in this section only. First, 

q(r): = - LTsinh r t sin t Q ;(uu' + vv' cos t )dt; (20.8) 

since Q lIz) < 0 for z> 1, q(r) is positive for r> O. Next we 
define 

!1tl: = Re P \iY, - iY1(U), uER, rER, 

!1t;: = Rep\iY,-iY1(u'), u'ER, rER, 

~[: = 1m P\iY, - iYI(u), uER, rER, 

~;: = Imp\iY,-iY1(u'), u'ER, rER. 

(20.9) 

Finally we put, for rER, 

f(r;a): = !1t[ sin(r In a) + ~[ cos(r In a), (20.10) 

g(r; - a'): = !1t; cos! r In( - a')} - ~; sin! r In( - a')} 

+ i[!1t; sin! r In( - a')} +~; cos! r In( - a')} ]. (20.11) 

With these notations we obtain from Eqs. (20.6) and (20.7), 

sinh 1TYQI(w)ReI 

= -1Tclyf(r;a)g(r; - a') + vv'q(r), (20.12) 

O<a<l, -1<a'<O; l<u'<,u;-a'<,a. 

One easily verifies that !1tl and !1t; are even in r, and that ~l 
and ~; are odd in r; hencef(r;a) is odd in r, and 

g*(r; - a') = g( - r; - a'), rER, 

so that 

(20.13) 

which shows that IRell is even in r. 
As we are looking for zeros of Rei' we set its imaginary 

part equal to zero. This means that we must have either 
f(r;a) = 0 or 1m g(r;a) = O. Since q(r) > 0 the first alternative 
gives no zero, so that a necessary condition for Rei to be zero 
IS 

!1t; sin{ r In( - a') J + ~; cos{ r In( - a') J = O. (20.14) 

The derivation of the zeros of Rei for the generall = 0,1, ... 
case is quite complicated because of the complexity of the 
above formulas. Therefore, we shall first consider the 
simpler 1 = 0 case, which will pave the way for the general 
case. 

For 1 = 0 we have !1t[=!1t;-1 and ~[=~;=O so that 
Eq. (20.14) reduces to 

sin { r In( - a')} = 0, (20.15) 

which is a necessary condition for ReO to be zero. We denote 
the solutions a' ofEq. (20.15) by 

a' = - a;" (r): = - exp( - m1T/r), (20.16) 

r>O, m = 1,2, ... ; 

then 

cos{rln(a;"(rll} = (_ l)m. (20.17) 

Next we define the functions H:" (r;a), m = 1,2, ... , by 

H:" (r;a): = sinh 1TYQo(w)ReO [ a' = - a;" (r)], (20.18) 

where the superscript "s" stands for "symmetric." Clearly 
the zeros of {H:" (r;a)};;; = I coincide with the zeros of ReO' 
From Eq. (20.12) we have 
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H:" (r;a) = ( - 1 t + 11T sin(r In a) + vv' q(r), 

subject to [cf. Eq. (3.4)] 

a'= -a;"(r); O<a<l; 0< -a'/a<,l. 

(20.19) 

(20.20) 

Now we claim that ReO has, for any fixed r> 0, an infinite 
sequence of zeros. To prove this we first observe that we can 
take a;" (r) arbitrarily close to zero, for any fixed r> 0, by 
taking m sufficiently large, say m > M. For such large m we 
have approximately 

u':::::I, v'::::: - 2a;"(r):::::O, 

and from Eq. (20.8), 

q(r)::::: - Q /(U)LTSinh r t sin t dt 

= - Q ;(u)(1 + r)-I sinh 1Tr. 

(20.21) 

(20.22) 

Below we shall need the relations (recall that u2 
- v2= 1) 

Q[(u) = - pn(u - 1) + 0(1), u!1, 

Q ;(u) = (1 - U
2
)-1 -!l(l + l)ln(u - 1) + 0(1), un, 

(20.23) 

Qb(u) = (1 - U2)-1 = - v- 2
• 

The zeros of H:" (r;a), for fixed r> 0, are the solutions a of 
the equation 

( - It1T sin(r In a) = vv'q(r), (20.24) 

which is, for sufficiently large m, approximated by the equa
tion 

( - l)m + 11TV sin(r In a)( 1 + r)/sinh 1Tr 

:::::2a;" (r) = 2 exp( - m1T/r)W, m-+oo. (20.25) 

Clearly the approximate solutions are given roughly by 

a = a:";n(r):::::exp( - n1T/r), n = 1,2, .... (20.26) 

It is important to note that an additional condition must be 
met here: When n/r is large, a and hence v is very small 
according to 

v:::::2a:";n(r):::::O. 

Then Eq. (20.25) can be rewritten as 

( - l)m + 11T sin! r In a:";n (r) J (1 + r)lsinh 1TY 

:::::exp[(n - m)1T/r]. 

Consequently we must have n < m such that 

o < a;" (r) <a:";n(r):::::O. 

(20.27) 

(20.28) 

Recall for comparison that 0 < - a' <,a < 1 [cf. Eqs. (20.12) 
and (20.20)). 

Summarizing: We have proved that ReO has, for any 
fixed r> 0, an infinite number of zeros. These are attained 
for 

& 

a' = - a;" (r): = - exp( - m1T/r); 

m = MS(r), MS(r) + 1, ... , 

a = a:";n(r); n = 1,2, ... ,NS(r;m), 

(20.29) 

for certain natural numbers MS(r) and NS(r;m). In particu
lar, NS(r;m)-+oo when m-+oo. The approximation (20.26) is 
valid roughly for sufficiently large m, such that (20.21) holds. 
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The zeros of ReO accumulate at a' = 0, i.e., at p' = k, and at 
a = 0, i.e., atp = k. From (20.16) and (20.19) it follows that 
ReO has no zero on So, i.e., for pp' = k 2<=?a + a' = O. 

Now we are in a position to derive the zeros of Rei for 
general' = 0,1, .... A necessary condition is 

a' = - a;;m (y), y> 0, m = 1,2,... . (20.30) 

These functions a;;m are the solutions of Eq. (20.14). It is 
easily seen that these solutions form a denumerably infinite 
set: In particular, for sufficiently large m we have a':::::O and 
hence [note that m; and:;S; depend on a'] 

m'-ReP(iY.-iY1(1) = Re(' + iY) 
1- I I ' 

:;Sf :::::Im P\iY. - iYI(I) = Im(' ~ iY), 

so that 

a;;m(y):::::exp[ -(m1T+s)/y], m-oo, 

where S = sl(y) and 

(' + . ) (' + . ) tan S = 1m ,IY IRe ,IY. 

From Eq. (20.11) we obtain 

(20.31) 

(20.32) 

(20.33) 

g(y;a;;m(Y)) = m;/cos[y In( - a')], a' = - a;;m(y). 
(20.34) 

We define the functions Hi;m(y;a), m = 1,2, ... , by 

Hi;m(y;a): = sinh 1TYQdw)ReI [a' = - a;;m(Y)]. (20.35) 

Then we have from Eq. (20.12) 

Hi;m(y;a) = vv'q(y) 

-1TcIy/(y;a)m;/cos[yln( -a')]' (20.36) 

subject to 

a'= -a/;m(y); O<a<l; 0< -a'la<l, (20.37) 

where/(y;a) is given by (20.10) and q(y) by (20.8). The zeros a 
of 

Htm(y;a), m = 1,2, ... , (20.38) 

give precisely all the zeros of Rei we are seeking. For suffi
ciently large m these zeros can be derived explicitly in good 
approximation. We use Eqs. (20.22) and (20.34); further, 
v' ::::: 2a', so that 

(m;)2 + (:;S;)2Z(' ~iY)(' ~iY) =CI; I, (20.39) 

and S can be taken such that 

(' + iY) cos S = c::2 Re , . (20.40) 

It follows that for m- 00 the zeros of Rei are approximately 
given by the solutions a of the equation 

( - l)m + 11T/(y;a)c::2( 1 + y)/sinh 1TY 

= - 2 exp[ - (m1T + s)/y]vQ;(u), m-oo, (20.41) 

which should be compared with the corresponding one for ,= 0, Eq. (20.25). Obviously the solutions a ofEq. (20.41) are 
approximately given by the zeros a of the function/(y;a) giv-
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en by Eq. (20.10). Denoting the zeros a of Rei by ai;m;n (y), 
n = 1,2, ... , we easily find that 

atm;n(y):::::exp[ -(n1T+s)/y], m-oo, (20.42) 

cf. Eqs. (20.32) and (20.33). As before [Eq. (20.26) ft] an addi
tional condition must be met here: When nl y is large, a and v 
are very small and uti. Inserting Eq. (20.23) into Eq. (20.41) 
we get 

(- l)m+ 11T/(y;a)c::2(1 + Y)/sinh 1TY 

::::: [a-I + 2'(' + l)a In a] 

xexp[ -(m1T+s)/y], m-oo, aW. (20.43) 

It follows that the approximate solutions a given by Eq. 
(20.42) are only accurate if the right-hand member of Eq. 
(20.43) is sufficiently close to zero. By inserting Eq. (20.42) 
we get for this right-hand member approximately 
exp{(n - m)1TlyJ, so that the right-hand member of Eq. 
(20.43) is sufficiently close to zero if n < m and more general
ly 

(20.44) 

for a certain Ni!y;m)EN. 
Summarizing: We have proved that in the subregion SI' 

combined with part of So: 

o <p' < k <p&k 2<pp', 

(20.45) 

the ratio Rei' , = 0,1, ... , has, for any fixed y#O, an infinite 
number of zeros. These occur for 

a'= -a;;m(y), m=Mi!y), Mi!y) + 1, ... , (20.46) 

& 

a = ai;m;n(Y), n = 1,2, ... ,Ni!y;m). (20.47) 

Here a;;m (y) and atm;n (y) are even functions of y. The zeros of 
Rei accumulate at a' = O(p' = k) and at a = O(p = k). Ap
proximate expressions are 

a;;m(y)zexp{ -(m1T+s)/lyIJ, m-oo, 

ai;m;n(y):::::exp{ -(n1T+s)llyIJ, m-oo, 

(20.48) 

(20.49) 

wheres = sdy)followsfromEq. (20.33). Further,MHY) and 
Ni(y;m) are natural numbers, and Ni!y;m}-oo when 
m-oo, for any fixed y#O. From Eqs. (20.10), (20.14), and 
(20.36) it follows that Rei has no zero on So, i.e., for 
pp' = k 2<=?a + a' = O. 

The zeros of Rei in the remaining subregions Sj , i = 2,3, 
and 4, follow easily with the aid of the transformations·td~e-' 
discussed in Sec. 23. The remaining task in this section isli61 

determine the zeros of Rei for positive energy in the "asym
metric" case. In view of Sec. 23 we may restrict (P,p') to any 
one of the subregions Ai> i = 1,2,3,4. We take (P,p')EAI 
which means that 

(20.50) 

In this case IReI I is not symmetric in y, so that we have to 
consider y<O and y>O separately. Nevertheless, many of 
the formulas and derivations given for the symmetric case 
will be useful below. 

We shall use the representation for Rei given by Eq. 
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(3.16), 

ReIQ/(w) = C~e"YQ;r(u)PI-iY(u') + QI(W) 

- c~e"Y1T-'11TCOSh ytQI(UU' + vv' cos t )dt, (20.51) 

O<k<p' <p; O<a' <a< 1; YER, 

which follows from Eq. (20.1) by applying Eq. (3.21). After 
some manipulations, using in particular Eq. (20.7) we obtain 

ReIQI(W) = ClyC~(a')iYp\iY, - iY1(U') 

Xi(2y)-' [aiyp\iY, - iYI(u) _ a - iYP\ - iY,iY1(U)] 

- vv' (sinh 1TY) - I11T sinh yt sin t 

x Q i(uu' + vv' cos t )dt, 

O<a'<a<l; l<u'<u. 

(20.52) 

By using the notations introduced in Eqs. (20.8)-(20.10), and 
defining 

h (y;a'): = !Hi cos(y In a') - 01 sin(y In a') 

+ i [!HI sin(y In a') + 0i cos(y In a')] , 
(20.53) 

we obtain from Eq. (20.52) 

sinh tTYQI(w)ReI 

= - 1TClye - "Yj(y;a)h (y;a') + vv'q(y), 

O<a'<a<l; YER, 

(20.54) 

which may be compared with Eq. (20.12). Setting the imagi
nary part of Rei equal to zero we get [note that q(y) > 0] 

!Hi sin(y In a') + 0i cos(y In a') = O. (20.55) 

This is a necessary condition for ReI to be zero. The solutions 
a' ofEq. (20.55) for fixed y#O are 

a'=al;m(y), YER':=R,\!Oj, m=I,2, .... (20.56) 

Several remarks should be made here 
(i) We exclude y = 0 since RcJ=1 for y = O. 
(ii) Since !Hi is even and 01 odd in y, the left-hand mem

ber ofEq. (20.55) is odd in y; therefore, the solutions al;m(y) 
are even in y. 

(iii) For I = 0 we have 

ah;m (y) = exp( - m1T/lyll, YER', m = 1,2, .... (20.57) 

(iv) The solutions of Eq. (20.55) are [for y> 0] exactly 
equal to the negatives of the solutions ofEq. (20.14), cf. Eq. 
(20.30). This follows by observing that the argument of the 
Jacobi polynomial P \iY, - iyl [see Eq. (20.9)] is 

(20.58) 

which is even in a', so that !Hi and 01 are also even in a'. This 
justifies our using the same notation al;m (y) as in Eq. (20.30). 
From Eq. (20.32) we have 

ai;m(y)~exp! - (m1T + s)/Iyl j, m -- 00, (20.59) 

tan S = ImC ~ iY) / ReC ~ iY). 
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Further, h (.;.) is in fact the same function asg(·;·) introduced 
by Eq. (20.11), so 

h (y;ai;m(y)) = !Hilcos[yln a'], a' = a;;m(y). (20.60) 

We define the functions HI;m(y;a), m = 1,2, ... , by 

Hl;m(y;a): = sinh tTYQ/(W)ReI [a' = a;;m(Y)]. (20.61) 

To avoid cumbersome notations, a superscript "a" denoting 
the asymmetric case is omitted here. Then we have from Eq. 
(20.54) 

HI;m(y;a) = vv'q(y) 

- 1Te - "Y Cly j(y;a)!Hilcos(y In a'), (20.62) 

subject to 

a'=al;m(y); O<a'<a<l; YER', (20.63) 

wherej(y;a) is given by (20.10) and q(y) by (20.8). The zeros a 
of 

Hl;m(y;a), m = 1,2, ... (20.64) 

give exactly all the zeros of ReI we are seeking. With the aid 
ofEq. (20.40) we derive from Eq. (20.62) that the zeros of ReI 
are approximately given for m __ 00 by the solutions a of the 
equation 

(- It+ '1Tj(y;a)cg2e-"Y(1 + Y)/sinh tTY 

= 2 exp! - (m1T + S )/lyl j vQ ;(u), m -- 00, yER'. 
(20.65) 

The solutions a ofEq. (20.65) are approximately given by the 
zeros a ofj(y;a). Denoting the zeros a of ReI byal;m;n(y), 
n = 1,2, ... , yER', we have 

al;m;n (y)~exp! - (n1T + S )/lyl)' m -- 00; (20.66) 

cf. Eq. (20.42). As before, an additional condition must be 
met: For n/lyllarge we get, inserting Eq. (20.23) into Eq. 
(20.65), 

( - 1 t1Tj(y;a)C::2e - "Y( 1 + Y)/sinh tTY 

~[a-I + 21(1 + l)a In a] 

Xexp!-(m1T+s)/lylj, m-- 00, aW, 

YER'. (20.67) 

It follows that the approximation in Eq. (20.66) is only accu
rate if 

n<Nf(y;m) (20.68) 

for a certain Nf (y;m) E N. 
Summarizing: In the subregion AI' i.e., 

O<k<p'<p; O<a'<a<l, 

ReI,1 = 0,1, ... , has, for any fixed y#O, an infinite number of 
zeros. These occur for 

a' = ai;m (y), m = Mf(y), Mf(y) + 1, ... , (20.69) 

& 

a = al;m;n(y), n = 1,2, ... ,Nf(y;m). (20.70) 

Here ai;m (y) [the same function as used in Eq. (20.46)] is 
even in y, but al;m;n (y) is not even in y. The zeros of ReI accu
mulateata' = O(p' = k)andata = O(p = k).Approximate 
expressions are 

ai;m(y)~exp! - (m1T + s)/Iyl j, m -- 00, 

H. van Haeringen 3023 



                                                                                                                                    

which coincides with Eq. (20.48), and 

a';m;n (r)::::exp[ - (mr + 5" )flrl J, m -+ 00; (20.71) 

cf. Eqs. (20.49) and (20.33). Further, Mf(r) and Nf(r;m) are 
natural numbers, and Nf (r;m) -+ 00 when m -+ 00, for any 
fixed r#O. 

The zeros of Rei in the remaining subregions Ai> 
i = 2,3, and 4, follow easily with the aid of the transforma
tions to be discussed in Sec. 23. 

In Appendix Z of Ref. 32 we have derived some rough 
estimates,forl=Oonly,forthecases(i)lrl-+ 00, (ii)lrl = I, 
and (iii) r -+ O. The results are: (i) for I rl -+ 00: 

Symmetric case SI:MS(r)::::Y, 

N S(r;Y):::: (2/1r)r In r (r > 0), 

Asymmetric case AI: MQ(r)::::2y, r> 0 

:::: -r, r<O; 

(ii) for Irl = I: 

(20.72) 

(20.73) 

Symmetric case SI(r = I): a' = - a;,. (I) = e - m", 

(20.74) 

a = a:n;n(I)::::e- n,,[ 1+ (- 1)" + I-m 

xexp[(n + I - m)17j(417)-I], 

m = 2,3, ... ; n = 1,2, ... , m - I; 

Asymmetric case AI: a' = a;,. (I) = e - m"; 

r= +1:am;n(I)::::e-n"[I+(-I)"-m 

xexp[(n + 2 - m)17j(417)-I], 

m = 3,4, ... ; n = 1,2, ... ,m - 2; 

r = - I: am;"( - I)::::e- n,,[ 1+ (_1)n-m 

X exp[ (n - m)l7J (417)-1], 

m = 1,2, ... ; n = 1,2, ... , S m; 

(iii) for r -+ 0: 

(20.75) 

(20.76) 

(20.77) 

(20.78) 

a;"(r)::::exp[ - ml7/lrl J, m = 1,2, ... , (20.79) 

a~;n(r)::::exp[ - nl7/lrl J, n = 1,2, ... ,m - I, (20.80) 

for both SI and AI" 
No essentially new problems are expected in deriving 

analogous rough estimates for the zeros of Rei for I> O. 

21. LIMITS OF Rc 

In this section we shall evaluate various interesting lim
its of Re. Some of these will serve for proving that the in
equalities for Re to be given in Sec. 24 are optimal. 

We shall use Eq. (2.1), i.e., 

Re = I - iy( P + 1) f" e - irt I( p + cosh t )dt, 

Reir> - 1. (21.1) 

When the energy is negative, ir= - SIK is real; further, 

p = (I + x 2)/(1 - x 2
), 
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and 

x2 = I _ q-2K-2(p2 + ~)(p'2 +~) 

= _ q-2K-2[ p2p'2 + ~pp' cos () + K4], 

sothatx2.;;;0 forK > 0, and - 1< p';;;1. In Ref. 24 it has been 
proved that 

Re-+I for p -+ - 1, i.e., x 2 -+ - 00. (21.2) 

Clearly this limit corresponds to 

either q-+O or (p-+oo &p'-+ oo,any()). (21.3) 

Since q2 = p2 + p,2 _ 2pp' cos () we have 

( q -+ O)¢}( P - p' -+ 0 & () -+ 0). 

Whenp = I we get 

Re =BcO ( -SIK) 

= I + 2(sIK) 1"0 ets/K/(I + cosh t )dt, s <K. (21.4) 

Clearly p = I corresponds to x = 0, i.e., 

pp' = ~ & () = 17. (21.5) 

For the limit x -+ 0 the only other possibility is 

p-+O&p'-+ 00 orp-+ 00 &p'-+O(any()). (21.6) 

Now we are going to investigate the positive-energy 
case. Then x 2 > 0; as usual we take x < O. Then we have [cf. 
Sec. 23] 

(p,p')ES: - I <x.;;;O; - l.;;;y<O; I.;;;p< 00; (21.7) 

(p,p')EA:x< - I; 0< y< I; - 00 < p< -1. (21.8) 

One easily verifies that 

(21.9) 

This limit corresponds to x to or y ~ - I, which can only oc
cur if either 

pp' -+ k 2 & () -+ 0 (21.10a) 

or 

p -+ 0 & p' -+ 00 or p -+ 00 & p' -+ 0 (any () ).(21.10b) 

The limit of Re for x -+ - 00 (pt - I;ytl) is I, see Ref. 24. 
In terms ofp,p', and () we get the same result as in (21.3). The 
remaining point of interest is x = - 1. We need Eqs. (2.8) 
and (2.9) to derive the appropriate limits of Re' For the sym
metric case S we obtain 

lim ( - y) - irRe = C~errr = limlRe I, (21.11) 
~o ~o 

and for the asymmetric case A 

limy-irRe =C~ = lim IRe I· (21.12) 
ylO ylO 

These limits correspond to either p -+ k or p' -+k or 
p -+k & p' -+k, provided q does not go to zero. 

Remark: In view of the limit of Eq. (21.11), a necessary 
condition for the validity of the conjecture (el) [Eq. (17.1)] 

(el) 

IRe I.;;; IBcO(ir)l, 

with equality iff pp' = k 2 & () = 0, is that 

C~errr < IBcO(ir)l. 
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For a proof of this inequality the reader is referred to Appen
dix I of Ref. 32. 

Finally we shall evaluate 

lim p lim (Re - 1). (21.14) 
p---+ 00 P' ----.. 00 

(i) For negative energy we have 

p + 1 = 2/(1 - x2) ---+ 2K-/(p2 + K2)::::: 2K-/ p2. 
p'_oo p--oo 

By using Eq. (21.1) it is easily seen that, in order to evaluate 
(21.14), the interval of integration may be replaced by [O,E] 
for any E> O. Consequently the exponential function may be 
set equal to 1, and cosh t may be replaced by 1 + t 2/2. Then 
(21.14) becomes 

= 2s lim 7' = 1TS, i
EP/ 2K d 

p-+oo 0 (1 + r) 
(21.15) 

where 7': = pt /2K. Since Re is invariant under the inversion 
(t3) (see Sec. 23), 

(t3):P ---+ ~/ P &p' ---+ ~/ p', (21.16) 

it follows that 

lim(~) lim (Re - 1) = 1TS. 
plO P p'lO 

(21.17) 

(ii) For positive energy Eq. (21.1) cannot be applied here, 
since p + 1::::: - 2k 2/ p2 < O. Instead we use the representa
tion given by Eqs. (2.8) and (2.9) 

Re = 1 + C~ /Y(1 - y)l(1 + y) 

_ y(1 - y)2 [ cosh ytdt 
0< y< 1. 

sinh1TY 0 1 + y2+2ycost' 
(21.18) 

Since limp'~oo y = a = (p - k )II p + k) and limp-+oo 
p(1 - a) = 2k, we obtain for (21.14) the expression 

kC~ - 2ky[sinh 1Ty]-1 

X lim (1- y) (11"(1 + y2 + 2y cos t)-I cosh ytdt. 
yO Jo 

Since only t:::::1T contributes to the limit, we may replace 
cosh yt by cosh Y1T. Using further (e.g., Ref. 42, p. 366) 

(11"(1 + y2+2ycost)-ldt= 1T , y2<1, Jo (1 _ y2) 
(21.19) 

we easily find 

lim p lim (Re - 1) = - 1Tky = 1TS. 
p--oo p'-co 

(21.20) 

We point out that this result can also be obtained from Eqs. 
(4.1) and (4.3) of Ref. 24, or from Eq. (7.8). In view of the 
inversion (t2 ) (see Sec. 23), we have 

lim (~) lim (Re - 1) = 1TS. 
plO P p',o 

(21.21) 
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22. LIMITS OF Rei 

In this section we shall evaluate various interesting lim
its of Rei' I = 0,1, .... Some of these will serve for proving that 
the inequalities for Rei to be given in Sec. 24 are optimal. 

First we shall consider the negative-energy case; then 
the following representation is useful: 

Rei = 1 +S[KQ/(W)]-I ft -I-S/K 

X Q/(w - vv'(t - 2 + 1/t )l2)dt, (22.1) 

K>O,SER', w: = (p2 +p'2)12pp'> 1, 

_ vv' = (p2 +~)(p'2 +~)l4~pp'>0. 

It is easy to see that24 

lim Rei = 1. (22.2) 
w!1 

Since Q/(z) is decreasing in z, and 

lim Zl+ IQ (z) = I! 
Hoo / (21 + I)!! ' (22.3) 

the only other possibility for Rei ---+ 1 is - vv' and/or 
w ---+ 00. Therefore, we shall investigate the cases p or p' ---+ 0 
or 00. From Eqs. (22.1) and (22.3) we obtain 

lim Rei = 1 + (~) tt - I - s/le 

p',o ~ Jo 
X [1 + (1 + ~/ p2)(1 - t)2/4t] -I-I dt. (22.4) 

(i) The limit of the right-hand member of Eq. (22.4) for 
p ---+ 00 is elementary; one has 

lim lim Rei = 1 + (~)41 + I 
p-+oo p'lO ~ 

which is just one of the expressions for Bel (see Sec. 13). In 
view of the symmetries of Rei (Sec. 23) we therefore have 

lim limReI = lim lim R 1 = B 1 ( - s) (22.5) 
p-+oo p'lO p'lO p-+oo c e K ' 

where p and p' may be interchanged. In Ref. 24 we have 
proved, by using monotonicity properties of Rei' that Bel 
( - S/K) is the supremum of Rei when S > 0, and its infimum 
when S < 0; it was derived there that pp' = ~ gives a relative 
extremum and that 

(22.6) 

We note that Eqs. (22.5) and (22.6) give the partial-wave ana
logs of (21.6) and (21.5), respectively. 

(ii) The limit ofthe right-hand member ofEq. (22.4) for 
p!O is somewhat more complicated. This is due to the behav
ior of the integrand at t = 1, which apparently interferes 
with its behavior atp = O. In fact we may, for alII = 0,1, ... , 
replace the interval of integration by [1 - E,I] for any 
EE(O,I). Taking E!O we may set t - I-S/K equal to 1, so that 
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lim (~) lim (Rei - 1) 
PIO P p'lO 

= lim lim (KS) 
EIO plO P 

X t [1 + (1 +~/ p2)(1_ t)2] -1-1 dt. 
JI-E 4 

Introducing 1': = (1 - t }K/2p we get for this limit 

lim lim 2s fEKI2P [1 + (1 + p~) r] -1-1 dt 
£10 plO Jo I( 

= 2s l"" (1 + r)-I-I d1'. 

Since (e.g., Ref. 42, p. 295) 

l""(1 + r)-I-I d1' = 'TT2 -2/-1 (~), 

we have proved in this way that 

(22.7) 

lim (~)lim (Rei - 1) = 'TTs4 - 1(21\, (22.8a) 
PIO p p'lO I J 

which should be compared with Eq. (21.17). In view of the 
inversion (t3) [see Sec. 23] we also have 

limp ~im (Rei - 1) = 'TTs4 -I (21\. (22.8b) 
/>->"" p ~"" I J 

Obviously these results imply that 

lim lim Rei = lim lim Rei = 1; 
PlO p'LO p--oo P'--+CQ 

(22.9) 

note that p and p' may be interchanged in Eqs. (22.8) and 
(22.9). 

Now we are going to investigate the positive-energy 
case. Zeros of Rei have been derived in Sec. 20; see also the 
ineqUalities (il3), (itS), (i21), and (i23) in Sec. 24. The upper 
bounds given by (i22) and (i24) have been derived in Sec. 6. 

First we consider the symmetric case (Sec. 23). Then 
vv' < 0, IReI I is even in y, and the following representation, 

Rei = 1 - iy[QI(w)] -I f t iy - I 

X QI(UU' - vv'(t + lit )/2)dt, vv' < 0, (22.10) 

is useful. This is merely Eq. (22.1) rewritten, so we can take 
over some of the results obtained for the negative-energy 
case. Note, however, that vv' < 0 implies that either 
p' < k < p or p < k < p'. Therefore, the analog of Eq. (22.2) 
does not hold here: W _ 1 can be obtained only for 
p _ k & p' _ k such that vv' to; it is easily seen that the eva
luation of a limit, if any, from Eq. (22.10) is difficult in this 
case. The limit of Rei for p' !O is obtained in the same way as 
before; see Eq. (22.4). Taking then the limit for p -00 we 
obtain the analog of Eq. (22.5), i.e., 

limlimRcI = lim lim Rei = Bc/(iy), (22.11) 
/>->00 p'IO p'IO />->"" 

where p and p' may be interchanged. 
To study the behavior of Rei at p' t k we use the represen

tation given by Eq. (20.6), which holds for p' < k < p. Since 
W - U, u'!1 and v'tO for p' t k, the combination of the last 
two terms on the right-hand side of Eq. (20.6) tends to 0 in 
this limit. Then it is easily verified that 
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xe ~ iY) y-I Im{aiyp\iY.-iY(u)}, 

p>k, a>O, y#O. (22.12) 

Taking now p!k, i.e., aW, we see that 

lim lim IReI IQI(w) 
plk p'rk 

does not exist; IReI I QJ(w) keeps oscillating between zero (see 
Sec. 20) and 

'TTIP\iY. - iy)(U) I. I e ~ iY) sinh 'TTYI- \ (22.l3a) 

the limit superior follows directly from this expression 

limsup lim IRedQJ(w) = . 'TT ,Y#O. (22.13b) 
plk p'rk Ismh'TTYl 

Here we have used 

_ 1 = (I + iY) (I - iY) 
eJy I I' c~ e1T"Y = 'TTy/sinh 'TTY, 

and 

max Ix sin a + y cos al = (x2 + y2)1/2, 
a 

where a = yin a. Since QI(W) _ 00 for W! 1 it is clear that 

lim lim Rei = O. (22.14) 
plk p'rk 

Now we are going to investigate the behavior of Rei for 
p'tk andp - 00. Then Eq. (22.12) is not convenient; instead 
we use the representation of Eq. (4.2), i.e., 

Rc/QI(w) = C~e21T"YQt(u)P l-iY(U') + QJ(w) 

00 

-r L En(n2+ r)-IQ7(u)Pi n(u'), (22.15) 
n=O 

vv' <0; 0< p' <k< p & k 2<. pp'; 1 <u'<.u. 

By using 

lim ( - a') - iy P J- iY(U') = lIr(1 + iy), 
p'rk 

we get from (22.15) [cf. (22.12)], 

lim ( - a') - iyReI 
p'rk 

F(1 - iy)e1T"YQ;Y(u) 

QI(U) 

By using further (e.g., Ref. 40, p. 197) 

1· J+ 1 -;'''I'QI'() _ 211 !F (I + 1 +p.) Imz e IZ- , 
Hoo (21 + I)! 

we find 

I· I' ( ') - iYR F(1 - iy)F(1 + 1 + iy) 1m 1m - a eI = -''----!.'"---'--'---~...!....!.. 
/>->oop'rk l! 

(22.16) 

(22.17) 

(22.18) 

= F(1 + iy)r(1 - iy) e ~ iY); (22.19) 
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hence, 

lim limlRell = c~e1T1'1 (I +1 ;r) I. 
_",p'Ik 

(22.20) 

It is not difficult to verify that the order in which the two 
limits are taken may be reversed in (22.19) as well as in 
(22.20). In view ofthe transformation invariances of Rei' see 
Sec. 23, Eq. (22.20) holds also when p and p' are inter
changed, and furthermore we have, by using the inversion 
(t2):p--+k2/p &p'-.k 2/ p', 

lim lim IRcll = lim I lim Rei I 
plO p'lk p'lk plO 

(22.21) 

Remark: In view of these limits, a necessary condition 
for the validity of the conjecture (c2) [see Sec. 24], 

(e21 

IRell < I Bel (ir)I (22.22) 

for the symmetric case, is that 

C~ e"1'l C ~ ;r) 1 < I Bel (ir)I (22.23) 

in this case. Note that in (22.22) as well as in (22.23), both 
members are even in r. We have been able to prove (22.23) 
only for 1 = 0; cf. Eq. (21.13). So (22.23) is our fifth conjec
ture (cf. Sec. 17), which we denote by (c2)', since (c2~(c2)'. 

Next we consider the asymmetric case. Then vv' > 0 so 
we use the representation given by Eq. (4.4) rather than the 
one ofEq. (4.2), and alternatively, Eq. (20.52) instead ofEq. 
(20.6). We have to modify previous derivations, from Eq. 
(22.12) on, only slightly. With p' > k & p> k (a' > 0, a> 0), 
the principal difference from preceding formulas is that we 
have (a,)iY instead of ( - a,)iY and C ~ instead of C ~ e"1'. So we 
get from (20.52) the analog ofEq. (22.12) 

xC ~ ir) r- I Im!aiyp\iy,-iYI(u)}, 

p> k, a> 0, r=l= O. (22.24) 

Hence 

lim lim IRelIQr(w) 
plk p'lk 

(22.25) 

does not exist, and 

limsup lim RelQr(w) = 21T1~1T1' - 11- 1
, r=l=O, (22.26) 

plk p'lk 

lim lim Rei = O. 
Plk p'lk 

The analog of Eq. (22.17) is 

11' (,)-iYR _ F(1 - ir)Q;r(u) 
ma eI- , 

p'lk Qr(u) 
p>k, 

and the analogs of (22.19) and (22.20) are23 

1· l' (') - iYR _ C 2 (I + ;r) 1m 1ma eI - 0 , 

_'" p'lk 1 
and 
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(22.27) 

(22.28) 

(22.29) 

lim lim IRed = C~ 1(1 +1;r)l, 
J1-->'" p'lk 

(22.30) 

respectively. Related results follow by applying the transfor
mations (td and (t2) (Sec. 23). 

Remark: In relation to the inequalities (i22) and (i24), 
see Sec. 24, we point out that 

c~I(/+;r)1 {> l,r<O, (22.31) 
1 <1,r>O. 

The prooffollows easily from (cf. Ref. 23) 

p' 

k 

o 

C~ = 21TY/! exp(21TY) - I} = 1TY exp( -1TY)/sinh 1TY, 

SJ 

A) 

p'. k 

'0 

:0<" 

S • 

A • 

k 

p < k < p' 

& k' < pp' 

SJ 

A) 

p' < p < k 

A 
1 

Sl 

... 
" 
'" 

S. 

A. 

p-k 

(22.32) 

(22.33) 

(22.34) 

'. 
~ (a) 

~ 

A 
I 

p' = k 

S, 

p 

In p'/k 

k < p < p' (b) 

.~ 
'l 

Al 
k < p' < p 

A, 
p' - k 

In p/k 

S, 

Sl p' < k < p & k' < pp' 

p' < k < P 

& pp' < k' 

FIG. 3. The subregions S, and A, (Sec. 23): (a) in the (p, p') plane; (b) in the 
(lnp/k, lnp'/k) plane. 
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When r < 0, the right-hand member ofEq. (22.30) is the 
supremum of IRell, but for r> 0 it is not: In this case the 
supremum is 1. The corresponding inequalities (see Sec. 24), 

(i22) 

IRell < 1, r>O, 

(i24) I (I + ir) I 
IRell < C~ , ' r<O, 

have been proved in Sec. 6. In view ofEqs. (22.30) and (22.31) 
we only have to prove that the value 1 is approached arbi
trarily closely, which is easy. By using, e.g., the representa
tion ofEq. (3.16), which holds for k < p' < p, we have 

lim Rei = 1, rE JR, 
wll 

(22.35) 

as can be seen upon inspection. The limit w! 1, implying 
p - p' -0, has to be taken such that 

(p - k )(p' - k »€>O. 

Finally we shall evaluate 

lim p lim (Rei - 1) 
p--oo p'-oo 

(22.36) 

(22.37) 

for positive energy. Using Eq. (22.18) and the representation 
given by Eq. (3.16), withp andp' interchanged, we obtain 

• 2 (k)I+1 [PI-iY(U)r(/+ 1 +ir) 
hm (Rei - 1) = Co -
p'~oo p l! 

- elrY1T- 1 IT (u + V cos tj-I-I cosh r tdt ]. 

(22.38) 

Further we use (e.g., Ref. 40, p. 197) 

1. -lpl-'( ) _ (2'- I)l! 1m Z I Z - -"'-----'--
Hoo r(/+ 1- Il) 

(22.39) 

In this way we find for the expression (22.37) 

C~ k 4 -I (~') _ C6elrY1T-12/+ I!~ P 

X IT [ 1 - cos t + (~ t(I + cos tj] -1-1 cosh rt dt. 

(22.40) 

One easily verifies that the interval of integration may be 
replaced by [1T - 2€,1T] where €!O is taken after p --+ 00. 

Then cosh rt may effectively be replaced by cosh r1T, and it 
turns out to be convenient to introduce r: = (plk) cot(t 12). 
In this way the second term of (22.40) is reduced to 

- 2kC6elrY 1T- 1 cosh 1TY lim lim 
E!O p--+oo 

r1k)tanE (rk2)1 
X Jo (1 + r) - 1- 1 1 + 7 dr. (22.41) 

The double limit of the integral here is equal to the integral 
given by Eq. (22.7). Combining the resulting expression with 
the first term of (22.40) we obtain 

lim p ~im (Rei - 1) = 1Ts4 -I (2,). 
p----oo P-oo 

In view of the inversion (t2 ) [see Sec. 23] we have 

lim (~) lim (Rei - 1) = 1Ts4 -/ (2,); 
plO p p'lO 

(22.42) 

(22.43) 

TABLE I. Twenty-four inequalities for Re and Rei; see Sec. 24 and cf. Table II. In case S, IRe I is even in y, and in case S/O IRell is even in y. Hence (i9) is 
identical to (ill), (ilO) to (il2), (iI3) to (iI5), and (iI4) to (iI6). The inequalities (il)-(i24) are all valid. We conjecture that (ilO) and (iI2) should each be replaced 
by (cl), and (iI4) and (iI6) by (c2). These conjectured inequalities (el) and (c2) are optimal if valid. All other inequalities are optimal. 

N 

S 

Classification 

Negative energy: 
k 2 < 0: - ik = K> 0 

uu' <0 

Positive energy: 

k 2 >0: k>O 

vu' <0 

Repulsion: S < 0: ky> 0 

(il) (i2) 

BctJ( -S/K) <; Re < I 

(i5) (i6) 

Bel ( - S/K) < Rei < 1 

(cl) 

Attraction: s> 0: ky < 0 

(i3) (i4) 

1 < Re <; BctJ( - S/K), O<S/K< I 

(i7) (is) 

I<ReI<BeI(-s/K), O<s/K<I+1 

(c2) 

Conjectures: IRe I <; IBctJ (iy) I and IRell < IBeI(iy) I 

(i9) (ilO) (ill) (il2) 

Z~ <; IRel < I Z~ <; IRel < I 

(i13) (iI4) (iI5) (iI6) 

o <; IReI ) < I o <; IRcll < I 

------------------------- -------------------------
(iI7) (iIS) (il9) (i20) 

A Z~ <; IRel < I I < IRe I < C~"",r "7'1Ty/sinh 1Ty 

uu'>O 

(i21) (i22) (i23) (i24) 1+ ir 

o <; IRell < I o <; IRell < C~I( )1 
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cf. Eqs. (22.8), which give almost the same results for the 
negative-energy case. As before we have 

lim lim Rei = lim lim Rei = 1, (22.44) 
plO p'lO p--.oo p'-oo 

where p and p' may be interchanged. 

23. TRANSFORMATION INVARIANCES OF Rc AND RCI 

The Coulomb T matrices (pI Tc Ip') and (pi Tel I p'), 
hence (p\Vclp') and (P\VeI!p'), and consequently Rc and 
Rcl are invariant under each one of the transformations: 

(to): p ++ p', 
(t l ): P ++ p', 

(t2): P _ k 2/ P & P' _ k 2/ P' (E = k 2 > 0), 

(t3): P - ,(2/ P & P' -i2 / P' ( - E = ,(2 > 0); 

the proofs follow easily from the appropriate representa
tions; cf. Refs. 6, 10, and 22. Clearly this invariance is main
tained under any combination of (to) - (t3), e.g., 

(tod: = (to) & (t l ): p ++ p', 

(t12): = (t l ) & (t2): P _ k 2/ p' & p' _ k 2/ p; 

TABLE II, LimitsofRe andRei in relation to the inequalities of Table I; see Sec. 24. TheratiosRe andRei areinvariantforp-p' andforP--+IE I/p&p'-->IE 1/ 
p', EER', Superscripts r indicate Coulomb repulsion, and a attraction, N indicates negative energy. For positive energy, A indicates the asymmetric case, and S 
the symmetric case, in which IRe I and IRell are even in y; consequently (i9) and (ill)areidentical, and further (ilO) and (iI2), (it3) and (iIS), and (iI4) and (il6) 
are pairwise identical. N.B. In (i2I) the infimum 0 is obtained for plk &p'lk if these two limits are evaluated in succession. Any value in [0, I] (and no other 
value) can be obtained by evaluating a particular combined limit: For p - k = k I-a(p - p')a (O<a < 1), ReI-->l - a when p' lp. 

Class Ineq Type Approached/attained for Ineq Type Approached/attained for 

N' il MIN pp' = K&e = 1T; i2 SUP q-->O or 
INF: for p-->O&p' --> 00 p-->oo &p'--> 00 , any e 

or p--+oo&p'-->O, any e 

Na i3 INF q-->O or i4 MAX pp' = K&e = 1T; 
p--+oo&p'-->oo, any e SUP: for p-->O&p'-> 00 

or p--+oo&p'-->O, any e 

N' I is INF p-->O&p' --> 00 or p--+ 00 &p'-->O; i6 SUP w--.I or 
relative MIN for pp' = K p-->O&p' -->0 or P--> 00 &p' --> 00 

Na I i7 INF w--.lor is SUP p-->O&p' --> 00 or P--> 00 &p'-->O; 

p-->O&p' -->0 or p--+ 00 &p' --> 00 relative MAX for pp' = K 

S' i9 MIN (p - k )( p' - k ) $ O? ilO NO 
SUP 

sa ill idem idem iI2 idem 

S NO IRe I nC~e"" for c1 MAX? pp' = k 2&e = 0; 
EXTR (p - k)(p' - k)rO: e>E>O SUP? for p-->O&p' --> 00 

or p-->oo&p'-->O, any e 

S; i13 MIN (p - k )( p' - k ) $ 0; il4 NO 
INF: plk&p'lk or plk&p'lk SUP 

Si itS idem idem il6 idem 

SI NO IRell-+C~e""cl;; 1/2 for c2 SUP? p-->O&p' -+ 00 or p--+ 00 &p'-->O 
EXTR p--+oo&p'lk,p-->O&p'lk, 

p'-> 00 &plk, or p'-->O&plk 

A' iI7 MIN (p - k)(p' - k)~O? il8 SUP q-->O or 
p->oo &p'-+oo , any e 

A a it9 INF q-->O or i20 SUP (p - k)(p' - kPO: e>E>O 
p--+ 00 &p' --> 00 , an y e 

A y>O: IRe I-->C~ for 
NO (p - k)(p' - k)lO: e>E>O 

EXTR 

A' I i21 MIN (p - k )( p' - k ) ~ 0; i22 SUP w--.I: (p - k )(p' - k »0 0; 
INF: plk &p'lk or plk &p'lk or p-->O&p'-->O or p->oo&p'->oo 

if successive limits 

A a 
I i23 idem idem i24 SUP p--+oo&p'lk,p-->O&p'lk, 

p'-->oo&plk, or p'-->O&Plk 

Al y>O: IRell--+C~CI;; 1/2 for y<O: ReI--+1 for 
NO p--+ 00 &p' !k, p-->O&p'l k, NO w--+I: (p - k ){p' - k »E>O; 

EXTR p'--+oo&p!k, or p'-->O&plk EXTR or p-->O&p' -->0 or p--+ 00 &p' --+ 00 
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one can combine (t2) and (t3) by 

(tE):p~IE II p &p'~IE lip' (EER'). 

One may call (to), (tIl, and (toIl transpositions, and (td, (t2)' 
(t3)' and (tE ) inversions. Let D be the domain of the allowable 
values of p and p' when k> 0: 

D: = {(p,p')lp>O,p'>O,P=l=k,p'=I=k); (23.1) 

note that the case p = p' is excluded for Rc/; it applies to Re 
nly if () > 0. It is convenient to divide D as follows: 

D = SuA (disjoint), (23.2) 

S: = {(p,p')lp' <k< p or p<k< p'), (23.3) 

A: = {(p,p')lk< p&k< p' or p<k&p' <k). (23.4) 

In S, the moduli of the Coulomb ratios, IRe I and IRc/ I, are 
even (symmetric) in yfor real y; in A they are not even (asym
metric). Let us partition S and A into the disjoint subsets Si 
and Ai according to 

4 

S= U Si' 
i=O 

So:PP' =k 2
, 

S):p' <k< p &k 2 < pp', 
S2:P' <k < p &pp' <k2, 
S3:p<k< p' &pp' <k2, 
S4:p<k< p' & k2< pp', 

4 

A= u~, 
i=O 

Ao:p = p', 
A):k< p' < p, 
A2: k< p< p', 
A3:p< p' <k, 
A4:p' < p<k, 

(23.5) 
see Fig. 3(a) and 3(b). These subsets or subregions Si and Ai 
play a role in representations and inequalities for positive 
energy. Such a division for the negative-energy case does not 
seem to be useful. Let N and Z indicate negative and zero 
energy, respectively; then S, A, N, and Z cover all real-ener
gy cases. Note that 

vv' <0 for Sand N, 

(23.6) 
vv'>O for A, 

so that the sign of vv' is a useful indicator. 
Each one of the regions S and A is invariant under the 

transposition (tIl and also under the inversion (t2 ). One easily 
verifies that the subregions are transformed as follows: 

(23.7) 

(23.8) 

Clearly we may often restrict (p,p') to one appropriate subre
gion Si or Ai (i = 1,2,3,4); the other subregions ofS or A are 
obtained by applying (t)) and (t2)' under which Re and Rc/ are 
invariant. So is a borderline: the curve pp' = k 2, which may 
be considered as a limit case. Similarly Ao (p = p') is a limit 
case for Re if () = ° and for Rc/; it may be considered as a 
limit case for Re if () > 0. 

24. TWENTY-FOUR OPTIMAL INEQUALITIES 

In this section we shall present and discuss twenty-four 
inequalities, denoted by (ilHi24), for the Coulomb ratios Re 
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(a) 

(b) 

FIG. 4. Limits of Rc and Rei: (a) for negative energy in the (lnp/K, lnp'/K) 

plane; (b) for positive energy in the (lnp/k, lnp'/k) plane. Only the quadrant 
-1T/4<arg z<1T/4 is displayed in both cases. Due to the invariance of Rc 

and of Rei under the transformations (tIl, (t2 ), and (t3 ), these figures can be 
extended to the whole plane simply by rotation on the axis p = p', and on 
the axes pp' = ~ and pp' = k 2, for (a) and (b), respectively. [Cf. Fig. 3(b) in 
Sec. 23 and Tables I and II in Sec. 24.] N. B. Fig. 4(b): On the p' = k axis Rei 
;::::0 indicates that Rei has an infinite number of zeros accumulating at 
p' = k. Further, Rei ---+ 0 for p ---+ k & p' ---+ k if these two limits are evaluated 
in succession. In S the limit of Rei for p---+k & p' ---+k always yields O. How
ever, in A any value in [0, I] (and no other value) can be obtained by evaluat
ing a particular combined limit, e.g., ReI-+I if first p'---+ p and next 
p&p'---+k. For p - k = k J ~a (p - p't (O<a< 1), Rei ---+ 1 - a when 

p't p. 

and Rc/; see Table I. We assume that the energy is either 
positive or negative: k 2ER', and that YER'. 

We conjecture that (ilO) and (i12) should each be re
placed by (el), and (i14) and (i16) by (c2). These inequalities 
(cl)and (c2) areoptimalifvalid; see below and cf. Sec. 17. All 
other inequalities are valid and optimal. In Sec. 18 we have 
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defined the functions Z ~ and Z ~ as infima of IRe I; however, 
in See. 19 we have proved that these infima are in fact mini
ma; consequently the associated inequalities: (i9), (ill), and 
(i17), are optimal. Optimality proofs of the inequalities fol
low by considering the appropriate limits of Re and Rei for 
which the boundary values indicated are attained or ap
proached arbitrarily closely. These limits have been dis
cussed in Secs. 21 and 22; the results are briefly summarized 
in Table II and Fig. 4(a) and 4(b). 

Next we shall briefly discuss how (ilHi24) are proved. 
The negative-energy inequalities (iIHi8) have been proved 
in Ref. 24. For (i9), (ill), and (il7) the reader is referred to 
Sees. 18 and 19 and for (il3), (iIS), (i2I), and (i23) to Secs. 18 
and 20. Further, (iI9) has been proved in Ref. 24, and (i22) 
and (i24) in See. 6. We are going to prove the remaining 
inequalities: (iIS), (i20), and (ilO), (il2), (iI4), (i16). 

The proof of (iI8) and (i20) is analogous to the one of 
(i22) and (i24) given in Sec. 6. By using Eqs. (4.1) and (4.2) of 
Ref. 24 we have 

Re =R ~ +R~, 

R ~: = 1] C ~ i Y
, 

(24.1) 

(24.2) 

(24.3) 

(24.4) 

In the asymmetric case we have 0 < y < 1; it can be seen upon 
inspection that 

0< 1]<1, O<R~<l. 

Hence, for YER', 

< 1 + 1]( C ~ - 1), 

which may be compared with Eq. (6.12). Since 

C ~ S 1 for y ~ 0, 

we have clearly 

IRel < I, y>O, 

IRel<C~, y<O, 

which are just (i 18) and (i20). 

(24.5) 

(24.6) 

(24.7) 

(24.8) 

To prove (ilO) and (il2) we use the representation 

Re =(p+ 1) So'" (p + cosh t)-2 sinh te-iY'dt, 

Re iy> - I, (24.9) 

which follows from Eq. (2.1) after integration by parts. Since 
p> 1 in the symmetric case it follows easily that IRe 1< 1. 
More generally, if 

Re = So'" g(t)e - iy' dt, 

with YER', g(t »0, and g not almost everywhere zero, then 
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IRe I < So'" g(t) dt. (24.10) 

In particular, the < sign holds here according to the 
theorem of Cauchy-Schwarz, 

gl(t): = (g(t W/2 exp(iyt /2), g2(t): = g1'(t), 

I( gl,g2)1 < I( gl' gl)( g2' gzW 12 = (gl' gl)' (24.11) 

sinceg) andg2 are not proportional when y#O. [With these 
formulas we have proved that Qv(z) and In Qv(z) are, for 
v> - 1 and z > 1, decreasing and convex functions of v and 
of z; see Appendix Q of Ref. 32; these results were used for 
the proof of (is) and (iB).J 

Finally, (il4) and (i16) follow in the same way from the 
representation 

Rc/Q,(w) = vv' i'" e - iyt sinh t 

X Q ;(uu' - vv' cosh t )dt, 

vv'<O, Reiy> -I-I, (24.12) 

which follows from Eq. (3.1) after integration by parts; note 
that vv' < 0 in the symmetric case and that uu' - vv'=w. 
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We present and prove new inequalities for the momentum representation (i) of the full Coulomb 
transition operator Te, and (ii) of its partial-wave projections, Tel' for all I = 0, 1, .... Also, a 
previously conjectured inequality is proved: I TJ Ve I > 1, under certain conditions. These 
inequalities are useful for gaining insight into the-very convenient, and often proposed in the 
context of three-particle calculations-approximation in which the Coulomb transition operator 
is replaced by the Coulomb potential operator. Such an approximation is obviously not accurate 
at any zero of the Tmatrix. We investigate the zeros of (pi Te Ip') for positive energy, and we give 
simple approximation formulas for these zeros. 

PACS numbers: 03.65.Nk, 02.30. + g, 11.20.Dj 

I. INTRODUCTION 

The two-particle off-shell Coulomb transition (T) ma
trix plays an important role in equations describing reactions 
of charged particles. The pure Coulomb T matrix is known 
in (complicated) closed form, in coordinate space as well as in 
momentum space. Because of the complexity of these closed 
forms, suitable and accurate approximations are sometimes 
desirable, especially for numerical calculations. An obvious 
and elementary approximation consists in replacing the 
Coulomb T operator Te by the Coulomb potential operator 
Ve at some stage in the formalism. The calculational advan
tages of this approximation are considerable since Ve has a 
very simple closed form. 

To gain some insight in the accuracy of this approxima
tion one can study the ratio Rc defined by 

Re: = (plTc Ip')/(pl Ve Ip'), (Ll) 

and its partial-wave-projection analog, defined by 

Rei: = (PITcllP')/(P!VellP'), (1.2) 

where Tel and Vel are the partial-wave projected Coulomb T 
operator and potential operator, respectively. Here and 
henceforth, the notation of Refs. 1 and 2 is used. In particu
lar, y is Sommerfeld's parameter, the Coulomb potential is 
VeI(r) = 2ky/r== - 2s/r, VI = 0,1,2, ... ; e is the angle 
between the momenta p and p', 

w: = (p2 + p,2)12pp', v: = (p2 - k 2)12pk, 

v': = (p'2 _ k 2)/2p'k. 

The energy is k 2 _ - K2 with k> 0 for positive energy and 
K> 0 for negative energy; QI is Legendre's function of the 
second kind. 

In Refs. 3 and 4 more inequalities and many new repre
sentations for Re and for Rei are derived. We point out that 
the least upper bound of IRell that is conjectured in Ref. 1, 
Eq. (5.5') is derived in Ref. 3. 

1<IRel, p>k&p'>k or p<k&p' <k; 

(1.3) 

has been found numerically to hold for many values of p, p', 

and e. Its validity could not be proved analytically but it was 
conjectured; see Eq. (4.4) of Ref. 1. 

In this paper we shall extend the results of Ref. 1 on 
inequalities for Re and Rei' In particular, we shall give two 
different proofs of a sharpened version of Eq. (1.3). 

In Secs. II and III we shall derive new optimal inequal
ities for Re and for Rei' respectively, valid for negative ener
gy. In Sec. IV we prove Eq. (1.3), and in Sec. V we give a 
second proof of this remarkable inequality. In Sec. VI we 
shall discuss zeros of Re and of Rei for positive energy. It is 
clear that at such zeros the approximation in which the Cou
lomb T operator is replaced by the Coulomb potential, 
which amounts to replacing Re or Rei by 1, is not satisfac
tory. 

In Refs. 3 and 4 more inequalities and many new repre
sentations for Re and for Rei are derived. We point out that 
the least upper bound of IRell that is conjectured in Ref. 1, 
Eq. (5.5'), is derived in Ref. 3. 

II. INEQUALITIES FOR Rc VALID FOR NEGATIVE 
ENERGY 

In this section we shall prove four inequalities for R e , to 
be denoted by (il)-(i4) [see Eqs. (2.3) and (2.4)], which are 
valid for fixed negative energy: k 2 < 0, - ik =K> O. Then 
iy= - S/K is positive for repulsion (s < 0), and negative for 
attraction (s> 0). First we define a function B cO' which may 
be considered as a boundary function for the Coulomb ratio 
R e , by 

BcO(z): = 4 f t Z (1 - t)(l + t)-3 dt, Rez> - 1. (2.1) 

It can be seen by inspection that the function BcO is positive 
and strictly decreasing on ( - 1,(0). Furthermore, 

BcO(O) = 4 f [2(1 + t )-3 - (1 + t )-2]dt = 1, 

(2.2; 

lim BcO(z) = 0, lim BcO(z) = 00. 
Z-oo Zl - 1 

We shall prove 

3033 J. Math. Phys. 25 (10). October 1984 0022-2488/84/103033-06$02.50 © 1984 American Institute of Physics 3033 



                                                                                                                                    

(il) (i2) 

BcO ( -S/K)< Re < I, s<O, (2.3) 

(i3) (i4) 

1< Re <BcO ( -S/K), O<S<K. (2.4) 

These inequalities are optimal. For the proof we use the fol
lowing representation2

-4 for Rc: 

Re = I + (S/K)I, 

(2.5) 

11 (w - cos 8)t - I - SIK dt 
1·-

• - 0 w - cos 8 - vv/(t - 2 + 1/t)/2 ' 
w>cos 8, 

where 

w: = (p2 + p'2)/(2pp'), 

vv/: = - (p2 + ~)( p'2 + ~)/(4K2pp') < O. 

Since w> cos 8 and vv/ < 0 it is clear that I> O. Hence, 

Re> I if s>O, Re < I if s<O. (2.6) 

To prove that (i2) and (i3) are optimal, we shall prove that 
I~, hence, Re-I, for w - cos 8~, i.e., for cos 8 = I, 
p - p/~. It is clear that the integrand in (2.5) is minimal 
with respect to 8 for 8 = O. Inserting 8 = 0, and 
w - I = (p - p'f /(2pp'), we get 

1(8=0)= ft -SIK[t+a2(I-tf]-ldt, 

(2.7) 
a2: = (p2 +~)(p/2 +~)/[4K2(p _p/)2]. 

So we have to prove that 1(8 = O)~ for a--+ 00. It is easily 
seen that the region t;::::, I (only) deserves some care. In fact it 
is sufficient to prove that 

lim ( t -SIK[t+a2(I-tf]-ldt=0 
a---+oo)I_C 

for any CE(O, I). As C may be arbitrarily close to I it is allowa
ble to replace t - SIK and the isolated term t by 1. Then we 
have 

!~~ f- e [I + a 2
( I - t f] -I dt 

= lim [ dt 2 2 = lim a-I arctan(ac) = O. 
a~oo 0 (I +a t) a~oo 

Hence, 

lim Re = 1. (2.8) 
p-p'~ 

This completes the proof of the inequalities (i2) and (i3). 
To prove (il) and (i4) we return to Eq.(2.5). Since vv/ < 0 

and t - 2 + 1/t = (I - t f /t>O it is clear that the integrand 
is maximal with respect to 8 for 8 = 1T. Inserting 
cos 8 = - I and w + 1 = (p + p')2/(2pp') into (2.5) we ob
tain 

I(8=1T)= f t -1-SIK[1 +A(t-2+ 1/t)]-ldt, 

(2.9) 
A: = (p2 + ~)(p'2 + ~)/[ 4~(p + p'f]. 

Furthermore, JA / Jp = 0 for p = ~ /p/; then A = ! which is 
its minimal value under variation of p and p/. Substitution of 
A = ! into (2.9) gives the maximal value of I: 
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(2.10) 

Integration by parts finally yields 

1 + (~) Imax = 4 f t -SIK(1 - t)(1 + tj-3 dt 

=BcO( ~s), (2.11) 

which completes the proof of (i 1) and (i4). 

III. INEQUALITIES FOR Rei VALID FOR NEGATIVE 
ENERGY 

In this section we shall prove four optimal inequalities 
for Rei' to be denoted by (i5)-(i8) [see Eqs. (3.5) and (3.6)], 
valid for fixed negative energy. The plan of the proof is simi
lar to that of the preceding section. First we define a bound
ary function Bel' I = 0,1, ... , for the Coulomb ratio Rei' by 

BeI(z): = (I + 1)4'+ I f tZ+'(I_ t)(1 + tj-Z'-3 dt, 

Rez> -1- 1. (3.1) 

Integration by parts gives 

BeI(z) = 1-4'+lz f tZ+'(1 +t)-Z'-2dt. (3.2) 

It is obvious that the function Bel is positive and strictly 
decreasing on ( -1- 1,00). Furthermore, 

BeI(O) = I, 'ill [from (3.2)], (3.3) 

lim BeI(z) = 0, lim BeI(z) = 00, 'ill. (3.4) 
Z-CX! zi -/- 1 

We shall prove 
(is) (i6) 

BeI(-S/K)<ReI<l, s<O,I=O,I, ... , (3.5) 

(i7) (iB) 

1 <Rei <BeI(-s/K), o <S/K<i + 1, 1=0,1, .... (3.6) 

These inequalities are optimal. For the proof we use the fol
lowing representation2

-4 for ReI' 

Rei = 1 + (s/K)II' 

II: = [Q,(w)] -I f t -J-SIK 

XQ,(w - vv/(t - 2 + 1/t )/2)dt, 

s/K<I+ 1,'=0,1, .... 

(3.7) 

(3.8) 

Let us recall some well-known facts about the Legendre 
function Q,. We have 

Q,(z) = - pn(z - 1) + 0(1), zH, (3.9) 

lim Q,(z) = 00; 
zJ1 

(3.10) 

Q,(z) is positive and strictly decreasing for 1 <z < 00. 
Since w> 1 and vv' < 0 it is clear that I, > o. Hence, 

(3.11) 

To prove that (i6) and (i7) 8fe optimal, we observe that wt 1 
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and vv' -----1> - (p2 + ,r)2/(4,rp2) < ° when p - p' -----..0. Thus we 
obtain 

lim II = lim [QI(W)]-! 
WI! wll 

X f I - 1 - sIKQI(W - vv'(1 - 2 + 1/1 )/2)dl, 

any cE(O,I) 

= lim [In(w - 1)]-1 
wll 

X f I -1-sIKln [ - vv'(1 - 2 + 1//)] dl = 0. 

2 (3.12) 
Hence, 

lim Rei = 1. 
p-p'-.o 

(3.l3) 

This completes the proof of the inequalities (i6) and (i7). 
To prove (is) and (is) we return to Eq. (3.S) and we are 

going to derive the least upper bound, or supremum (sup), of 
II under variation of p and p'. We first keep W fixed; we put 
W = cosh a, a fixed, and we have p' = pea. Under variation 
of p(or p'), the argument of QI in Eq. (3.S) is minimal for 
p2 =,re - a, i.e., for pp' =,r. This minimal value is b + CW, 
where we use for the moment the variables 

b: = (1 - 1)2/4/;;;'0, c: = (1 + I f/4/;;;' 1. (3.14) 

Since QI(Z) is decreasing in z, we have the maximum of II 
under the condition that W be fixed, 

II ,,;,II ( pp' =,r) = [QI(W)] -I f I - 1 - slKQI(b + cw)dl. 
o (3.1S) 

The remaining freedom we have is to vary w. In Appendix R 
of Ref. 3 it is proved that ql defined by5 

ql(w): = QI(b + CW)/QI(W), b;;;.O, c;;;.l, W> 1, (3.16) 

is a strictly increasing function of w on (1,00 ) for fixed b and 
c, except for b = 0, c = 1 when clearly ql(w)=1. Therefore, 
we get the supremum of the expression on the right-hand 
side of(3.1S) by taking its limit for w-----..oo. This limit is equal 
to the supremum of II which we denote by nup

• From Eq. 
(3.10) we have 

lim ql(W)=C- I- I
, 

hence, by (3.14), 

nup = 41 + 1 f 1 1- SIK( 1 + t) - 21- 2 dl, (3.17) 

and according to Eq. (3.2) we have 

BeI ( - S/K) = 1 + (S/K)l~uP. (3.1S) 

Recalling Eq. (3.7) we see that this completes the proof of the 
inequalities (is) and (is) given in (3.S) and (3.6). 

IV. FIRST PROOF OF IRe I> 1 (0 <y < 1, y < 0) 

We shall use the series representations2
-4 
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where y is defined by 

y: = (x + 1)/(x - 1), x <0, 

x 2 : = 1 + k -21p _ p'I-2(pZ _ k 2)(p'2 _ k 2), 

and 

Eo: = 1, En: = 2, n>O, 

C~: = 21TY/(e2
17f' - 1), (4.3) 

C~ = - 1Ty + 1Ty coth 1TY 
00 1 

= 1 - 1Ty + 2f L 2 • 
n=1 n +f 

An essential feature of the proof in this section is to consider 
ReY - iy in place of Re' It is obvious that 

(4.4) 

implies IRe I > 1, Vy < 0, ° <y < 1. In fact we shall prove a 
stronger inequality, viz., (4.4) with C~ replaced by C~ 
+ 1Ty = 1Ty coth 1TY < C ~, which amounts to 

Re(Rey-iY) > 1 -1TY(1 - y)/(1 + y» 1, 

(4.S) 

This seems to be the sharpest modification, in a certain sense, 
of the inequality IRe I> 1. 

To begin with the proof of (4.S) now, we combine (4.1), 
(4.2), and (4.3) and use 

Re y - iy = cos(yln y) = 1 - 2 sin2(!y In y). 

Then we obtain, denoting for convenience ~y In y by a, 

Re(R - in = C~(1 - y) 
eY I (l+y) 

+ COS(2a)[I- {I - y} f f :nyn ] 
l+y n=on+f 

= 1 + {I - y} [C~ - f f :nY" 
l+y ,,=on+f 

00 Y"n2] - 4 sin2 a L --"-2--

n= 1 n + f 

=1+ C~;}[-1TY 
+f f ynl-2+2Y-2n-4n2y-2Sin2aJ] 

n=1 n +f 

= 1 + { 1 - y} [ - 1TY + f f Y;n (y) ] , (4.6) 
l+y n=ln +f 

where 

In (y): = - 2 + 2y - n - 4n2y-2 sin2 a, n = 1,2,3, .... 

Since sin2 a <a2, a~O, we have [recall a: = (y/2)lny] 

In (y) > gIl (y): = - 2 + 2y - " - n2 ln2 y. 

Now we introduce the function hn , 

hn(Y): = - (y/2n)g~(y) 

=y-n + n lny, n = 1,2,3, .... 

Then h" (y);;;'1 for ° <y';;; 1 since h" (1) = 1 and 

h ~(y) = n(l - y-")/y<O, O<y< 1, n = 1,2,3, .... 

Hence g~ (y).;;; - 2n so that gn (y) is decreasing, and so we 
have 
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fn(y»gn(y»gn(1) = 0, n = 1,2,3, ... , o<y< 1. 

By insertingfn (y) > ° into (4.6) we obtain 

Re(Rey-i1> I -17f'(1 - y)/(1 + y» I, 

Vy<O, O<y< I, 

which completes the proof of(4.5) and hence the proof of 
IRel> 1. 

V. SECOND PROOF OF IRe I > 1 (O<y< 1, y<O) 

Here we use again Eqs. (4.1)-(4.3). First we observe that 

IRel> { l-yJ (C6 -2 f (n2 ] 
l+y n~1 n +r 

> {..!..=.LJ [C6 - 2 f yn] 
l+y n~1 

= {l..=2:'.} [C6 -~] , 
I+y I-y 

for y<O, ° <y < 1. Hence if 

C6>(1 + 3y)/(1 - y), (5.1) 

we have at once 

IRe I> (I + 3y)/(1 + y) - 2y/(1 + y) = 1. 

One easily verifies that (5.1) is equivalent with ° <y<Yo, 
where 

yo: = (C6 - 1)/(C6 + 3). (5.2) 

So we have to prove IRe I > I only under the condition 

Yo <y < 1. (5.3) 

Since IRe I >Re Re it is sufficient to prove that [cf. (4.1)] 

1 - y C6 cos(y Iny) + I _ I - Y r 
l+y l+y 

00 E yn 
X L 2 n ? > I, 

n~O n + r 
which is equivalent with 

(5.4) 

N ow we shall use 

0<ylny<ylnyo<2/1r, Vy<O, Yo<y<1. (5.5) 

Only the last inequality here is difficult; it will be proved in 
Appendix A. From (5.5) it is clear that the infimum with 
respect to y of the left-hand side of (5.4) is cos(y In yo). Fur
thermore, the supremum with respect to y of the right-hand 
side of (5.4) is obtained by taking y = 1. Hence, for the proof 
of (5.4) it is sufficient to prove the inequality in 

cos(y In Yo) > C 0- 2r f 2 En r 
n~O n + 

e
2rry + 1 

= C 0- 21Ty coth 1Ty = (5.6) 
2 

When 

y<ln( - 1 + 2 cos(211T))/(21T) = - 0.07913 ... , 

the right-hand side of(5.6) is smaller than COS(2!1T) 
= 0.8041...sothat(5.6) holds in this case, by (5.5). Therefore, 

it is sufficient to restrict y to - 0.07914 < y < 0. Now we 
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shall use the inequalities cos z > I - z2n and 

I + 2y> (e21TY + 1)/2, -O.I<y<O. 

To prove (5.7) we define the functionfby 

fry): = I + 4y - e21TY
• 

(5.7) 

(5.8) 

Sincefis concave,J(O) = 0, andf( - 0.1) = 0.0665 .. ·>0, it 
followsthatf(y) > ° for - 0.1 < y< ° which proves (5.7). Re
turning to (5.6) we see that it is sufficient to prove the ques
tion-marked inequalities in 

? 

cos(y In Yo) > 1 -!r In2 Yo> 1 + 2y> (e21TY + 1)/2 

? 

<=In (lIyo) = In[(C6 + 3)/(C6 - 1)] <2( - y)-1/2. 

Since C6 > 1 - 1Ty [cf. Eq. (4.3)] we have 

In[(C6 + 3)/(C6 - 1)] <In(1 - 4/1TY). 

Introducing a: = ( - y)-I/Z and 

g(a): = 2a -In(1 + 4a2/1T), 

we have to prove that 

g(a»O for a> 3.555;::;:;(0.07914)-112. 

One easily verifies that gIn) = 0, and 

g'(a) > O:::>g(a) > 0, Va> 0, 

which completes the proof. 

VI. A NOTE ON ZEROS OF Re 

(5.9) 

In this section we shall consider the zeros of Re for 
positive energy. We shall give a simple and elegant proof of 
the fact that Re possesses at least one zero, for a certain value 
of y. Elsewhere3 it has been proved that Re and Rei possess 
an infinite number of zeros which correspond to values of y 
accumulating at I yl = 00. 

We distinguish two cases: (i) - 1 <y < 0, and (ii) 
O<y< 1. 

(i) When - 1 <y < ° we have - 1 < x < ° and vv' < O. In 
this case IRe I is even in y; therefore, we shall call this the 
"symmetric" case. Clearly we may take y> ° without loss of 
generality. We shall use the following representation for Rc> 
valid for - 1 <y < 0, 

{
I - y} {( - y)iy1Ty 00 ynn2} Re= -- +2 I ,(6.1) 
1 + y sinh 1Ty n ~ I nZ + r 

which is the analog ofEq. (4.2) (valid for ° <y < 1). We are 
looking for solutions of the equation Re = 0. It is clear that 
we must have ( - y)iY = ± 1. In Ref. 3 it has been proved 
that ( - yyY = - 1 gives no solution at all. So we shall put 
( - y)iy = 1. We define a sequence of values for y, 

Yn: = - exp( - 21Tn/y), n = 1,2, ... (y> 0). (6.2) 

Restricting ourselves to n = 1, we define a function h by 

(6.3) 

Then h is a continuous function of y. One easily obtains 

h (1);::;:;0.27, h (3);::;:; - 0.02. (6.4) 

Hence, h possesses a zero, which we denote by or; , where the 
superscript s stands for "symmetric." Therefore, 
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Re = 0 when y = o~ and y = - exp( - 21Ti~). 
(6.S) 

Computer calculations suggest that for each n just one 
and only one zero can be found. In Ref. 3 this has been 
proved with the help ofa new representation for Re. An 
interesting approximation formula for the zeros or:. can be 
derived, viz. 

or:. :::::;(2n)I/2 + (41T)-lln(8rn3) + 0(1), n~oo. (6.6) 

It follows from Eq. (6.1) by takingy:::::;O and solving the re
sulting equation, 

exp(1TY - 21Tn/y) =~. (6.7) 

In Table I, we give exact (from computer calculation) and 
approximate [from Eq.(6.6)] values for the first four zeros 
or:. : 
Re = 0 when y = or:. and y = - exp( - 21Tnir:.), 

n = 1,2, .... (6.8) 

It follows that the accuracy of the approximation formula 
(6.6) is good: For n = 4 the approximate value is only 8% 
below the exact value. 

(ii) When 0 <y < 1 we have x < - 1 and vv' > O. In this 
case IRe I is not even in y; we shall call this the "asymmetric" 
case. When y < 0 we have IRe I > 1 (see Secs. IV and V) so that 
Re has no zero. Therefore, we take y positive. 

From Eqs. (4.1) and (4.2), which are valid in this case, it 
follows that Re = 0 implies that/Y = ± 1. From Eq. (4.2) it 
can be seen by inspection that Re is positive when/Y = + 1. 
So we must have /Y = - 1 and we define 

Yn: = exp( - (2n - l)1T/Y), n = 1,2, ... (y>0). (6.9) 

Restricting ourselves to n = 1, we define a functionfby 

fry): = Re(Y =ytl· (6.10) 

Thenfis continuous, and we have 

frO): = limf(y) = - 1, 
YIO 

(6.11) 
f(l):::::;O.03. 

Hence,fpossesses a zero, which we denote by or: , where the 
superscript a stands for "asymmetric." Hence, 

Re = 0 when y = or: and y = exp( - 1Tir:). (6.12) 

By using Eq.(4.2) we see that the zeros of Re follow from 

1Ty 2:00 

y
m

m
2 

( - (2n - 1)1T) = , y = exp . 
(e21TY - 1) m ~ 1 m2 + r y 

(6.13) 

Computer calculations suggest that for each n just one solu-

TABLE I. The first four zeros or;, of Rc in the "symmetric" case. 

or;, "Exact" Approximate Quotient 

n= 1 2.132 1.762 1.210 
n=2 2.821 2.514 1.122 
n=3 3.343 3.060 1.093 
n=4 3.775 3.507 1.077 

3037 J. Math. Phys., Vol. 25, No.1 0, October 1984 

TABLE II. The first five zeros or:: of Rc in the "asymmetric" case. 

or:: "Exact" Approximate Quotient 

n = 1 0.833 0.798 1.044 
n=2 1.454 1.399 1.039 
n=3 1.862 1.803 1.033 
n=4 2.187 2.127 1.028 
n=5 2.464 2.405 1.025 

tion exists. (For a proof, see Ref. 3.) By takingy:::::;O in (6.13) 
we get an approximate equation, 

exp[21TY - (2n - l)1T/Y] :::;1Tr, (6.14) 

from which we derive approximate values for the zeros of Re 
in the "asymmetric" case, 

or,: :::::;(n - !)1/2 + (81T)-lln(rn 3) + 0(1), n~oo.(6.1S) 

In Table II, we give exact (from computer calculation) and 
approximate [from Eq. (6.1S)] values for the first five zeros 
or,: : 
Re = 0 when y = or,: and y = exp [ - (2n - l)1Tir,:], 

n = 1,2,... . (6.16) 

Clearly Eq. (6.1S) gives excellent values, lying less than S% 
below the exact values. 

APPENDIX: y In[(G -1)1(G + 3)] <2/1r 

In this appendix we shall prove that 

0<ylnyo<2I1T, Vy<O, 

where Yo is defined by 

Yo: = (C~ - l)/(C~ + 3), 

C~: = 21Ty/(e21TY - 1). 

Defining the functionfby 

(AI) 

f(z): = z In [(z + 3 - 3e - Z)/(z - 1 + e - Z)], z> 0, 
(A2) 

where z = - 21TY, we easily see that (AI) is equivalent with 

0<f(z)<4 Vz>O. (A3) 

First we note that (A3) is optimal, because of 

limf(z) = 0, lim f(z) = 4. 
Z!o z---+-oo 

It is clear thatf(z) > 0 and that 

f(z) <z In[(z + 3)/(z - 1)], Vz> 1. 

We shall use now 

g(z):=ln[(z+3)1(z-1)]-4/z<0, Vz>~. (A4) 

The proof of g(z) < 0 follows from: g(3/2) = In 9 - ~, 

limHoo g(z) = 0, and 

g'(z) = 4(2z - 3)/[Z2(Z - l)(z + 3)] > 0, Vz>~. 

From (A4) we have at once 

o <f(z) < 4, V z>~. (AS) 

To prove the remaining part of (A3 ):f(z) < 4 for 0 < z < ~ we 
use the elementary fact that 
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h(z):=rz-I +z-~/2+.z3/6>0, \;fz>O. 

The prooffollows by observing successively that h III(Z), h "(z), 
h 'Iz), and h (z) are positive \;fz> O. Using 

z - I + e-z>~/2 -z3/6, \;fz>O 

in the denominator, and 1- e- Z <z,\;fz> Oin the numerator 
of the argument of In in (A2), we easily obtain 

I(z) <z In{24/(3z - Z2)j, O<z< 3. (A6) 

Denoting the right member of (A6) by II (z), we now claim 
that 

o </1(z)<c: = 11m = (~)ln(¥) = 3.5506 ... , 0 <z<~. 
(A7) 

To prove this we define the function/2, 

12(z):= [/1(z)-/IW]lz=ln[24/(3z-z2)] -clz, 

O<z<~. 

Then 
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I; (z) = [2z2 - (3 + c)z + 3c ]!(z2(3 - z)) > 0, 0 <z<~ 

(note: negative discriminant), hencefz(z) increases from 
- 00 to 0 when z increases from 0 to~. Combining (A6) and 

(A7) we have 

o </(z) </1(z).iflm = 3.5506··· < 4, 0 <z<~, 

which, together with (A5), completes the proof of (A3), and 
hence of (AI). 

I L. P. Kok and H. van Haeringen, Phys. Rev. C 21, 512 (1980). 
2H. van Haeringen, "The Coulomb Potential in Quantum Mechanics and 
Related Topics," Ph. D. thesis, Free University, Amsterdam, 1978 (unpub
lished). 

3H. van Haeringen, "Coulomb T matrix: Representations, Inequalities, 
Limits, and Zeros," Report 83 07, Delft, 1983, 2nd ed., p. 214; H. van 
Haeringen, "Twenty-four optimal inequalities and several new representa
tions for the Coulomb T matrices in momentum space," J. Math. Phys. 25, 
3001 (1984). 

4H. van Haeringen, "Interactions for charged and neutral particles," Re
port 83 12, Delft, 1983, 2nd ed., p. 140 (to be published). 

5See also Appendixes Q and L of Report 83 07 (Ref. 3). 
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A new representation of the de Sitter metric is proposed, which is analogous to Kruskal's 
coordinates for the Schwarzschild metric. The counterpart of Wheeler's tortoise coordinate is 
also discussed. 

PACS numbers: 04.20. - q 

I. INTRODUCTION 

The Schwarzschild solution for the metric around a 
mass of the gravitational radius a 

ds2 = - (1 - a/r)c2 dt 2 + (1 - a/r)-I dr + r do}, (1) 

and the de Sitter solution for the metric of a uniformly 
curved space-time of radius R 

ds2 = - (1 - r / R 2)C2 dt 2 

+ (1 - r/R 2)-1 dr + r do}, (2) 

are different in content but have some similarities in struc
ture. Both are spherically symmetric with 

dw2 = de 2 + sin2 e difJ 2 (3) 

and static. As the former has an apparent singularity at 
r = a, so does the latter at r = R. The spherical singularities 
in both cases are removable. The removable character of the 
Schwarzschild singularity can be best demonstrated in the 
Kruskal representation. I In doing so, Kruskal could exhibit 
the maximal singularity-free extension of the Schwarzschild 
solution. The de Sitter singularity can also be seen as the 
horizon of an observer at the origin r = 0 and a moving ob
ject can cross through the singular sphere r = R. Further
more, the maximal extension of the de Sitter solution can be 
realized as a pseudosphere in five dimensions. 2 In this re
gard, one can add nothing to these well-studied solutions. 
However, in the present paper, placing an emphasis on their 
similarities in structure, we propose a nonsingular represen
tation for the de Sitter metric (2), which is analogous to Krus
kal's for the Schwarzschild metric (1). 

II. KRUSKAL-LiKE COORDINATES 

Consider the following transformation: 

u = ((R - r)l(R + r)] 1/2 cosh(ct /R ), 

v = ((R - r)/(R + r)] 1/2 sinh(ct /R). 

(4) 

(5) 

This transformation maps the de Sitter interior world 
(O<r<R, - 00 < t < (0) into the domain ofu2 

- v2 = 1 in 
the quadrant u > Ivl (sector I shown in Fig. 1). From (4) and 
(5), we readily obtain the expressions, 

u2 - v2 
= (R - r)l(R + r), (6) 

v/u = tanh(ct /R). 

The de Sitter metric (1) is then expressed as 
ds2 

= j2(u,v)(du2 - dv2) + r(u,v)dw 2 

(7) 

(8) 

aj Present address: Pfaarkirchen Gymnasium, Pfaarkirchen, Federal Re
public of Germany. 

with 

f(u,v) = R + r = 2R /(u2 - v2 + 1). (9) 

The metric (8) is very similar in form to the Kruskal's repre
sentation of the Schwarzschild metric. The functional factor 
flu, v) in (9) is an elementary function of (u2 - v2) while the 
corresponding factor in the Kruskal case is transcendental. 
The whole line r = R in the (r, t) plane corresponds to the 
origin u = v = 0 as is obvious from (4) and (5). The two one
dimensional families of ideal limit points with r~R and 
t~ ± 00 correspond to the remaining boundary points 
u = Ivl > O. The line r = 0 in the (r, t) plane is represented by 
the two branches of the hyperbola u2 

- v2 = 1 in the (u, v) 
plane. It is evident that the metric is entirely regular on the 
lines, u = ± v and u2 

- v2 = 1, and inside the region of sec
tor I (the shaded area in Fig. 1). 

The line element (8) is regular even in the other three 
quadrants ofthe (u, v) plane up to the two branches of the 
hyperbola, u2 

- v2 = - 1, which correspond to r = 00. This 
means that the de Sitter coordinates with r < R form a local 
coordinate patch which covers only part of the whole mani
fold. In much the same way that the limited Schwarzschild 
solution is extended to the entire Kruskal manifold, the de 
Sitter solution can be analytically extended to all sectors in 
the (u, v) manifold. The extension of sector I to sectors II, III, 
and IV can be achieved by choosing u and v as follows: 

Sector II: u= ((r-R)/(r+R)] 1/2 sinh(ct/R) (10) 
v = ((r - R )I(r + R)] 1/2 cosh(ct /R), (11) 

Sector III: u= -((R-r)l(R+rW/2cosh(ct/R) (12) 

v = - ((R - r)l(R + r)] 1(2 sinh(ct /R), (l3) 

Sector IV: u = - {(r - R )/(R + rW /2 sinh(ct /R) (14) 
v = - I(r - R )I(R + rW /2 cosh(ct /R ).](15) 

The form of the first equation (6) of the inverse relations 
remains the same for all sectors, but the second equation (7) 

FIG. 1. A u-v diagram for the de Sitter metric. 
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is valid only for sectors I and III. For sectors II and IV, we 
have 

u/v = tanh(ct / R ). (16) 

Let us examine the extended de Sitter manifold shown 
as four sectors limited by the hyperbolas u2 

- v2 = ± 1. The 
regions of constant r are hyperbolas with asymptotes 
U = ± v, and the regions of constant t are straight lines 
through the origin. All radial null geodesics are 45-degrees 
lines du = ± dv. The signs of the (u, v) variables in each 
sector have been so chosen that dv > 0 for the propagation of 
light rays. The diagram for the extended de Sitter manifold is 
very similar in many respects to the Kruskal diagram for the 
Schwarzschild manifold. The appearance of the family of 
limited points with r = 0 on the two branches of the hyper
bolas u2 

- v2 = 1 in sector II and IV is in sharp contrast to 
the Schwarzschild case. A light ray originating a point P in 
sector I travels either toward r = 0 or r = R depending on 
the initial direction of motion. If the light ray comes to the 
boundary at r = R, it will continue its way in sector II until it 
reaches the hyperbola which corresponds to r = co. The 
light ray coming toward the center r = 0 does not have to 
stop at r = O. Since the center point r = 0 is regular, it may be 
reflected on the hyperbola and directed to the way to infin
ity. All geodesics passing through P are confined within the 
timelike angle between these two possible paths (null geodes
ics). A test particle can therefore cross the regular boundary 
at r = R and advance to sector II. A particle, if it starts from 
a point in sector II, has no choice for its destination; it goes to 
infinity. A signal sent from sector III can enter sector II, 
ending up at infinity, but it will never reach sector I. There is 
no way to establish a communication between sectors I and 
III. It is interesting that a signal originating in sector IV can 
get into sector I and III. The signal arriving at the hyperbola 
of r = 0 in sector I or III may be reflected and find its way to 
infinity. Thus it is clear that the extended manifold is com
plete; all geodesics emanating from a point in this manifold 
have infinite length in both directions. 

III. TORTOISE COORDINATES 

Drawing an analogy between the approach to the 
Schwarzschild singularity and the famous paradox that 
Achilles could never pass the tortoise, Wheeler used a tor
toise coordinate which goes all the way down to minus infin
ity while the Schwarzschild variable remains outside the sin-
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gular surface.3 Correspondingly, we can define for the de 
Sitter case a tortoise coordinate by 

r* =!R In[(R + r)l(R - r)l, (17) 
which varies from 0 to co according as r changes from 0 to R. 
The de Sitter metric (2) is then expressed in the form 

ds2 = _ sech2(r* / R )(c2 dt 2 - dr*2) 

+ R 2 tanh2(r*/R )dai. (18) 

It may also be instructive to introduce the coordinates 
analogous to those of Eddington and Finkelstein4

: 

u= ct- r*, 

V= ct + r*. 

(19) 

(20) 

These coordinates label outgoing and ingoing geodesics of 
free-falling photons, respectively. Outgoing radial null geo
desics are given by U = const, while ingoing null geodesics 
are given by V = const. The situation is again very similar to 
the Schwarzschild case. Using the outgoing coordinates (U, 
r), we can exhibit that an observer at r = 0 received ingoing 
signals released only from points inside the singular surface 
while the outgoing signals go through the singularity. Simi
larly, in the ingoing coordinates, we see that outgoing pho
tons cannot cross the singular surface. Finally, we point out 
that the tortoise, outgoing and ingoing variables are related 
to the (u, v) variables as follows: 

u = exp( - r*/R )cosh(ct /R), (21) 

v = exp( - r*/R )sinh(ct /R), (22) 

or 

u = H exp( U / R ) + exp( - V / R )), (23) 

v = H exp( U / R ) - exp( - V / R )) . (24) 
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The problem of the gravitational field due to a point mass, charged or uncharged, is completely 
solved within the framework of a general class of scalar tensor theories proposed by N ordtvedt. In 
Nordtvedt's theory the parameter w can be an arbitrary function of the scalar field. Different 
exact solutions are obtained for different functional forms of w both in the presence and absence of 
charge. All these solutions including a few already existing in the literature are given in a 
systematic manner and their asymptotic behavior is studied. 
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I. INTRODUCTION 

The generalization of the Brans-Dicke theory I was ob
tained in Nordtvedt's work2 by allowing the parameter w to 
be a function of the scalar field. This general class includes 
the theories of Jordan3 and Brans-Dickel as special cases. It 
has been claimed by Nordtvedt that an accurate light deflec
tion experiment and also the data on the rate of advance of 
the perihelion of Mercury could require w' i= 0 to fit the data. 
It is worthwhile in this context to obtain exact solutions of 
field equations in the generalized scalar tensor theory for 
different choices of w as functions of the scalar field tP, the 
choices which were introduced from different physical inter
ests. The spherically symmetric static gravitational field in 
the generalized scalar tensor theory was first discussed by 
Dutta Choudhury and Bhattacharya4 for a special choice of 
was a function of the scalar field tP, introduced by Barkar5 in 
order to make the Newtonian gravitational constant G inde
pendent of space and time. Rao and Reddy6 extended the 
calculations in the presence of an electromagnetic field in the 
same theory, but with a geometric restriction such as the 
Weyl tensor vanishing. 

Our purpose in this paper is primarily to completely 
solve the spherically symmetric gravitational field of a 
charged particle in Nordtvedt's general scalar tensor theory, 
where w is an arbitrary function of the scalar field. These 
solutions include the class obtained previously by Ray
chaudhuri and Bandyopadhyay7 or Buchdahl8 in the con
text of the Brans-Dicke theory, where w is constant. Field 
equations are written in "particle units," that is in units 
where the particle masses are fixed with G varying. The 
asymptotic behavior of the solutions are in general studied 
and some examples are given for different choices of w as 
functions of the scalar field. It may be worthwhile to men
tion in this context that some general relationship between 
the electric potential and the scalar field were previously 
given independent of any symmetry by Banerjee and Dutta 
Choudhury.9 

In a separate section, the solutions are obtained in the 
absence of an electromagnetic field. Some of these are al
ready given by Van den Bergh lO in different notations by 
using a technique to generate them from the Brans-Dicke 
metric. 

There are some classes of solutions in the presence or 
absence of an electromagnetic field, which are conformally 
flat and those in the Brans-Dicke theory were previously 
obtained by Banerjee and Santosll and also by Reddy. 12 

II. STATIC SPHERICALLY SYMMETRIC METRIC ABOUT 
A CHARGED MASS POINT IN THE GENERAL SCALAR 
TENSOR THEORY 

We consider the line element in the isotropic form 

ds2 = eV dt 2 - e"(dr + r de 2 + r sin2 e d¢ 2), (2.1) 

where,u and v are functions of the radial coordinate r alone. 
The coupled Nordtvedt-Maxwell field equations in matter
free space may be written as 

,u,2 ,u'v' ,u' + v' -+-+--
4 2 r 

e - v ¢ ,2 WtP,2 (, v' 2 ) tP' 
= - tP + 2tP2 - ,u +"2 + -;- "¢' (2.2) 

(2.3) 

(2.4) 

where a prime indicates differentiation with respect to r. 
Further, the wave equation for the scalar field tP and the 
Maxwell's equation for the electric potential ¢ are given, 
respectively, by 

and 

W't// 

(2w + 3)' 
(2.5) 

(2.6) 

However, the wave equation (2.5) does not give any addi
tional information in view of the fact that it is a consequence 
of the other field equations for electrovac in a scalar tensor 
theory. The only non vanishing component of the elecromag-
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netic field tensor for a radial electric field is given by 
FOl = ¢ '. Now multiplying (2.3) by 2 and adding the result 
with the equation obtained by subtracting (2.4) from (2.2) we 
get 

( tI/)(' , 2) v'tI/ tI/' 
v'+-;; ~+~ +-; +v" +T+if: 

2e- Vt/J '2 

¢ 
The relation (2.6) may be written in the form 

!fl't/J' =! v'¢' - 2t/J 'Ir - ¢ ". 
Using (2.8) in (2.7) to eliminatefl' we have 

(eV¢)"t/J' - (ev¢)'t/J" = 2t/J '3, 

which in tum yields on integration 

evtf; = t/J 2 + at/J + b, 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

with a and b as arbitrary constants. Again adding (2.2) and 
(2.3) we obtain 

~(fl" + v") +~(fl' + v,)tf;' +L 
2 2 tf; tf; 

+ (fl'; v' + ~)(fl' ; v' + ~) = 0, (2.11) 

which can be integrated to yield 

(2.12) 

_ (a2 )1I2[ 1 + a1 exp{ (q/n)(a 2 
- 4b )112r J ] a. 4>- - -b --, 

4 1 - a1 exp{ (q/n)(a2 
- 4b )II2r J 2 

(2) a2 > 4b, m =/-0, n = 0, 

(
a2 )1I2[ 1 + a2 exp{ - (qlm)(a 2 

- 4b )1/2r -1 J]. 4>= --b , 
4 1 - a2 exp{ - (qlm)(a 2 - 4b )1I2r -1 J 

(3) a2 >4b, m >0, n <0, 

where m and n are arbitrary constants. The integration of 
Eq. (2.6) yields 

rel!1- - vI/2t/J' = q, (2.13) 

q is an arbitrary integration constant, which is seen to be 
related with the total charge of the source. In view of the 
relations (2.10), (2.12), and (2.13) one can write the following 
three relations: 

eI'- = (m + nlr)2(t/J 2 + at/J + b )-Itf;-I, (2.14) 

eV =(t/J2+ a¢+b)tf;-I, (2.15) 

t/J '(¢ 2 + at/J + b)-I = q(mr + n)-I. (2.16) 

Using (2.14)-(2.16) to eliminate v and the derivatives offl, Y, 

and t/J from the field equations it is possible to arrive at the 
equation 

(2uJ + 3)(tf;'2/~) = - [q2(a2 - 4b) + 16mn](mr + n)-z. 
(2.17) 

It is evident from the above relations that one can determine 
the metric explicitly provided one integrates (2.16) and (2.17) 
for t/J and tf;, respectively. It is, however, necessary to know 
the exact functional form of U) in order to integrate Eq. (2.17). 

III. SOLUTIONS FOR THE ELECTRIC POTENTIAL 

The integration ofEq. (2.16) yieldS the following differ
ent solutions for t/J depending on the magnitudes of the con
stants a, b, m, and n: (1) a2 > 4b, m = 0, n=/-O, 

(3.1) 

(3.2) 

= (a 2 
_ )112[ 1 + a3(([mr - ..r=fi)l([mr + ..r=fiW1(b-a'/4)1mn)'I2] _~. 

4> 4 b 1-a
3
(([mr-..r=fi)/[mr+..r=fiw((b-a'/4)lmn)'" 2' 

(3.3) 

(4) a2 > 4b, m < 0, n > 0, 

=(a2 
_ )1I2[ 1 +a4((jii +.r=r;ir)l(jii _.r=r;irWllb-a2/4)lmn)';2] _~. 

4> 4 b 1 _ a4((jii + ~ _ mr)/(jii _ ~ _ mrWI(b - a'/41/mn)'" 2 ' 
(3.4) 

(5) a2 >4b, m >0, n >0, 

4> = (a2 _ b)1/2[ 1 - a5 exp{q((a
2 

- 4b )lmn)1/2 tan-
I(..;m7nr)J] _~; 

4 1 + a5 exp{q((a2 - 4b )lmn)I/2 tan-I(~m/nr)j 2 
(3.5) 

(6) a2 = 4b, m = 0, n =/-0, 

t/J = [a6 - (qln)r] -I - a12; (3.6) 

(7) a2 = 4b, m =/-0, n = 0, 

t/J = [a7 + (qlm)(l/r)] -I - a12; (3.7) 

(8) a2 = 4b, m >0, n <0, 

1 [ { ([mr -..r=fi) - (qI4)( - mnl OI'}] - I _~. 
t/J =- In a8 ' 

2 [mr +..r=fi 2 
(3.8) 

(9) a2 = 4b, m < 0, n > 0, 
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1 [ { (Iii + Fmr)I-QI4
ll
-mn

l
-"'}] a. ,p = - In a9 - -, 

2 Iii - ~ - mr 2 

(10) a2 = 4b, m > 0, n > 0, 

,p = [a
lO 

- q(mn)-1/2 tan-I(~mln r)] -I - a12; 

(11) a2 <4b, m = 0, n#O, 

{ 
(a2y/2 } 

,p=(b- :Y/2
tan q b-n4 r+a ll - ~; 

(12) a2 <4b, m#O, n = 0, 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

( 
a2)112 [{ (-./mr_Ffi)(l!2lQlla'/4-b)/mnl'I2}] a 

,p = b - - tan In a 13 - -; 

4 -./mr+Ffi 2 
(3.13) 

(14) a2 <4b, m <0, n >0, 

( 
a2)112 [{ (1ii+~_mr)11I2lQlla'/4-b)lmnl'I2}] a 

,p = b - - tan In a l4 --; 

4 Iii - ~ - mr 2 
(3.14) 

(15) a2 < 4b, m > 0, n > 0, 

( 
a2)112 [(b - a

2
/4)112 -I( E) ] a ,p = b - 4 tan q mn tan -V -;; r + a 15 - 2"; (3.15) 

where, aI' a2 , ••• , a l5 are arbitrary constants. Both m and n 
cannot be negative in view ofEq. (2.12) and the correspond
ing solution is therefore excluded. 

In the above mentioned solutions all are not completely 
different and independent of one another. The solutions for 
mn = ° that is either for m = 0, n#O or m#O, n = ° are 
equivalent, as can be shown by the fact that one can be ob
tained from the other by a coordinate transformation such as 
r ---+ lIr. It can be shown in the following manner. 

and 

and 
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In view of (2.14)-(2.17) one can write for m = 0, n #0 

ds2 = ~ [(,p 2 + a,p + b )dt 2 

- :: (,p 2 + a,p + b )-I(dr + rdlJ 2)], 

(d,pldr) q -, 
(,p 2 + a,p + b) n 

(2lLJ + 3~(dt/J)2 = 
~ dr 

For n = 0, m#O one has 

ds2 = (llt/J)[(,p 2 + a,p + b )dt 2 

- m2(,p 2 + a,p + b ) - I(dr + r dlJ ~)] , 

(d,p Idr) = _q_ 
(,p 2 + a,p + b ) mr ' 
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(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

~I-----------------------------------
Now it is evidently possible to obtain the solutions in the 
latter case from those in the former by a coordinate transfor
mation such as r ---+ lIr and by suitably changing the con
stants. 

It is further noted that the solutions given in (2.14)
(2.17) are equivalent in two cases, that is, in (a) m > 0, n < ° 
and (b) m < 0, n > 0. Thus the solutions (3.2), (3.4), (3.5), (3.6), 
(3.8), (3.10), (3.12), (3.14), and (3.15) may be considered to be 
nine independent solutions. These solutions include all cases 
in which (2lLJ + 3) is greater than, equal to, or less than zero. 
In all of the above-mentioned solutions ,p I ---+ 0 as r ---+ a::. 

From (2.17) 1// ---+ ° as r ---+ a:: provided t/J remains finite. By 
taking derivatives of both sides in (2.14) and (2.15) it can be 
shown easily that both J..L' and Vi vanish asymptotically so 
that the solutions are asymptotically flat in such cases. Some 
of these solutions are also conformally flat, that is, the Weyl 
tensor vanishes in each case. We consider, for example, the 
solution (3.6). Putting a6 = ° we have in this case, that is for 
a2 = 4b, m = 0, n#O 

,p = - nlq· lIr - a12, 

and 

,p '= nlq . lIr. 

Now in view of (2. 14)-(2. 16) one finds 

e1v -/1-l/2 = (,p 'Iq)r = nlq2, 

(3.22) 

(3.23) 

(3.24) 

which is sufficient to ensure that the Weyl tensor vanishes. 13 

In this case (2lLJ + 3) = 0. 
Similarly in the solution (3.4) with a2 > 4b, m < 0, n > 0, 

if one puts a4 = 1 and assumes the arbitrary constants ap
pearing in the solution satisfy n = q2, a2 - 4b = - 4m, one 
finds that 
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'" = - (qlr + aI2). 

Thus (3.4) is conformally flat. Here (2uJ + 3) > 0. In the solu
tion (3.15) that is for a2 < 4b, m > 0, n > ° assuming that 
a2 - 4b = - 4m and n = q2 it is possible to obtain 

'" = - (qlr + aI2). 

Here also one can calculate e1v - 1-')12 in the manner shown in 
(3.24) and find that it is a constant with the result that Weyl 
tensor vanishes. In this case (2uJ + 3) < 0. 

In all the above three cases it is not difficult to find .,p and 
solve for the metric utilizing (2.14)-(2.17). The solutions in 
the B-D theory are found to be exactly identical with those 
given earlier by Banerjee and SantosJ 

1 and those in the Bar
kar's theory were previously given by Rao and Reddy. 6 

Nine independent solutions mentioned above for a 
charged particle in the scalar tensor theory contain five solu
tions previously discussed by Raychaudhuri and Bandyo
padhyay7 in the special case of the Brans-Dicke theory. For 
example, solutions (3.8), (3.10), (3.12), (3.14), and (3.15) are 
the same solutions as were given by them for (2uJ + 3) > 0. 
The remaining four solutions are for (2uJ + 3) <0 and for 
(2w + 3) = ° and were not mentioned by Raychaudhuri and 
Bandyopadhyay. The detailed calculations for establishing 
the equivalence of our solutions and those done previously 
are omitted. 

IV. SOLUTIONS FOR THE SCALAR FIELD 

The integration ofEq. (2.17) yields the value of.,p and for 
this one should use the explicit functional form of w(.,p). Dif
ferent forms of was functions of the scalar field are proposed 
by different workers from different points of view (Van den 
Bergh Ref. 10). We find explicit solutions for tP in some of 
these different theories without mentioning the physical jus
tifications of our choices. Appropriate references are, how
ever, mentioned in each case. 

Case 1 (Brans-Dicke theory) 1: w = const. 
(i) m = 0, n'fO, 

.,p =.,po exp[! (:~a;y/2r); 
(ii) m'fO, n = 0, 

[ 
q(4b_a2)1I21) tP = tPo exp - - - ; 
m 2w+3 r 

(iii) m > 0, n <0, 

[
.Jmr _ ~ ]( 112)/1(, 

tP = tPo ' 
.Jmr+~ 

where 

and 

3044 

K 1 = q2(a2 - 4b ) + 16mn; 
mn(2w + 3) 

(iv) m < 0, n > 0, 

[
Iii + ~ - mr ]11I2)~ 

tP = tPo ; 
Iii - ~ - mr 

(v) m > 0, n > 0, 

tP= tPoexp[( -Kl)112tan-l(~mlnr)]. 
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(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The integration constant in each case is tPo. Among the above 
solutions for reasons mentioned earlier (4.1) and (4.2), (4.3), 
and (4.4) are equivalent and we have three independent solu
tions for tP. 

Case2 (Barkar's Theory) ~'Herew = (4 - 3tP)/2(tP - 1) 
and the consequence of this choice is that the so-called New
tonian gravitational constant becomes independent of space 
coordinates and is no longer a variable quantity as in the 
Brans-Dicke theory. The three independent solutions for 
the scalar field tP in this case are given by (i) m 'fO, n = 0, 

tP = 1 _ [ I - B J exp{ - (qlm)(4b - a2)J/21/rJ ]2;(4.6) 
1 + Bl exp{ - (qlm)(4b - a2)1/21/rl 

(ii) m > 0, n < 0, 

with 

2 ( (.Jmr - Fn)11I4)[K'] tP = sec In B2 , 
.Jmr+FIi 

K2 = q2(a2 - 4b) + 16mn; 
mn 

(iii) m > 0, n > 0, 

(4.7) 

tP = 1 + [1 - B3 exp!~ tan-J(.J(mTn)r))], (4.8) 

1 + B3 exp!~ tan-J(~(mlr)r)j 
where B 1, B 2, and B3 are arbitrary integration constants. 

For the following three theories see Van den Bergh lO 

and references therein. 
Case 3 (Schwinger's theory): In this case 

w = (1 - 3atP)/2atP, where a = const. Solutions for tP are 
given by (i) m'fO, n = 0, 

tP = [(qI2m){ - a(a2 
- 4b W/2 1/r + C1] 112, (4.9) 

(ii) m > 0, n < 0, 

tP = [C
2 

_ K ~/2 In(.Jmr - FIi)] -2, 

4 .Jmr+.f=Ii 
where 

K3=a{q2(a2 -4b)+ 16mnJ; 
mn 

and (iii) m > 0, n > 0, 

(4.10) 

tP = [C3 -!( - K3)J/2 tan-J(~mlnr)] - 2. (4.11) 

In the above C1, C2, C3 are arbitrary constants. 
Case 4 (Model with curvature coupling): Here 

w = 3tP12(1 - tP). (4.12) 

The following independent solutions exist. All ofthese 
solutions remain finite at r _ 0::. 

(i) m'fO, n = 0, 

2[ q (a
2 

- 4b)1I2 1] tP=sec D J -- .- • 
m 3 r 

(4.13a) 

(ii) m > 0, n < 0, 

(4.13b) 

where 
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_ [l(a
2 

- 4b) + 16mn]l/2 K4 - . 
12mn 

Jiii) m > 0, n > 0, 

¢ = sec2 [K4 tan-I(~m/nr) + D3]' (4.13c) 

D I , D2 , D3 are arbitrary constants. 
Case 5 (Models with t// coupling); Here w = wol/i, with I 

being a constant power. ¢ is given by the following relations 
in three different cases. 

(i) m#O, n = 0, 

[_ (2wO¢1 + 3)]112 -,J3 tan- I [ - (1 + ~WO¢I)] 1/2 

= A I - (lq/2m)(a 2 - 4b )1/
2

• l/r. 

(ii) m > 0, n < 0, 

[ 
(2wO¢1 + 3)1/2 -,J3 ]eX

P
[(2w

o
¢1 + 3)1/2] 

(2wo¢1 + 3)1/2 +,J3 

_ [Jrnr - FIi ]IK/2 
-A2 , 

Jrnr+FIi 

with 

_ [q2(a2 _ 4b) + 16mn] 112 K- . 
4mn 

(iii) m > 0, n > 0, 

[ _ (2wo¢1 + 3)] 1/2p,J3 tan -1 [ _ (2wo¢1 + 3)/3] 112 

= (IK /2) tan-I(~m/nr) +A3' 

(4.14) 

(4.15) 

(4.16) 

In the above A I' A 2 , and A3 are arbitrary constants. The 
solutions for ¢ mentioned above are the independent solu
tions which remain finite as r ---+ 00 and thus the metric de
termined from (2.14) and (2.15) using ¢ and ¢ given here will 
exhibit asymptotic flatness. 

V. THE SPHERICALLY SYMMETRIC STATIC 
GRAVITATIONAL FIELD IN THE GENERAL SCALAR 
TENSOR THEORY FOR AN UNCHARGED POINT 
PARTICLE 

The gravitational field due to a mass particle without 
any charge is treated here separately due to the fact that one 
cannot arrive at these solutions by simply putting ¢ , = ° in 
the previous results. The reason for this is that in the present 
case there is no electric field and relations like (2.8), (2.9) are 
trivially satisfied. Following the same procedure as shown in 
Sec. II one gets, instead of the relation (2.7), the following: 

(v"¢ + v'¢' + ¢") + (v'¢ + ¢')((f.l' + v')/2 + 2Ir) = 0, 

which on integration yields 

re{JL + VI/2(V'¢ + t//) = p, (5.1) 

and also the relation 

(5.2) 

m, n,p being arbitrary integration constants. By using (5.1) 
and (5.2) it is possible to eliminate f.l' and v' from any of the 
field equations written in the absence of electromagnetic 
field and one thus obtains the equation 
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(2w + 3)(t//2/¢2) + (p2 + l6mn)(mr + n)-2 = 0. (5.3) 

In view of Eqs. (2.5), (5.1), and (5.2) the following indepen
dent set of relations between the metric components and the 
scalar field can be obtained in different cases. 

(i)p = n = 0, m#O, 

eV¢ = al' e"¢ = m 2/al' (5.4) 

a l being an arbitrary constant and (2w + 3) = ° as is evident 
from (5.3). 

(ii) n = O,p, m#O, 

eV ¢ = a2 r p/mr, f!'¢ = (m2/a2)eP/mr. (5.5) 

Here a2 is an arbitrary constant and (2w + 3) < 0. 
(iii)p#O, m > 0, n <0. 
In this case (2w + 3) > ° and 

v (Jrnr_Fli)p/2r=--mn 
e ¢ = a3 ' 

Jrnr+FIi 

f!'¢ = a
3
- 1 r-4(mr + n)2(Jrnr - FIi) -p/2,j-mn, (5.6) 

Jrnr+FIi 

a3 being an arbitrary constant. 
(iv)p#O, m > 0, n > 0. 
Here (2w + 3) > 0, 

eV

¢ = a4 exp [ k tan-{~ r) l 
f!'¢ = a4- 1 r-4(mr + nfexp( - k tan -{~ r) l 

(5.7) 

Here a4 is an arbitrary constant. We see that in all these four 
cases mentioned above the solutions for the metric are given 
in terms of the scalar field and the radial coordinate. The 
scalar field itself is a function of the radial coordinate in the 
static spherically symmetric case and can be obtained by 
solving Eq. (5.3) in different situations provided w(¢) is given 
in terms of ¢. We can use different functionalforms of w( ¢) in 
different theories mentioned in the previous section and can 
solve for ¢. The solutions for ¢ will be structurally identical 
with the solutions for ¢ in the presence of electromagnetic 
field, which is expected because of the identical nature of the 
differential equations (2.17) and (5.3). Once ¢ is known, the 
metric can be found from Eqs. (5.4)-(5.7). It may be noted 
that the metric corresponding to (5.6) for different functional 
forms of w(¢) satisfy the condition (2w + 3) > ° and they can 
be found identical with those mentioned earlier by Van den 
Bergh 10 in different notations. The metric in the latter case 
was however, generated from the Brans-Dicke metric by a 
suitable technique. Other solutions with (2w + 3) = ° 
(Brans-Dicke theory) or (2w + 3) < ° in our paper are new. 
Further it can be shown by arguments mentioned in Sec. III 
that the solutions corresponding to (5.4)-(5.7) are all asymp
totically flat. 
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In this paper we concern ourselves with the question of whether physical meaning may be 
attributed to the extra dimensions provided by embedding procedures applied to physical space
times. We also comment on similarities and differences to conventional Kaluza-Klein pictures. 

PACS numbers: 04.50. + h, 12.1O.En 

I. INTRODUCTION 

This paper is motivated by the recent revival of interest 
in high-dimensional field theories, in particular those of the 
Kaluza-Klein type (cf. Refs. 1-7 for a list of relevant papers 
on the latter subject). 

The central novel feature is the suggestion to introduce 
high-dimensional spaces as the (local and isometric) embed
ding spaces of four-dimensional space-times. The physical 
motivation for doing so is that by the very nature of the 
embedding process the extra dimensions find their origin in 
the presence of gravity. Moreover, if the embedding is re
quired to be a minimal one then the dimension of the high
dimensional space is fixed. 

For technical reasons we will confine our attention in 
this note to flat embedding spaces Mp(m,n) of dimension p 
and signature (m( + ),n( - )). We will make occasional re
marks concerning different choices, however. 

We will then touch in particular the following point. 
The metric of the embedding space can be given a form 
where it closely resembles the Kaluza-Klein ansatz. I

-
7 We 

find however upon investigating further constraints inherent 
in the embedding formalism that dynamically the two pic
tures have quite different features. 

It can also be argued that embedding has some bearing 
on the problem of mixing internal and space-time symme
tries. This aspect has been dealt with in a different paper. 8 

We analyze in particular the limit of vanishing gravity. 
We find that the gauge-field type objects in our Kaluza
Klein-like picture disappear in this limit. (We note in passing 
that in this limit the nontrivial mixing of internal and space
time symmetries is lost. 8) 

The plan of the paper is as follows. In Sec. II we present 
the formalism of embedding inasmuch as we need it here; in 
particular we will introduce the Gauss-Codazzi-Ricci 
(GCR) equations. In Sec. III we comment on similarities and 
differences from the Kaluza-Klein picture. Further discus
sion of questions of dynamics involves solving the GCR 
equations in a special case. Section IV summarizes our con
clusions. 

II. THE FORMALISM OF EMBEDDING 

Consider a four-dimensional pseudo-Riemannian space 
V4 whose points are labeled by local coordinates Xi. We will 

aJ Address after I June, 1983: 19, Ditmar-Koel-Strasse, D-02 Hamburg II, 
Federal Republic of Germany. 

look for local isometric embeddings9
-

11 into Mp (m,n), a Min
kowskian space of dimension p and signature 
(m( + ),m( - )),p = (m + n). We note in passing that princi
pally the embedding problem can be formulated using quite 
arbitrary Riemannian spaces Vp rather than Mp as embed
ding spaces. The present restriction to Mp is mainly for tech
nical reasons. Powerful theorems II restrict the minimal di
mension p of Mp for embedding of a Riemannian V4 to be 
maximally 14 under suitable differentiability conditions. 12 

Of course, under special circumstances, p may be less than 
14. In this way embedding provides a natural upper limit on 
the number of extra dimensions. Also, the signature 
(m( + ),m( - )) is fixed. Note that even though the embed
ding is specified locally only, still the embedding space Mp 
(m,n) remains the same for all regular points of V4 • 

We will in this paper, not touch the question whether 
there could be a p-dimensional theory that determines Mp. 
We merely note in passing that principally two possibilities 
exist. One is where the p-dimensional space is simply Mp (or 
some other conveniently chosen, but fixed, embedding 
space), and all we are really concerned with are the four
dimensional Einstein equations and the GCR equations (see 
below). Another possibility would be to start off with a p
dimensional version of general relativity. Then Mp would 
presumably correspond to some "ground-state" solution of 
this theory. However, discussion of such points is beyond the 
scope of the present paper. 

Let us now tum to the formalism of embedding. We will 
embed V4 into Mp (m,n). The numbers p,m,n are determined 
through the choice of V4. Attach now to every point (Xi)EV4 
an orthonormal system of vectors NA (Xi), A = 5, ... ,p, which 
are orthogonal to V4 • They span a space which we will call 
ff. The NA together with the vectors tangent to V4 at (x') 
span the space Mp (m,n). Points in Mp are labeled by Carte
sian coordinates ZfL,f.-L = l, ... ,p. Let, in particular, XfL(Xi) be 
the Cartesian coordinates in Mp of(xi)EV4' Then for an arbi
trary point Z fLEMp we can find a point (Xi)E V4 such that the 
following decomposition holds: 

Z fL = Z fL(Xi,yA ) = X fL(Xi) + yA N ~ (Xi). (2.1) 

By (2.1), the parametersyA are associated with directions NA 
in ff. The set of coordinates z:x = (xi,yA ) defines a Gaussian 
coordinate system in Mp. Physical space-time, V4 is a sub
space of Mp and singled out throughyA = O. Thus the space
time projection of a generic function if> (za ), to be denoted by 
if> (za)1 v.' is given by if> (za)1v. = if> (za Jiy' ~ o· 

Let now 1JfL v denote the Cartesian components of the 
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metric tensor of Mp(m,n). The vectors tangent to V4 at (Xi) 
have componentsXj(xi). The embedding is determined 
through the equations 

XjXj1]l-'v = gij' 

XjN~ 1]I-'V = 0, 

N~NB1]l-'v = 1]AB' 

(2.2) 

(2.3) 

(2.4) 

wheregij is the metric of V4 • Equations (2.3) and (2.4) arejust 
orthonormality relations for tangent and normal vectors, re
spectively, whereas (2.2) states an isometry condition. In fact, 
the line element in V4 is ds2 = gij dxi dxj. Rewritten in terms 
of Cartesian coordinates it becomes ds2 = 1] I-'V dX I-' 
(xi)dX V(Xi) = 1] I-'vX jX J dxi dxi. The requirement that the 
embedding be an isometric one then means that we have to 
equate these two expressions for ds2

• This gives indeed (2.2). 
A metric YaP in the Gaussian system in Mp is specified 

through a coordinate transfonnation, 

YaP = Z~aZJ;1]l-'v' (2.5) 

This relation expresses again an isometry of Mp ' at least for
mally, since 

ds2 = Y dxa dxP = 1] ZI-' ZV dxa dxP = 1] dZI-' dZ v 
a{3 IlV ,a ,/3 f..lV • 

(The Gaussian metric YaP is induced by the Cartesian metric 

1]l-'v') 
Using (2.1) we can spell out YaP in a more explicit way. 

One finds 

Yij =gij + ~N~.iXJ + y4N~JX~ 
+ y4;f1N~.iNBJ)1]l-'v' 

- _ ·.BNI-' NV YiA - Y A.i B1]l-'v' 

YAB = N~NB1]l-'v = 1]AB' 

where 1] AB is the Cartesian metric of ff = Mp _ 4 • 

It is now convenient to introduce the notations 

and 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

From (2.9) and (2.10) we obtain the symmetry properties 
bijA = bjiA and AiAB = - AiBA as well as the identity 

N~J = _gikbjiAXj, + 1]BCAjABN't;, (2.11) 

which is readily checked by contracting both sides with 
1] ~ X j and 1] AI-' N ~, respectively. The metric tensors gij and 
1] B are introduced as matrix inverses ofgij and 1]AB' In 
tenns of bijA and AiAB' we can rewrite YaP as 

(2.12) 

with 

(2.13) 

One notices that, except for the appearance of bijA [cf. Eq. 
(2.13)], (2.12) is nothing but the well-known Kaluza-Klein 
ansatz l

-
7 over Mp = M4 XMp _ 4' 

In fact, for pseudo-orthogonal transfonnations of 
ff( = Mp _ 4 ) which leave the metric 1] AB invariant, the Kill
ing fields areKAB

C( y)ac =(yAO~ -YBO;)ac =YAaB 
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- yBaco which, of course, are nothing but the conventional 
expressions for the generalized angular momentum opera
tors. We can now writeYiA =;f1AiAB = -~ABC(y)A;BC' 
From this observation (and recalling similar arguments for 
conventional Kaluza-Klein theories) we conclude in parti
cular that rotations of A/' are accompanied by gauge trans
formations of AiAB(Xi), the gauge group being the group of 
pseudo-orthogonal transfonnations of ff. That is, as far as 
their transformation behavior is concerned, the AiAB behave 
like gauge fields. 

To complete the discussion of the formalism of embed
ding we note that Mp being flat implies that the curvature 
tensor of Mp vanishes, R a Py.s = 0. An observer confined to 
V4 finds that the equations R a (3y.s 1 V

4 
= R a (3y.s 1;1' ~ 0 = ° 

have to be satisfied. These latter conditions are the Gauss
Codazzi-Ricci (GCR) equations. They provide a criterion 
intrinsic to V4 for the consistency of the embedding; they 
may be looked upon as an integrability condition for (2.2)
(2.4). 

In order to spell out the GCR equations it is convenient 
to introduce some notations. Let r A be a set of generalized 
Dirac matrices, i.e., ! r A ,rB J = 21]AB, and set 
~AB = HrA ,rB J. Then we denote bij = b'jArA and 
Ai = A'AB~AB. Define a Riemann-covariant dj in V4 through 

where the rmij are the Christoffel symbols with respect to 
gij' Finally, set 

Then the GCR equations can be written in the form 13 

(G) R- i f -im/2[(p - 4)/2) J t (b b b b ) 
jkl = (g r jk 1m - jI km , 

(C) [Dj,bid - [D;,bjd = 0, 

(R) [DoDJJ = agmn [bmj,bn;]. 

In (2.16) [d] denotes the integer part of d. 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

From the GCR equations we conclude in particular 
that there is no reason to expect that the four-dimensional 
observer can discard bijA or A iAB - these quantities appear to 
be inevitably coupled to physical gravity, gij' 

The reason why this could happen is the following. 
From thep-dimensional point of view, (2.12) is just the result 
of a coordinate transformation, z" ---+Z I-'(z"). Now, among the 
isometries of Mp are, for example, xi-dependent rotations of 
the y4; to a four-dimensional observer these will look like 
gauge transformations affecting Ai' The existence of such 
gauge transformations, which cannot be compensated by 
four-dimensional coordinate transfonnations, implies the 
existence of gauge fields for the four-dimensional observer. 
The coupling of gravity to these fields (and to bij) thus pro
vides an indirect way for the four-dimensional observer to 
see the extra dimensions. All this is similar to the conven
tional Kaluza-Klein picture. 

There are important differences to the latter, however, 
and it is to these that we will turn in the next section. 
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III. DYNAMICS AND RELATION TO THE KALUZA-KLEIN 
PICTURE 

In this section we will compare the present picture with 
conventional Kaluza-Klein theories. Also we will study 
some dynamical aspects of the present formalism. 

In the conventional Kaluza-Klein (KK) picture one en
counters indeed a metric of the form raP [cf. Eq. (2.12)]. A 
first difference however is the presence of b ijA . A second is 
that the Killing fields K A Be (y) and the metric tensor 7] AB' 
here relating to ff = Mp _ 4' are conventionally replaced by 
the corresponding objects on B p _ 4 = G I H, a coset space. 
This latter difference however would probably disappear if 
we would choose a space of the form 
M 4 XBp _ 4 =M4 xGIH as the embedding space. 

Actually, the latter choice would give us more options 
as far as possible devices for dimensional reduction are con
cerned. Here we have chosen to implement dimensional re
duction effectively by projection,;,A = O. (We note in passing 
that this does not mean that ally dependence is neglected. In 
fact, if we would just neglect ally dependence, Ai and bij 
would never appear in the GCR equations.) As;,A = 0 pro
jects out physical space-time this is sensible physically and 
also, dimensional reduction by integrating (averaging) over y 
does not really seem feasible for flat embedding spaces. Con
versely, y integration is the conventional dimensional reduc
tion procedure for compact internal spaces like G IH. How
ever, apart from noticing that other options are at least 
principally open to us we will (mainly for reasons of conve
nience) keep confining our attention to flat embedding 
spaces. 

The most important difference to the conventional KK 
picture now is that instead of a set of Einstein equations in p 
dimensions like Gap==-Rap - !rapR = TaP' we have here 
equations that involve the Riemann tensor R U pytJ rather 
than just the Ricci tensor R up. In fact, a typical equation is 
the one given above, R a pytJ = O. We therefore have to deal 
with more equations than in the conventional KK picture. 

We may ask however, if the contracted equations 
G up = RaP - !r apR = 0 (which follow from R a pytJ = 0) 
correspond to a conventional set of field equations. The 
equations Gap = 0 are just the field equations of the conven
tional KK picture which after dimensional reduction give 
the field equations for an Einstein-Yang-Mills system. In 
the present case, with a dimensional reduction implemented 
through;,A = 0, the picture looks different. The reason for 
this is the following. The curvature scalar corresponding to 
raP is (the calculation being as in the conventional KK pic
ture) 

(3.1) 

with Fij = [DiDj] = FABij~AB. From (3.1) we conclude that 
the energy-momentum tensor for the Yang-Mills field con
tains a factor ;,AyB and therefore will vanish for;,A = O. 
Therefore the contracted GCR equations R a ply' = 0 = 0 are 
not expected to be a conventional set offield equations for a 
gravity-Yang-Mills system. 
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This can also be seen more directly. In fact, from the 
Gauss equation we conclude 

2[{P-41/2 JR.k =tr(bkb i -bb i
k) 

} J I Jl ' 

and 

2[{P - 4)/2 JR = tr(b/b i - bb ij) 
} I I) , 

whence we infer 

2 [(P - 4)/2 J (Rjk - ~jkR ) 

= 2[{P - 4)/2 JGjk = ! tr(bjkb/ - b/b/) 

- !gjk tr(b/b/ - bijb ij) J 

=2[{P-41/2Jtij (b ). 

(3.2) 

(3.3) 

(3.4) 

We see indeed that there is no directly related energy-mo
mentum tensor for the gauge field Ai' 

All these observations together mean that apart from 
the form of the metric tensor raP the resemblance to the KK 
picture does not persist entirely on a dynamical level. Even 
though this situation might improve if we would choose an 
embedding space of the form M4 X G I H rather than 
M 4 XMp _ 4 we would even for the choiceM4 XG IH have 
the problem of too many equations. Therefore the present 
construction cannot replace the usual KK picture. (Actually 
there is one more point supporting this assertion to which we 
will come shortly.) 

One could envisage a full dynamical setting as follows. 
The space V4 may be looked upon as a solution of Einstein's 
equations, 

Gij=Tij. 

Consistency with (3.4) requires 

Tij =tij(b). 

(3.5) 

(3.6) 

Optimistically, one would look upon (3.6) as giving a geo
metrical meaning to the energy-momentum tensor. In addi
tion to (3.5) and (3.6), we would have the GCR equation. One 
now feels that inasmuch as a dynamical meaning can be at
tributed to the quantities Ai and bij' physical reality can also 
be attributed to the extra dimensions provided by the embed
ding procedure. In fact, it is certainly clear thatthe b·· and A . 

IJ 1 

in general do not vanish. For the bij this follows from the 
non vanishing of R ~ke for curved spaces. 14 

We conclude this section by discussing the solution of 
the GCR equations in the limit of vanishing (four-dimen
sional) gravity, gij = 7]ij' This is to be understood asymptoti
cally; ifg ij would be exactly equal to 7] ij in a finite region then 
the (minimal) embedding space would be just M4 • We will see 
that in the limitgij-+1/ij,Ai and bij disappear. In this senseAi 
is a "gravity-induced" gauge field. Note that its disappear
ance in the limit of vanishing gravity is a phenomenon that 
has no parallel in the conventional KK picture. 

To prove our assertion notice first that the Gauss equa
tion (2.16) implies for vanishing gravity, gij = 7]ij' 

tr(bjkb/m) = tr(bj/bkm ). (3.7) 

If7]AB -{jAB (and only for this case our proof holds true), 
then (3.9) implies that all bij are equal. The Ricci equation 
(2.1S) then implies 

Fij = [D;.Dj ] = 0, (3.S) 
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whence we conclude that the gauge field A; vanishes (up to a 
gauge transformation). 

Actually, Eq. (3.9) also implies that all bij are equal in 
any Lorentz frame. This can happen only for bij = O. Thus 
our assertion is proved. 

IV. CONCLUSIONS 

The present paper may be looked upon as an investiga
tion of the question whether the extra dimensions provided 
by the embedding formalism can be given physical rel
evance. 

At the end of this paper we feel that the answer should 
be affirmative, even though many difficult questions remain 
open. Our reasons to believe that physical reality might be 
attributed to the extra dimensions are the following: (I) the 
appearance of the fields bij,A; which appear to be coupled to 
physical gravity and thus make the extra dimensions visible 
indirectly; and (2) the existence of a "combined symmetry" 
which seems to indicate a mixing of space-time with internal 
coordinates.8 

Our analysis concerning the relation between the pres
ent picture and that of conventional Kaluza-Klein theories 
has produced a number of negative results. However we like 
to emphasize that a certain similarity (which to our knowl
edge has not been noted before) is there, and might still de
serve further investigation. (See note added in proof.) 

There have been occasional references in the literature 
concerning the use of embedding spaces, for example, for the 
construction of combined symmetries 15 or for possible deri
vations of the equations of geometrodynamics. 16 Even 
though our paper is partially motivated by this work, we do 
feel that we ask, and partially answer, quite different ques
tions. 

Note added in proof; Some ofthese results were further 
investigated by one of us. It is now clear that the presence of 
the fields bij is responsible for the compactification of the 
coordinate space generated by y4. Taking such space to be 
the internal space (instead of JY), dimensional reduction can 
be performed in the usual way and a picture closer to that of 
Kaluza-Klein theory emerges (M. D. Maia, "Geometry of 
Kaluza-Klein Theory," preprint, Universidade de Brasilia, 
Departamento de Matematica, 1984). 
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Irreversible random and cooperative processes on lattices: 
Spatial correlations 
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For processes where "filling" events occur irreversibly and, in general, cooperatively at the sites of 
a lattice, the minimal closed hierarchy of rate equations involves only probabilities for (effectively) 
connected subconfigurations of empty sites. Extended hierarchies of equations for (effectively) 
disconnected empty subconfigurations couple back to these. Here we consider a solution to the 
latter via previously developed exact and approximate truncation schemes based on a shielding 
property of empty sites. Numerical results for several processes are presented for correlation 
behavior in both autocatalytic and autoinhibitory rate regimes. The asymptotic large separation 
behavior of the spatial correlations is analyzed most easily by z-transforming the equations with 
respect to separations and is fundamentally different from that of equilibrium distributions. 

PACS numbers: 05.50. + q, 05.70.Ln, 05.40. + j 

I. INTRODUCTION 

There are many processes in physics and chemistry 
where events occur irreversibly (on the time scale of interest) 
"filling" the sites of a lattice (the terminology of adsorption is 
adopted here for unification). These could be reactions on 
[one-dimensional (I-D)] polymer chains, chemisorption or 
reaction of attached groups at specific [two-dimensional (2-
DJ] surface sites, or solid-state reactions at the sites of a 
[three-dimensional (3-D)] crystalline structure. In general, 
these processes are cooperative, i.e., the "filling" rates 
(which are the input to our model) depend on the occupancy 
state of sites in the neighborhood of those being filled. 

We have previously analyzed the hierarchial form of 
the rate equations which govern the time evolution of proba
bilities of configurations of the subsets of sites. 1 The minimal 
closed hierarchy involves only "effectively connected" emp
ty subconfigurations (which include single empty sites and 
configurations such that any site specified empty is within 
the cooperative range of some other such site). "Effectively 
connected" reduces to "connected" in the usual sense for 
nearest-neighbor (NN) cooperative effects. Exact and ap
proximate truncation and solution techniques for this mini
mal hierarchy have been developed previously motivated by 
the following observation 1: Suppose a wall of sites specified 
empty separates the lattice into disconnected regions and is 
sufficiently thick that an event is not simultaneously affected 
by the state of sites on both sides; then this wall shields sites 
on one side from the effect of those on the other. 

Several workers2
-6 have previously noted (for some sim

ple I-D systems) that determination of probabilities of con
nected empty configurations does not allow one to calculate 
probabilities of clusters of > 2 filled sites or of (separated) 
two-point correlations. For these, it is necessary to consider 
extended hierarchies for probabilities of "effectively discon
nected" empty subconfigurations. The only such previous 
analyses have been for simple processes on infinite, uniform 
I-D lattices. Plate et al. S considered filling of single sites with 
NN cooperative effects and calculated probabilities of sever-

aJ Present address: Marycrest College, Davenport, Iowa 52804. 

al smaller disconnected empty configurations and filled clus
ters. WolF has given an elegant expression for the two-point 
correlation function for random dimer filling. 

In Sec. II, we apply the above-mentioned exact and ap
proximate truncation based methods of solution to the "ef
fectively disconnected" empty hierarchies. In this work, we 
concentrate on determining various two-cluster correlations 
rather than probabilities for clusters of filled sites. We indi
cate that when using standard approximate truncation tech
niques, there is a fundamental restriction on the range of 
separations for which reliable results can be obtained. A 
modified truncation scheme appropriate to the determina
tion of longer-range correlations is indicated. Several irre
versible processes are considered including reaction on a 1-
D, infinite, uniform polymer chain with NN cooperative 
effects, and with NN blocking and second NN cooperative 
effects; random dimer filling of NN sites on a I-D infinite, 
uniform lattice; both monomer adsorption with NN cooper
ative effects and random dimer filling of NN sites on a 2-D 
infinite, uniform square lattice. 

The large separation asymptotic structure of the corre
lations is of particular interest. Consequently in Sec. III and 
IV we develop z-transform techniques to elucidate this be
havior (analogous to the treatment in Ref. 6 of edge effects 
for a l-D semi-infinite system). Here equations for correla
tions are transformed with respect to the separation between 
clusters. Transformed quantities could be thought of as gen
erating functions. For a system amenable to exact truncation 
and solution, the exact "fast decay" asymptotic form of the 
two-cluster correlations is obtained. The z-transform meth
od suggests this behavior is characteristic of all irreversible 
processes. Results should be compared with the fundamen
tally slower "exponential decay" of equilibrium distribu
tions. A brief comparison of corresponding (exactly deter
mined) I-D and (approximately determined) 2-D behavior 
for two processes is made in Sec. V. 

The following notation is used here. The probabilities of 
configurations 0' of subsets of sites specified either empty 
(unreacted) "0" or filled (reacted) "a" are denoted by /[0']. 
Thus we can decompose O'as {n Ja + {m Jo' where {n J ({m J) 
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represents the subset of n(m) sites specified "a" ("0"). Con
sider now a processes where filling ~ occurs at single sites 
j and the rate of filling, denoted 1'';'', depends on the configu
ration a j of the influencing environment (assumed finite 
here). If a equals {m J 0' then intuitively one has 1 

(1.1) 

Here a~ denotes the part of a j not overlapping {m J and the 
sum over a j* is required to take account of all possible con
figurations of the influencing environment ofsitej. Here pro
babilities on the right-hand side are converted to those in
volving only empty sites using 

I [{ I J a + {p J 0 ] = L (- 1 (I [{ I ' J 0 + {p J 0 ] . 
II'Jell! 

(1.2) 

Equations (1.1) and (1.2) or the corresponding equations 
for irreversible dimer filling of NN sites to OO-+(1a are used 
for several specific processes here. They incorporate the 
above-mentioned connectivity and shielding features. Often 

we will refer to the conditional probability q [a a' ] 
= I[a + a']Ij[a'] ofa given a'. Empty conditioning sites 

(} will often be denoted by "rp " for typographic convenience 
and () f[a] will denote the coverage (conversion). 

II. SOLUTION VIA TRUNCATION OF (EFFECTIVELY) 
DISCONNECTED HIERARCHIES 

A. Exact truncation and solution 

Exact truncation and solution in closed form of the infi
nite hierarchies is only possible for certain processes on 1-D 7 

or Bethe8 lattices (except for random or "almost" random 
filling in higher dimensions 1,9). The most general process 
~ at single sites on 1-D infinite, uniform lattices for which 
the minimal hierarchy is exactly solvable is where events are 
blocked by filled sites within a range r and influenced by sites 
within a range 2r + 1.6

•
7 It is also possible to exactly solve the 

effectively disconnected hierarchies for such processes. We 
do not discuss the general case here but give two examples 
which demonstrate the basic features involved. The terms 
"empty" and "unreacted" will be used interchangeably here 
(as will "filled" and "reacted"). 

Example (i): Reaction on an initially completely un
reacted infinite, uniform polymer chain; NN cooperative ef
fects. 

The rates of reaction ~ for sites with 0, 1 left (right) 
hand and 2 reacted NN are denoted by 1'0.0' l' a . 0 (1'0. a)' and 
1'a. a' respectively. If On denotes an n-tuple of empty sites, the 
minimal closed sub hierarchy becomes 

d 
- dt[o] = 1'o.J[ooo] + 1'a.J[aoo] 

+ 1'o.J[ooa] + 1'a.J[aoa] 

= 1'a.J[o] + (1'a.o + 1'0. a - 21'a.alf[00] 

+ (1'0.0 -1'a.o -1'o.a + 1'aalf[ooo], (2.1a) 
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+ 1'a.J[ aon] + 1'o.J[Ona] 

= {(n-2)1'00 +1'0.0 +1'oaV(On] 

+ (21'0.0 -1'a.o -1'o.alf[on+ d, 
n>2. (2.lb) 

One can also obtain, from (1.1) and (1.2), an infinite closed 
subhierarchy for probabilities of singly disconnected empty 

m 

configurations op --Or of an empty p-tuple and r-tuple sep

arated by Urn" unspecified sites. Specifically, for I> 1; r>2, 
one has 

-:/[~] 
= 1'o.J[oo~] 

[ 1-1] [1-1 ] + l' a. J aoo----o + 1'0. J ooa----<J 

+ 1'a. J[ aoa~] + reflected terms 

=1'a.J[~] + (1'a.o -1'a.alf[O~] 
+ (1'0. a -1'a.alf[o~] 
+ (1'0.0 -1'o.a -1'a.o + 1'a.a) 

[ 

1- 1 ] xl 000----0 + reflected terms, 

- :/[~r] 
(2.2a) 

= 1'a.J[~r] + (1'a.o -1'aalf[OO~r] 

+ (1'0 a -1'a.alf[o~r] 

[ 

1- 1 ] 
xlooO--Or + {(r-2)1'0.0 +1'a.o +1'o.aJ 

X/[~r] + (1'00 -1'aolf[~r+ 1] 

+ (1'0.0 -1'oalf[~r+ 1]' (2.2b) 

The quantity - d Idtl [ Or~] is obtained by reflecting 

terms on the right-hand side of (2.2b). Furthermore, for I> 1; 
p, r>2, one has 

- :1[Op~r] 
= l(p+r-4)1'0.0 + 21'a.o +21'0.aJf[Op~r] 

+(1'0.0 -1'aoJ(/[Op+l~r] +1[Op~r+l D 
+ (1'0.0 -1'o.aJ(/[Op+ l~r] + I[Op~r+ 1 D· 

(2.2c) 
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The fonn of (1.1) and (1.2) for probabilities of multiply dis
connected empty configurations can also be made explicit. 

Now we invoke the shielding property of an adjacent 
pair of empty sites to exactly solve (2.1) and (2.2). From (2.1 b) 
one can readily show that, if cj.n denotes an n-tuple of empty 
conditioning sites, then one has5

•
10 

q[ocj.n]==q[cj.no] f[On+I]/I[on] 

=q[o¢¢ ]==q[¢¢o ]=exp( - 1'o.ot) 

(=q2' say), for n>2. (2.3) 

This allows exact truncation of (2.1) using 1 [ On ] 
= 1 [00 ] q~ - 2 for n > 2, and results in a closed set of equa
tions for f[o ],/[00], and q2.5.10 Similarly (2.2) implies that 
(cf. Refs. 1 and 7) 

q[Ocj.n~m] f[On+l~m ]/I[On~m] 

=q2 i(Om~n+1 ]/I[Om~n] 

::==q[ cj.m~nO], for n>2 and all I, m. 

(2.4) 

This allows truncation of (2.2) using 

=/[~r-I ]q2 =/[~0]q~-2, 

I[Or~] =1[0~]q~-2, 

I[Or~r] = ~+r-'i[oo~o], for p, r>2. (2.5) 

From (2.2) and (2.5) one can immediately obtain a 
closed set of equations for 1 [0-0]'/ [0-00], 1 [00-0], and 
1[00-00] (where - represents a single unspecified site). Simi
larly, equations for correspondingj's with a larger separa
tion couple back to those with (one) smaller and can there
fore be integrated. Plate et aU have previously recognized 
this structure for the case where 1'0.0 = 1'0.0 and conse-

quently one hasl[o~] =I[~O]. However, they 

did not provide a systematic analysis of correlation behavior 
or comparison with that of equilibrium distributions as given 
here. When 1'0.0 = 1'0. a the appropriate equations are5 

+ 2(1'0. a -1'aolf[O~] +21(1'0.0 -1'a.o) + (1'0.0 -21'0.0 +1'aa)q2)/[00~]' 

- :tl[o~] = {(21'o.a +1'o.a)+(1'a.o -1'o.0)q2lf[0~] 

(2.6a) 

+ (1'0 a -1'a.olf[O~O] + (1'0.0 -1'o.o)qd[O~] 

[ 

/- 1 ] 

+ {(1'o.a -1'0.0)+(1'0.0 -21'o.a +1'a.a)q2)1 O()---{JO, (2.6b) 

-:f[~o] 
= {41'o.0 +2(1'0.0 -1'o.0)q2lf[0~0] 

(2.6c) 

Quantities of prime interest are the two-point correla
tion functions 

c[~] f[~] -f[of 

= I[ a-=---.a] - f[a]2=c[ a-=---.a]. (2.7) 

The identity which is the middle equality of (2.7), is proved 
using only conservation of probability 1 and thus holds for 
any distribution. All results given here will correspond to a 
choice of rates 1'0.0/1'0.0 = 1'a. 0/1'0.0 = 1'a. a/1'o. a =a. 
(This relationship is valid for an Arrhenius fonn of the rates 
with pairwise additive activation energies.) In Fig. 1 (Fig. 2) 
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c[ ~] is plotted as a function of "m" for an autocataly

tic (autoinhibitory) choice of rates. These are compared with 
equilibrium (Ising model) lattice-gas correlations where, for 
correspondence, we choose the Ising model pairwise interac
tionJ to satisfy e -{3J = a, where/3 = (kT)-I. The structure 
of equilibrium correlations is reviewed in Appendix A. The 

behavior of C [ oa--:-o ] i( Oa--:-o] -f[ 00 ] f[ 0] and 

c[ o~o ] f [ O~O] -I [00] 2 regarded as functions 

of "m" is similar and thus not shown. The large separation 
(m) decay of the irreversible correlations is fundamentally 
faster than that of the corresponding equilibrium (Ising 
model) correlations as shown in detail in Sec. III. This is 
most apparent for the coverage () f[a] = ! in the regime of 
highly autoinhibitory rates (corresponding to highly repul
sive NN Ising model interactions), where the correlation 
length 11 for the equilibrium distribution approaches infinity 
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FIG, 1. C[~]==f[~] - f[o]2 for reaction IJ--+Q on an infinite. uni

form polymer chain; NN cooperative effects with rates To. 0 :To . 0 :To o:To 0 

= l:a:a:a2 and a = 100 [the dashed line shows the corresponding Ising 
model correlation with pairwise interaction J satisfying 
e- f3J = a.f3= (kT)-l], 

but the irreversible distribution c[ ~] has fast decay be

havior (see Fig. 3). In Fig. 4, we plot c [0-0) as a function of 0 
for various a. Notice the asymmetry about 0 = ~ in contrast 
to the equilibrium theory. 
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I 

I • 
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9=.75 

FIG. 2, c[ ~] for the process of Fig, 1 with a = fo (the dashed line shows 

corresponding Ising correlations), 
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FIG. 3. c[ ~] for the process of Fig, I with a = TAo (the dashed line shows 

corresponding Ising correlations). 

Probabilities of multiply disconnected empty configu
rations can also be obtained exactly using shielding to trun
cate the corresponding hierarchial equations. The behavior 

of f[O~O] is analyzed in Sec. IV. Sometimes 

these quantities can be directly expressed in terms of simpler 
ones using shielding. For example, one has 

for n>2, 
(2.8a) 

which can be further simplified using (2,5) if m or p>2, and 

qif [ 00--0-00 11 [ 00---00 11 [ 00-0 ) 
f [ 000--0-000---00-0] = , 

,15 

,10 

,05 

,10 

,05 

f[oof 

c[o-o] )O~ 
/ \ 

I~o~\ ~lO~ '" \ 
/' " \' 

/////~5~ \ 
I 3 _______________ ---.. 

,2 

/~ / ' 

,4 9 ,6 ,8 

(2.8b) 

FIG.4. c[ 0-0 1 as a function of coverage e for the process of Fig. 1 for various 
a (shown). 
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It should be clear that, using shielding, the probability of any 
disconnected empty configuration can be written in terms of 
I [00 ] , q2 and probabilities of the type 

I[a~ .. ~']' where a, a' =0 

or 00. 
Example (ii): Reaction of an initially completely un-

reacted infinite, uniform polymer chain; NN blocking and 
second NN cooperative effects. 

Because of the NN blocking, the minimal closed hierar
chy here involves only n-tuples of empty sites I2.13 (cf. general 
range two cooperative effects where it also includes certain 
disconnected configurations 13). The shielding property of a 
4-tuple of empty sites guarantees that l.12.13 

q [ cf»n o ] =q [ ocf»n ] =q [o¢)(PtPtP ] 

==q[tPtPtPtP0] = exp{ -1'oo.oot)(=q4' say), 

for n;>4, (2.8) 

where 1'00.00 is the rate for reaction with all first and second 
NN unreacted. Thus the minimal hierarchy can be exactly 
truncated using (2.8) to obtain a finite closed set of equations 
for 1[0 ]'/[00 ]'/[000 ],1[0000], and Q4.

12.13 Similarly, us
ingl 

Q[Ocf»n~m ]=q4=Q[cf»m~nO]' for n;>4, 

(2.9) 
one can obtain a closed set of equations for l[o-o],J[o-oo] , 
1[0-000], 1[0-0000], 1[00-00], 1[00-000]'/[00-0000], 
I [ 000-000 ] ,I [ 000-0000 ] ,I [ 0000-0000] (as well as the corre
sponding reflected quantities if the rates are not reflection 
invariant). Equations of the corresponding/'s for larger sep
arations couple back to those for smaller separations (after 
truncation using shielding) and thus may be integrated ex-

actly. In Fig. 5, c [ ~ ] is plotted as a function of m for the 

range two blocking case. 

Again, probabilities of multiply disconnected empty 
configurations can also be obtained exactly and sometimes 

.06 

'0' .04 

1.02 
..... 
U .00 

- .02 

- .04 

-.06 

0 

9=.27455 
(saturation) 

\ '-. \./ ~'-'-'-'-

8 10 t 

FIG. 5. c[ ~] for reaction a-.a on an infinite, uniform polymer chain 

with range two blocking (i.e., reacted first and second NN block reaction). 
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these can be reduced in terms of simpler quantities using 
shielding. For example, one has 

I [ 00000-0000-0] = q 4 I [ 0000-0000 If [ 0000-0] , 
1[0000] 

I [ ] q 4 I [ 0-0000 If [ 0000--0000 If [ 0000-0 ] 
0-00000--0000-0 = . 

1[0000]2 
(2.1O) 

These identities also hold for a process with arbitrary range 
two cooperative effects. 13 

Example (iii): Random dimer filling ofNN sites on a 1-
D infinite, uniform lattice with rate k. 

The minimal closed hierarchy here is given by14.15 

d 
- d1[on] =(n-I)kl[on] +2k/[on+d, n;>1. 

(2.11) 

The shielding property of a single empty site l guarantees 
thae4.15 

(2.12) 

which allows truncation and solution of{2.II) to obtain/[o] 
= exp{2q1 - 2). Wolt'6 has analyzed the singly disconnected 

hierarchial equations 

- :1[~] =2k{r[0~] 
+/[~]}, for 1;>1, (2.13) 

which after using the shielding property 

can be written as 

- :1[~] =2kql{r[~] +/[~]}. 
(2.14) 

Noting that I [00] = qJ[o], one can show that6 

[ 
I] { I Xk !XI + 1 } 

10---0 =1[0] k~ok!+ (/+ I)! ' (2.15a) 

so 

{ 
!XI + 

1 
00 xk} 

= -1[0] --+ L -, 
(I + I)! k = 1+2 k ! 

(2.15b) 

where x = ln/[o]. This result can be obtained simply using 
the techniques described in the next section. Note that at 
saturation t = 00, 1[00] = 0 so x = - 2 and also 
1[0-0] f[ooo] = O. It is also true (but less obvious) that 

1[0---0] = 0 at saturation. In Table I, c[ ~] is listed for 

0<J<.7 at full, and approximately half, saturation. 

This process has the unusual feature that, since a single 
site shields, all empty (and thus all) subconfiguration proba
bilities can be expressed in terms of/[o], ql and the singly 

disconnected I [ ~] [cf. (2.8) and (2.1O)]. 
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TABLE I. C[ ~ ]=C[ a~] for random dimer filling NN sites of an infinite, uniform 1-0 lattice and 2-0 square lattice. 

I 
o 
1 
2 
3 
4 
5 
6 
7 

8= 0.43 

0.8490X 10- 1 

- 0.3028 X 10- 1 

0.6309 X 10-- 2 

- 0.9421 X 10-3 

0.1102x 10-3 

- 0.1062X 10-' 
0.8702 X 10-6 

-0.6213xlO- 7 

1-0 

8= l_e-2 

;:::0.86467 
(saturation) 
- 0.1832X 10- 1 

- 0.1832X 10- 1 

0.2680X 10- 1 

- 0.1832X 10- 1 

0.8751 X 10-2 

- 0.3278X 10-2 

0.1018x 10-2 

- 0.2709 X 10-3 

B. Approximate truncation and solution 

Starting with (1.1) and (1.2), one can readily obtain an 
infinite, closed hierarchy for conditional probabilities where 
all conditioned (0-) and conditioning (cp-) sites are empty. 1 

The approximate truncation techniques described in Ref. 1 
operate directly on this hierarchy. We either factorize the q's 
in terms of those with a single o-site, then truncate cp-sites 
further than "n" times the cooperative range from this site (a 
scheme denoted by FT.n) or truncate cp-sites further than this 
distance from all o-sites, then factorize in terms of q's with a 
singleo-site (denoted by T.nF). Consequently, these schemes 
are only appropriate for the calculation of "small separa
tion" correlations, e.g., 

c[oL-~l] = f[Ok ](q[oL_-t,6 k] - q[oj]), (2.16) 

where oj indicates that sitej is empty, etc., and where k is 
within the truncation range ofj. (Otherwise, truncation re
places q[oj--t,6 k] with q[oj] f[oj] and thus 
c[d--ok

] by zero.) Two processes are considered below. 
To determine larger separation two-cluster correlations, a 
more sophisticated truncation scheme must be developed 
where the truncated equations preserve the coupling struc
ture with respect to separation. One such example is present
ed. 

Example (iv): Monomer filling of an initially empty infi
nite, uniform, 2-D square lattice; NN cooperative effects 
with rotation invariance. 

One quantity amenable to calculation from FT.n and 
T.nF truncation schemes (which truncate "cp" sites further 
than "n" lattice vectors from "0" sites) for n>2 is 
f[o-o] = q[o-cp ]fro] which involves a singly disconnected 
configuration. We consider only the FT.2 and T.3F cases. 

For the FT.2 case, the minimal closed set of equations 
involves q's for the nine configurations 1 

0, ocp$cp, ocpcp, cp¢cp, o/cp, 

+,ll.ttcp. 

The truncated q-equations for q[o-cp ] and q[cpocp ] close with 
this set and equations for these eleven q's may be integrated 
to obtainf[o-o] as a function of tor e. Similarly, the FT.2 
equations for q[/], q[~n, and q[$$O] close with the 
original set of nine, allowing calculation off [0 ~ ]. Several 
other disconnectedf's may be similarly calculated. 
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o 
1 
2 
3 
4 
5 
6 
7 

8= 0.45 

0.3617 X 10- 1 

- 0.6830x 10-2 

0.7308 X 10-3 

- 0.5701 X 10-' 
0.3507X 10-' 

- 0.1783 X 10-6 

0.7733 X 10-" 
- 0.2924x 10- 9 

2-0 

8;:::0.9063 
(saturation) 
- 0.8772 X 10- 2 

-0.1977Xl0- 2 

0.1431XIO- 2 

- 0.5647X 10-3 

0.1556X 10-3 

- 0.3375 X 10-' 
0.6096X 10-' 

- 0.9473 X 10-6 

It turns out thatf[o-o] can be immediately calculated 
from the 128 T.3F equations. 1,16 Although this set was ob
tained from a connected q-hierarchy, truncation has the ef

fect of introducing q[o (1] for disconnected ou and u. In 

particular, q's for configurations cp-1. cpol,cpot,h, ocp-cp, and 

cpcpocp are included. 16 Since one has 

f[o-o] f[ooo]!q[cpocp] f[oooo]/(q[ocp-cp ]q[cpcpocp]) 

f[OOl?]!(q[cp-¢]q[cpo$]). (2.17) 

andf[ooo],J[oooo], [00cS) can readily be calculated from the 
T.3F equations, it follows thatf[o-o] can also be calculated 
["product consistency" of q's for our truncation schemes 1 

guarantees all three expressions of (2.17) give the same re
sult]. The probabilities of several other disconnected config-

urations including 00-0, oo~ 8-0, and o? can be calculated 
directly from the T.3F equations. 

In Fig. 6, we plot c[o-o] fro-oj -f[of for the case 
where the rate of adsorption with "i" filled NN is given by 
ka i

; i = 0,1, ... ,4 (for various a). The FT.2 equations appear 
to give a reasonable estimate of c[o-o] for 0.2:Sa:S 5. How
ever, the T.3F equations are only good for 0.3:S a:S 2. Be
havior should be compared with e[ 0-0] in Fig. 4 for the analo
gous 1-D process. 

Next we consider the series of processes where filling of 
sites with <,m occupied NN is random but of those with> m 
is blocked (m = 0,1,2,3). In Fig. 7, e[o-o] for these processes 
is plotted as a function of e and, in Table II, corresponding 
saturation values are given for fro-oj. For m = 3, i.e., ran
dom filling of all sites except those with four occupied NN, 
exact results can be obtained. 9 

Example (v): Random dimer filling of NN sites on an 
initially empty infinite, uniform 2-D square lattice with rate 
k. 

Here we can obtain an infinite closed hierarchy for the 
q[oa], where u contains only empty sites and ou is connect
ed. 15 Truncating "cp" sites further than two lattice vectors 
from "0" yields a minimal closed set of equations for q's with 

configurations 0, ot,h, 01. ot,hcp, oIcp, cplcp, cplcp, and 11 15 
In 

addition, in this approximation it is possible to obtain esti
mates of probabilities of a few smaller disconnected configu-
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/ FIG, 7, C[o-ol for random monomer filling ()-->(l ofsites on an infinite, uni

form 2-D square lattice with <m filled NN and blocking with> m; the solid 
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FIG. 6, c[ 0-0 1 as a function of coverage (J for monomer filling ()-->(l of sites 
on an infinite, uniform, 2-D square lattice where each filled NN changes the 
rate by a factor of a (shown); the solid (dashed) lines giveFT.2 (T,3F) values, 

rations, namely, o~ 0-0, and 0$ since truncated equations for 
q [ /] and q [ t,6 ~ ] , in this approximation, close with those of 
the above eight q's and truncated equations for q[oPt,6 ] and 
q[t,68t,6 ] close with this extended set of ten. Also, truncated 
equations for q [0-t,6 ] and q [t,60t,6 ] close with the original set 
of eight. Thesef's may be calculated immediately from the 
114 three lattice vector truncation equations. 17 In Fig. 8, e[o-
0] fro-oj - /[0]2 and e[a-o] f[o_o] - /[of are plotted as 
functions of 8. The deviation of the third- from second-order 
is much more significant for these disconnected quantities 
than for previously examined, connectedf's.15,17 The third
order truncation predicts saturation values of 0.68 X 10-2 

for/[0-0],0.83 X 1O-2for/[0_0] and 0.45 X 1O- 3 for/[0!J 0]. 
In Fig. 9, the three point correlation c[o~o] = /[oP 0] 
- 2/[011[0-0] - /[0]/[0-0] + /[oP is plotted against 8. As 
might be expected, there is only qualitative similarity 
between second- and third-order truncations. 

Finally we given an example of a crude technique for 
truncating and closing the hierarchy equations,for certain 
two-cluster correlations,which retains their coupling struc
ture. In the next section we show this scheme guarantees the 
type of fast asymptotic decay seen in examples (i) and (ii) 
rather than exponential equilibrium-type decay. The equa-

(dashed) lines give T.3F (FT,2) values and the dotted line for m = 3 gives the 
exact value, 

tions for the correlations e[ ~] with 1 "horizontal" se

parating sites have the form 

-k-I~[~] =2(C[0~] 

+2c[~] +c[~oD, 
for I;d, (2.18) 

where c[o~] i(~] -f[oo]f[o], etc .. One 

can write 

c[o~]=q[ot,6 ]e[~] 

+ (q[0t,6~ ] - q[ot,6 ])r[~] (2.19) 

and here we neglect the second term for 1;;.2. This is not too 
unreasonable since there will be some shielding from the left 

"t,6"siteinq[ot,6~ ]. SimilarlYWerePlacec[~] by 

q[ot,6 ]e[~] neglecting (q[ ¢~ ] - q[ $]) 
X/[ ~] for 1;;.2 (which is, no doubt, a more severe ap

proximation). 
Thus we integrate the equations 

- k -1~[0--a]~2(3q[0t,6 ]e[o--o] + c[oo-o]), 
dt 

- k -I ~[~] ~2q[0t,6 ] (3e[ ~] 

+ e[ ~ D, 1;;.3 (2.20) 

for"I" up to some arbitrary integer (see Table I.). Hereq[ot,6] 
and e[oo--o] are obtained from the third-order truncated 

TABLE II. Saturation values for JI 0-0 1 for random monomer filling of sites with <m filled NN and blocking with > m on an infinite, uniform 2-D square 
lattice (the exact value for m = 3 is 2/45 = 0,0444·). 

3057 

m 
T.3F 
FT.2 

° 0.449 
0.454 
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1 
0.2739 
0.2738 

2 
0,1364 
0,1345 

3 
0,0451 
0,0431 

4 
0,000 
0,000 
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FIG. 8. c[o-o] and c[o? ] for random dimer filling ofNN sites on an infinite, 

uniform 2-D square lattice, the solid (dashed) lines give third- (second-) or
der truncation values. 

equations. 17 We remark that c[o--o] from (2.20) then agrees 
with the third-order truncation value. The resulting values 
for correlations of larger separation appear reasonable. 

III. BASIC z-TRANSFORM TECHNIQUES FOR TWO
CLUSTER CORRELATIONS 

The large separation behavior of the spatial correlations 
for the I-D processes of examples (i) and (ii) clearly depends 
on the coupling structure of the disconnected hierarchy (cor
relations with a certain separation are coupled through their 
rate equations to those for a range of smaller separations). 
The same structure is apparent for processes on higher-di
mensionallattices (and we have indicated that suitable ap
proximate truncation schemes should preserve this struc
ture). Here we present a technique, appropriate for treating 
equations with such structure, which is directed towards elu
cidating the asymptotic form of the large separation behav
ior of the correlations. It is first applied to the analysis of 
exact equations for two-cluster correlations for processes 
with NN cooperative effects in I-D [exactly solvable exam
ple (i)] and 2-D [example (iv)]. Next we treat the approxi
mately truncated Eq. (2.20) for random dimer filling on a 2-
D square lattice. In the next section some extensions to 
longer-range cooperative effects and multicluster correla
tions are discussed. 

-. Z 

-.4 

-.5 

.2 .4 e .6 .8 

FIG. 9. c[o~oJ for the process of Fig. 8; the solid (dashed) line gives third
(second-) order truncation values. 
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Example (i) revisited: Reaction on an initially unreacted 
infinite, uniform polymer chain; NN cooperative effects, 
with'Ta . o =1"o.a· 

We consider the large U m" behavior of 

e[o~o], e[o~], and e[~]. Since the/'s re

duce to factored form (i.e., the e's vanish) in the large "m" 
limit, equations for these factored forms are simply obtained 
from (2,2) in the m-+oo limit. It thus readily follows that the 
e's obey the same equations as the corresponding /,s, i.e., 
(2.2), for m> 1. Given the coupling structure of (2.2), it is 
natural to consider the z-transformed quantities 

00 [ 1+1 ] 
Cz [00--00) = I :Ie 00----00 , 

1=0 

00 [1+1] Cz [0--0) = I zle 0--0 . 
1=0 

(3.1) 

Applying the z-transform to (2.2) for the e's and divid
ingby (d Idt )qz = - 'To. oqz to obtain d Idqz equations (since 
we are not directly concerned with time dependence here), 
one obtains firstly for C z [00--00], 

~z[oo---oo] 
dqz 

= f 4aqz~ 1 + 2(1 + z)(1 - a)Jcz [00--00] 

+ 2(1 - a)(f[oooo] - /[oo]Z), (3.2) 

where the reduced rate a=:='To.a l'To.o(-1 - y). For conve
nience set pz =1 - q2' Then (3.2) may be integrated after 
substituting for f[ 00] = q~a exp( - 2YP2)' f[ 0000] 

= qif[oo] (see Refs. 5 and 10), and taking the inverse z
transform, 

e[o~] = _1_ dl~ 1 Cz [00----00] I (3.3) 
(/- I)! dZI

-
1 z=o 

to obtain 

e[o~o] 
( -2 )1 { i1'2 

= qia exp( - 2YP2) (/- ~)! + 0 dp(1 - pfY(P2 - p)l- 1 

- J:2dPe-2YP(P2-P)I-l}. (3.4) 

The first integral in (3.4) equalspil-IF( - 2y, 1,1 + I,P2) 
and the second equalspU ~IM(I, 1+ 1, - 2YP2)' whereF( ) 
and M ( ) are hypergeometric and confluent hypergeometric 
functions, respectively.18 Inserting standard series expan
sions for these functions, (3.4) becomes 

q2~ 4a exp(2YP2)( - 2ypz) - I e[ o~o] 
00 { (2y)!( - P2)k ( - 2YP2)k } 

k~O (2y - k )!(k + I)! - (k + I)! 
- 2ypz2 

----'-~- as /-+ 00 • 

(/+2)! 
(3.5) 

From either (3.4) or (3.5) the "fast decay" behavior of this 
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correlation is clear. An alternative approach involving itera
tive solution rather than z-transform of the coupled-I equa
tions is given in Appendix B. 

Treatment ofthe equation for c[ ~] is analogous 

but more complicated because of the coupling to 

c[ o~o], I' = I, 1- 1. Integrating the 

(d / dQ2)Cz [00---0] equation and taking the inverse z-trans
form, one obtains 

whereA(p)=(I-p)-2a-ae
yp, 

1J(p) = (1- a)(([ooo] - f[ooV[o]) + !(a - a) 

X(I _p)-I + 1 - 2a + aJ(([oooo] - f[oo] 2), 

and tIp) = (a - a)(1 - p)-I and ¢'(p) = (a - a)(1 _ p)-I 

+ 1 - 2a + a. Also a=ra. a/ro. 0 and all f's and c's ap
pearing on the right-hand side are to be evaluated at 
Q2 = 1 - p. The fast decay behavior of the first term, similar 
to (3.4) and (3.5), is clear, however that of the remaining 
terms is less transparent. To clarify this, it is convenient to 

substitute from (3.4) for c[ ~o]. One may explicitly 

perform the sum over "k" which, in the case of the second 
term of (3.6), has the form 

I~I 1 'I ( )k 1 (2 )/-k( ,)/-k-I 
k~ok! P-P2' (/-k-I)! - r p-p 

- - 2'; (2 ' _ _ )/- I (3 7) 
- (/- I)!:P P2 P . . 

Thus the decay has the same form as the first term. Analysis 
of the third term is similar, except a contribution with a 
1/(/- 2)! factor results. 

One may continue to analyze the behavior of c [ ~ ] 
in the same fashion. The same type of "fast decay" is again 

observed with 1/(1 - k)! factors, k = 1, 2, 3, for c[ ~] 
the integral form. 

The appearance of 1/(/- k )!-(e/2-1T)1/2 exp{ - (/- k 
+ !) [In(1 - k + 1) - 1] J "fast decay" factors is markedly 

different from the corresponding equilibrium, here Ising 
model, behavior which is characterized by exponential de
cay. More generally, we note that any nth-order spatially 
Markovian distribution (the Ising model distribution is first
order) has spatial correlations exhibiting exponential decay 
(see Appendix A). Faster decay in irreversible (compared 
with equilibrium) distributions is anticipated since events oc-
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curing irreversibly have only one chance to correlate (during 
the transformation ~) rather than through continual in
teraction. 

Example (iv) specialized: (Monomer filling of an initially 
empty infinite, uniform square lattice, with NN blocking 
and rate k.) 

In general, one could consider probabilities for configu
rations consisting of two clusters separated by various dis
tances and directions (or the two-cluster correlations ob
tained from these by subtracting the product of probabilities 
for the individual clusters). However, only "horizontal" sep
arations are considered here. Denote the two cluster correla
tions for 

p---..... -~ by c[~], 
1 

etc. 

o [0 1 ] 000---..... -0 by c oo~ , 
0, , 0 

1 

Now from (2.1), 

d 0 
- -c[oo] = 2kf[000](1 - f[o]), 

dt 0 

-~[~]=2kC[~], 1>1, 

-~[~] 
dt 0 

=k{C[~] +c[~8go] +c[~8g0] 

+2C[~] + c[oF§o]} , 1>1, 

(3.8) 

The c's have zero initial values so the nonzero "source" for 
these comes from the I = 0 equations. The structure of the 
equations (for either f's or c's) suggests application of a z
transform 

(3.9) 

so 

(3.10) 

Applying the transform to the c[ ~] equations gives 

-~z[~] =2k{zcz[~80n 
dt 0 

+f[o§O](I-f[O])}. (3.11) 

The "higher-order" transformed equations all have a similar 
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structure linear in z and the c's with z-independent source 
terms. Of course, Eq. (3.11) cannot be solved exactly, but to 
indicate the nature of the decay of the correlation, we first 

extract a term Cz [0---0 ] q [ <,680] from Cz [ o---o§o ], then 

integrate and invert the transform to obtain 

e[~] = - ~~ f dt'/[o§o)' 

X!I-/[o]'J{ -2kJ:dt"q[<,68o]'}1 

- 2k dt' I - - 2k dt "q <,6go it I-Il{ It [ ]"}k 
o k=ok! t' 0 

{[ I-I-k ]' [I-I-k],[ ]'} 
X e o--o!o -e 0--0 q <,6go , 

(3.12) 

where the prime (double prime) indicates that the functions 
are evaluated at t 'It "). Note that 

e[~] -e[~]q[<,6§O] 

i(~](q[<,6~§O] -q[<,6§O]). 
Our attempt to demonstrate the basic form of the 

asymptotic behavior of this correlation through the first 
term in (3.12) has met with mixed success. Although the first 
term is anticipated to make a significant contribution, this is 

also true of the second (q[ <,6~§0] and q[ <,6go] differ sig

nificantly for small I ' because of the limited shielding ability 
of the right-hand "<,6 " in the first q). A rigorous proof of the 
asymptotic "fast decay" would require an explicit sum over 
"k" to exhibit the behavior of the second term (the k = 1- 1 
term by itself has 1/(/- I)! behavior). However, heuristical
ly, we expect the same type offast decay behavior in two (and 
higher) dimensions as discovered in the above 1-0 process. 
The inability to propagate correlation through continual in
teraction suggests faster decay than that of the correspond
ing 2-D equilibrium distributions which is exponential (to 
infinite separation value).19 Further indication of general 
"fast decay" behavior comes from the formal density expan
sion for correlations with separation I which has a lead term 
with 1/(/- c)! type behavior.20 

Example (v) revisited: (Random dimer filling of an infi
nite, uniform 2-D square lattice with rate k.) 

If we apply to the truncated closed equations (2.20) for 

e[ ~] for 1>3, the transform 

cz[O---O] = I~O zle[~], integrate with respect to 

time, and then invert the transform, we obtain for /";.3, 

e[~] = _ (- 2)1-3 f' ds' (is ds" q[o<,6 ],,)1-3 
(/- 3)! Jo s' 

xexp( - 6f ds' q[o<,6 ]')c[0--0]', (3.13) 

where s = kt. Thus our truncation, preserving the coupling 

3060 J. Math. Phys., Vol. 25, No. 10, October 1984 

structure of the e[ ~] equations, has ensured a "fast" 

asymptotic decay of these two-point correlations. 

IV. EXTENDED z-TRANSFORM TECHNIQUES FOR 
MUL TICLUSTER CORRELATIONS AND LONGER
RANGE COOPERATIVE EFFECTS 

In examples (i) and (iv) involving NN cooperative ef
fects, two cluster correlations with separation "I" are cou
pled directly through their rate equations to ones with 
"1- 1," but not shorter, separations. Correspondingly, in 
expressions for these, 1/(/- c)! type factors, where e = 0(1), 
naturally appear. Not surprisingly, the random dimer filling 
problems exhibits similar behavior. For such correlations in 
more general cooperative processes, we expect the decay to 
be characterized most naturally in terms of separation mea
sured in units of the cooperative range (cf. Fig. 5). Consider, 
for example, a 1-0 system with range R cooperative effects. 
To clearly exhibit the above-mentioned decay behavior, we 
modify the z-transform as follows. Set 

CZ[O~]-kt/e[~], where i=O,I, ... ,R -1, 

(4.1) 

and define similar transforms for other two-cluster correla
tions. Using (4.1), the resulting transformed e-equations can 
be written with the right-hand side linear in z and the c's. 
Integrating and inverting the z-transforms, (4.1) produces 
the desired 1/k! factor. If applied to example (ii), one sees 
immediately that a closed coupled pair of equations result 

for Cz [OOoa---'!--oooo] and Cz [OO~OOo] which when in

tegrated and inverted describe the exact large" I" asymptotic 

behavior of e[ OOO~OOO]. Next one would consider the 

Cz [000~00] equations and then continue to analyze e's 

for successively smaller clusters. 
The appropriate form ofthez-transform for general co

operative processes should be clear from the above discus
sion. Consider for example a process on a 2-D square or 3-D 
cubic lattice where an event is cooperatively influenced by 
the state of surrounding sites that can be reached in R or less 
steps of a single lattice vector. Then az-transform of the form 
(4.1) is appropriate for examination of two-cluster correla
tions in any principal lattice direction. 

Finally, we consider the analysis of "effectively" multi
ply disconnected configurations where it is natural to imple
ment multiple z-transforms (with one transform variable for 
each separating distance). We illustrate this technique with a 
simple example. 

Example (i) revisited: Reaction on an initially unreact
ed, infinite, uniform polymer chain; NN cooperative effects 
and l' a . 0 = 1'0. a • 

The simplest non trivially doubly disconnected quantity 

that one can consider here is / [ o~o ]. Starting 

with (2.1) and (2.2) for these/'S, and implementing the shield
ing property of adjacent pairs of empty sites, specifically 
(2.8a), one obtains for I, k> 1, 
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d [ I k ] 
-df~o 

[ 
I k-I ]) [ I-I v[ k-I V + I 00---0--00 + (T"o.o - 2T"a.o + T"a.alf 00---00 o~o [00] -lq2 

Instead ofthisf, it is more convenient to consider 

e[o~o] 

f[~O] -/[O~V[OO] 

This is not the standard Ursell-Mayer form for a three-clus

ter correlation which, for e [ o~o ], differs from 

the right-hand side of (4.3) by 

{ - I[ o~+ k+ ~o V[O] +/[00 ]2/[0] }. Use of correlations 

in the form (4.3) is motivated by the factorized form of the 
latter terms in (4.2) and leads naturally to rate equations for 
these e's with I, k> 1 obtained from (4.2) by simply replacing 

I[o~o] with e[o~o] and 

I[~O] withe[o~o]. 
To these we apply the double z-transform 

A _A _ ~ I k [ 1+ I k+ I ] 
eZ"Z2 =eZ"Z2 [00---0----00] = ~ Z I Z2 e 00---0----00 

I, k>O 

(4.4) 

using such results as 

L z~~e[o~o] 
I, k>O 

=zlcz"Z2 +qiZ2[0~0] +/[00]CZ2[0~], 
(4.5) 

with Cz [o~o] and Cz [o~] as defined in Sec. III, to 
obtain 

3061 

= {T"a.a + 4T"a.o + (T"o.o - T"a.o)(2 +Zl +Z2)q2}Cz"Z2 

+ (T"o.o - T"a.o)Q2(qiz2 [o~o] 

+/[oo]cz,[o~] +ZI ~Z2) 

+ (T"o.o - 2T"a.o + T"a.a)(zjcz, [o~] 

+ /[0000] -/[00]2) 

X(ZI ~z2lf[00]-IQ2 

+ (T"a.o -T"a.a)({ZjCz,[OO---OO] +/[0000] 
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(4.2) 

- /[00]2}CZ2 [~] 

+ ZI ~z2lf[00] -I. (4.6) 

Finally dividing by - (d Idt )q2 = T"o. oq2' integrating with 
respect to q2' and inverting the double z-transform, one ob
tains 

where 

- Q2 iI + 4a exp( - 2YP2) f:2 
dp( 1 _ p) -IiI + 4ale2rp 

x{Y(P-P2)1-1 kil ";(p-pi(e[~] 
(/- I)! k=o 

X(I-p)+e[~oV[OO])lk! 
+ !(1 - 2a + a)B (/)B (k If[OO]-1 

+ (a - alB (l)Ct~ ,,; (p - pi e[ ~o ]Ik!) 

X/[oo](l-p)-1 +/~k}, 
(4.7) 

1-2 [1-1-1 ] 
B(/)= I~O r(p-pie o~o II! 

(([0000] - /[00]2)y-l(p - P2)1-1 

+ (I-I)! 

andp2' a=1 - Y, a are as previously defined and alII's on 
the right-hand side are evaluated at Q2 = 1 - p. 

If the sums over I and k are evaluated explicitly [cf. the 

e[ o~ ] calculation (3.7)], then it becomes clear that each 

term in e[ ~] has fast decay behavior dominat

ed by (1/(/- c)!) • (1/(k - e')!) as I, k--+oo [wheree, e' = 0(1)]. 

V. DISCUSSION 

The aim of this work is to elucidate the coupling struc
ture of the hierarchy equations for (effectively) disconnected 
empty configurations as well as the behavior of the corre
sponding probabilities, particularly two-cluster correla
tions. For exactly solvable I-D processes, the latter exhibit 
large separation asymptotic "fast" decay behavior quite dif
ferent from the slower exponential equilibrium-type decay. 
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Similar behavior is anticipated for general irreversible pro
cesses on 1-, 2-, and 3-D lattices. We have remarked that 1-D 
distributions satisfying an nth-order spatial Markovian 
property will have spatial correlations exhibiting exponen
tial decay. Consequently in developing approximate trunca
tion schemes for I-D processes not amenable to exact solu
tion, one must ensure that these do not impose such a 
Markovian property leading to spurious exponential decay 
of correlations. Similar considerations apply in higher di
mension [note our treatment leading to (2.20) and (3.13)]. 

It is instructive to compare our results for correspond
ing 1- and 2-D systems. Consider first random dimer filling 
on the I-D linear and 2-D square lattices. In both cases 

c[ a~] =c[ ~] alternates in sign with I, specifically, 

c[aa]=f[aa]-f[aj2>O, c[a-a]=f[a-a]-f[aj2<O, etc. 
(exceptthatc[aa] =f[oo] - f[oj2becomesnegativenearsat
uration). To understand these results, suppose that some spe
cific site is filled. Then for low coverage: (a) this enhances the 
(conditional) probability (abovef[a]) that the site to the right 
is filled (by the same dimer). This constitutes one of 2(4) pos
sible dimer orientations is I-D (2-D). Thus the effect is more 
pronounced in I-D, i.e., c[aa] > Ois largerin I-D than 2-D, at 
least away from saturation. 

(b) If the dimer does cover the specified site and one to 
the right, then this reduces the number of ways a dimer can 
cover the site two to the right, i.e., from 2 to 1 (4 to 3) in 1-D 
(2-D). Thusc[a-a] <0 and is much larger in 1-D than 2-D, at 
least away from saturation. 

(c) One may continue this argument demonstrating the 
alternating sign. 

Accurate 2-D truncations verify these conclusions for 
c[aa] and c[a-a]. Solution of the crudely truncated equations 

(2.20) supports the anticipated trend that c [ a~ ], I> 2 are 

much larger in 1-D than 2-D (see Table I). 
For comparison, consider a process corresponding to 

monomer filling with NN cooperative effects on a 1-D linear 
and 2-D square lattice. Suppose a filled NN inhibits the ad
sorption rate. If some specific site is filled than this clearly 
inhibits the (conditional) probability (below f[a]) that a 
neighbor is occupied, which in tum enhances the probability 
that a site two away is occupied, etc .. Thus c[aa] < 0, 
c[ a-a] > 0, etc .. The dimensional dependence of these corre
lations should clearly be much less significant than for the 
random dimer filling problem. Our results support this con
clusion for c[aa] [Ref. (1)] and c[a-a] (compare Figs. 4 and 5). 

Finally, we remark on some extensions and alternative 
applications of the methods developed here. First, a similar 
treatment could be given for irreversible cooperative pro
cesses on lattices involving several different competing types 
of events (where exact results are again available for certain 
1-D processes).21 Second, for processes on lattices which are, 
e.g., semi-infinite or have defective clusters, probabilities of 
subconfigurations are naturally labeled by the displacement 
from the edge or defects. Coupling structure with respect to 
these labels is similar to that observed here and analogous 
techniques are appropriate.6 Such analyses will be presented 
in later work. 
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APPENDIX A: SPATIALLY MARKOVIAN 
DISTRIBUTIONS 

For any distribution, one can write 

f[~] = I f[oa ta2 .. ·a1o] 
ai= 0, a 

(AI) 

If the distribution is (first-order) spatially Markovian, 

then q [a a' CT'] = q [a a' ], where a' can be either filled or 
empty, and thus 

f[~] = (T l+ 1)0,0/[0], (A2) 

where (T)u.o' = q [a a'] all of which can be expressed in 
terms of e andf[oo]. Furthermore, T has eigenvalues 

,1+= 1,,1 - = l-(l-e-/[oo])e- l (l-e)-I(lA -1<1), 

and 

g(T) =g(l)G)(1- e, 0) + g( A -l{o ~ J(l, - 1), (A3) 

wheref[oo] = q[o¢ 1 /[01 and g( ) is arbitrary. Thus, 

c[~] =0(1-0)(,1 -r+ l
. (A4) 

General two-cluster correlations are calculated similarly 
and also have exponential decay. 

The equilibrium, Ising model, lattice gas distribution is, 
in fact, spatially Markovian and22 

(1-0-/[00])0- 1(1-0)-1 

=21(11 +40(1-0)(e-fJJ-1))t/2+ 1), (AS) 

whereJis the pairwise interaction andp = (kT)-I. Note that 

c[ ~] has the same value at 0 = O· and 1 - 0·. 

If the distribution is nth-order spatially Markovian, i.e., 

q [a a 1a2· .. anCT ] = q [a ata2· .. an ], an analogous calcula-

tion shows thatf [ ~ ] contains a factor involving a com

ponent of the [lln]th power ofa "matrix" T, where 

= q [at a2a3· .. an + I ] q [a2 a3a4· .. an + 2 ] 

... q [ ana n + I .. ·a 2n ] . 
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Here [k] is the largest integer <.k. Now since the q's are 
positive and 

;= 1 ton 

it follows that the matrix norm23 

111'111 = m::x( ~ I (Tlulu,----un, u;u2----u~ I) = 1. (A 7) 

Consequently all the eigenvalues satisfy IA 1<.1. Further, one 
can immediately check that l' has an equal component dual 
eigenvector with eigenvalue 1. Analogous to the simple Mar
kovian case, this eigenvalue generates the nonzero asympto-

tic part off [ ~ ] and the others describe the exponential 

decay of c[ ~]. Finally, we note that an equilibrium lat

tice-gas distribution with range "n" interactions is nth-order 
spatially Markovian. 

APPENDIX B: ITERATIVE SOLUTION OF (2.6c) 

Here we present an iterative solution of (2.6c) for 

f[ ~] (cf. the treatment in Ref. 6 of processes on semi

infinite lattices). Defining 

- 4a 2YP:r [ I ] XI = q2 e O()---<)() , 

(2.6c) may be written as 

d 
--XI = -2YXI_I' 
dP2 

Noting X 0 = q~Y, iterative solution of (B2) yields 

I-I (-2YP2)k 
XI = k~O k! 
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(B1) 

(B2) 

(B3) 

Evaluating the multiple integral shows the second term 
equals 

( 2 )1 ~ (2y)!( - P2)k 
- YP2 k~O (k + I )!(2y - k)! 

in agreement with (3.5). 
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In the frame of generalized Wick powers of generalized free fields a new realization of locality is 
presented in which locality of the field is not automatically ensured by locality of the two-point 
function and the well-known combinatorics of Fock space but instead an additional constraint 
expressing locality of the higher n-point functions has to be satisfied for locality of the field. By 
example it is shown that this class of models is fairly large. 

PACS numbers: 11.10. - z 

I. INTRODUCTION 

Though there has been much effort the locality condi
tion in general quantum field theory is far from being well 
understood. The implications of locality together with the 
other linear constraints of QFf (Poincare covariance, spec
tral condition) have been analyzed rather completely. ! But 
very little is known about the interplay oflocality and positi
vity (and covariance and the spectral condition). Some prob
lems of the joint realization oflocality and positivity and the 
other linear constraints have been pointed out in Ref. 2. In 
particular there is a proof of the well-known independence of 
the locality condition from the other defining constraints of 
QFf. This is done by showing that the "number" of possible 
"quantum field theories" is reduced drastically by the local
ity condition (in special cases from uncountably many to 
exactly one or even none!). This clearly indicates one impor
tant aspect of the locality condition in QFf. An important 
step towards a thorough understanding of the interplay of 
locality and positivity is presented by Yngvason3 who has 
shown by means of spacelike symmetrization and a subtle 
approximation procedure that there always exists a separat
ing family of states on the Borchers algebra, which are local 
and are thus good candidates for quantum field theories. But 
we think that this result is too "general" in order to account 
for the subtleties in the interplay of locality and the other 
constraints of QFf as indicated by our remarks above. 

A straightforward way to get an idea about how the 
locality condition is realized together with the Poincare co
variance, the spectral condition and the positivity condition, 
is simply to look at known models of QFf's. But unfortu
nately on physical space-time we know only very few of such 
models (generalized free fields, Wick products of free and 
generalized free fields). An obvious fact which is rarely real
ized is that in these models locality is essentially implied by 
the other constraints: On the level of the twofold vacuum
expectation values (VEV), locality is indeed implied by Poin
care covariance and positivity! but see Sec. V for a general
ization. For the VEV's of higher order, locality is implied by 
the locality of the twofold VEV and the well-known combin
atorics (symmetrization with respect to arguments) of Fock 
space. 

01 On leave of absence from Fakultiit fUr Physik, Universitiit Bielefeld, West 
Germany. JSPS-Fellow. 

Without realizing this obvious fact, we started in Ref. 4 
the construction ofa class of models ofQFT's as "products" 
of known models. The starting point of this construction is a 
generalized free field A and a contraction map F from the 
space of test functions Y = Y(R4) (the Schwartz-space of 
rapidly decreasing CtJ "'-functions on R4) into a space.'72 of 
symmetric functions of two variables and to show that 

A F(f) = :A 2:(F(f)) 

is a well-defined Jacobi field. The question arises which con
traction maps yield relativistic quantum fields. This question 
has been answered in Ref. 4 on the basis of the following 
assumptions. 

(i) A F is a relativistic quantum field for every general
ized free (gf) field A. 

(ii) The various notions oflocality are equivalent for this 
analysis (but see Sec. IV). 
The result is that A F is a certain linear combination of de
rivatives of the Wick product of the gf field A. 

In this paper we will drop these assumptions and want 
to show that for each gf field A a huge class of contraction 
maps CtJ i,e (A ) can be constructed such that A F is a relativistic 
quantum field for each FECtJ i,e (A ). For the resulting models 
it is not obvious that these are not only Poincare-covariant 
fields with physical energy momentum spectrum but also 
local fields. It turns out that in these models we are going to 
construct locality of the field is, for the first time, not "auto
matic" by locality of the twofold VEV and the given combin
atorics but instead is so by an extra constraint on the con
traction map. This constraint is equivalent to locality of the 
VEV's of order n;>3. Locality ofthe twofold VEV however is 
again implied by the other constraints! 

We indicate how this paper is organized. Section II in
troduces our frame and reduces Poincare covariance and 
locality of the field A F to some conditions for the contraction 
map. Section III contains the analysis of the Poincare covar
iance and the spectral condition and presents our starting 
point for the realization oflocality. In order to get an idea 
about the possibilities of realizing locality, Sec. IV contains a 
short discussion of some notions oflocality which tum out to 
be relevant in our context. Some sufficient conditions for 
locality are given. Finally Sec. V contains the realization 
[A FIFECtJ i.e (A )} of relativistic quantum fields. Some appen
dixes contain the proofs of those statements which need 
some more calculations. 
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II. PRODUCTS OF GENERALIZED FREE FIELDS 

Every gffieldA over the Schwartz-space Y = y(]R4) of 
rapidly decreasing CC 00 -functions on ]R4 is up to unitary 
equivalence fixed by well-known combinatorics and its two
fold vacuum-expectation value 

rr1(f®g) = (</>0,A (f)A (g)</>o) 

= ft(dPlf( -p)g(p) 

= lOOp(dK) (8
K
+ (p),j( -p)g(p), (2.1) 

where) = Y j denotes the Fourier transform ofjEY, and tis 
a positive tempered Lorentz-invariant measure with support 
I!;;; V +, andp is a positive tempered measure on (0,00). 
There is LEN such that 

(2.2) 

L I:; I(I,t ) is defined to be the vector space of all measurable 
functionsj:I xn = I X ... X I-.C, which are bounded almost 
everywhere with respect to t xn = t X .. · X t. As usual, we 
identify two functionsjandg in L 1:;I(I,t), if Ilf - gil 00 = 0, 
where 

11·1100 = 11'IILI~nI,tl' 
Furthermore, we have to introduce.I = Iu( - I), t = t + t, 
where t (dp) = t ( - dp), and then L t21 (.I,() in complete ana
logy to L 12') I(I,t). The following space of functions turns out 
to be of particular importance, it is defined by 
U2 (00) "'A . 
v 2 = ~ 2(A ) = {j2EL 121 (I,t) lf2 symmetnc, 

qff.,N,(f2) < 00, QN,(f2) < 00, ~ = 0,1,2, ... j, 
where (2.3) 

and 

qJ.,N,(f2) = IliII(l +pJ)NjXI (pj lf2( ±PI> ±P2)11 00 

(2.4) 

QN(f2) = 11(1 + IP - ql)NXI xI(p,qlf2(P, - qllioo' (2.5) 

X M denotes the characteristic function of the set M and in 
(2.4) it is understood that we have either (PI,P2) or 
( - PI' - P2) as argument of!;. 

In order to define a product of the field A with itself we 
introduce the notion of a contraction map. 

Definition 2.1: A contraction map F is a linear contin
uousmapF:Y -.~ 2 suchthatF(f)* = F(j*)holdsforevery 
jEY, where ~ 2 is topologized by the following system of 
seminorms: 

{ 11·11 00' q ff.,Nz (-), QN, (-) INj = 0, l,2, ... j. 
The space ~ (A ) of all contraction maps for a g j field A is 
thus 

CC(A) = .2"h(Y'~2(A)) 

= {FE.2"(Y'~2(A ))1F(j)* =F(j*) VjEYj. 

Remark 2.1: In order to define the nth power of A , n > 2, 
a corresponding space ~ n of functions on ]R4n and a linear 
continuousmapF:Y-.~ n,F(f)* = F(f*) have to be intro
duced. Instead of the seminorm QN we have to use a system 
of seminorms Q I),j = 2, ... ,n, 
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X XI xn(PI,. .. ,Pnlfn(PI, .. ,Pj-1> - Pj,· .. , -Pn)11 00 • 

We need some more spaces of functions. Y 2 is defined 
to be the completion of {X I X I·F (f)lfEY j with respect to 
the system of semi norms {q:"N,(')I~ = 0,1,2, ... j and then 
Yo = C</>o and 

(2.6) 

is the completed n-fold symmetric tensor product of Y 2 

with respect to the projective tensor product topology in
duced by Y 2• 

According to a well-known construction there is, by 
positivity of 11"2 = 11"1, rr2(f* ®j»OVjEY, canonically 
associated with 11"2 a Hilbert space JY'I' a scalar product 
(.,.), and a strongly continuous linear map </>:Y -.JY'I such 
that rr2(f®g) = (</> (f*),</> (g) Vj,gEY. The Fourier trans
form ¢ of </> is a polynomially bounded Lorentz-covariant 
measure with support I and values in JY'I' The n-fold tensor 
product ¢ "n then takes values in JY' n' the n-fold tensor pro
duct of the Hilbert space JY'I' JY'n = ® nJY'I' Clearly any 
JEY n may be integrated with respect to ¢ .. n to get vectors 
¢ .. n(f) in the symmetric subspace ® :JY'I of JY'n. 

Now the product of A with itself, associated with a con
traction map F, is denoted by A F. A F is by definition a Jacobi 
field,4 e.g., 

A F = ((A ~m )n,m = 0,1,2, .. ) on 
00 

fj} = Ell fj}n (direct sum), (2.7) 
n=O 

fj}o = C</>o, fj} n = {¢ "2n( j2n ) lf2n EY 2n j. 

Its state space is % = Ell;; = 0 % n (Hilbert sum). 
% n = closure of fj}n in JY'2n' It is defined according to the 
following formulas: 

A ~ (f)</>o = 0, A fo (f)</>o = ¢ .. 2(F (f)), 

A ~I (f)¢ .. 2(f2) = (</> 2(F(f) *), ¢ .. 2(f2)</>0 

VjEYVj2n EY2n 
A ~,n(f)¢ "2n(hn) = ¢ "2m(Hm ,n(f;!2n)) 

l<n,m<oo,ln-ml<l, 

H n- I,n(f;j2n)(PI""'P2n-2) 

= ~2n(2n - l)LLF(j)( - q2' - qd 

Xj2n(PI""'P2n _ 2 ,ql,q2)t (dql)t (dq2)' 

Hn,n (f;j2n )(PI"'" P2n) 

= v'1j~1 LXI(Pj)F(j)(pj, - p) 

xj2n(PI,,,,Pj- I 'P'Pj+ I '''''P2n)t (dp), 

Hn+ l,n(f;j2n)(PI""'P2n+2) = [(2n + 1)(2n + 2))-1/2 
2n + 2 

X I XIXI(Pi>Pj) 
i,j= I 

i#j 

Xhn (PI,,,,,Pi,,,,,Pj"",P2n + 2 )F(f)(Pi,Pj)' 

Erwin BrOning 
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These definitions really work according to 
Proposition 2.1: A F, as specified above, is, for every con

traction map F, a well-defined Jacobi field over Y. 
Proof: See Appendix A. 
The linear contraints of QFT will impose some further 

restrictions on the contraction maps F, which express the 
fact that A F, as defined above, is a relativistic quantum field. 
In order to guarantee Poincare covariance of A F we have to 
specify a strongly continuous unitary representation Vof 
P '+ on % such that 

V(a)A F(f)V(a)-1 =A F(fa)VaEP'+ VjEY (2.10) 

holds (fa (x) =j(a-Ix)). We now show that V= U ~ % will 
do the job, where Uis the unitary strongly continuous repre
sentation of P '+ associated with the generalized free field A 
m 

00 

dY' = $ dY'n' 
n=O 

By definition U acts on ~ ®2n(hn ),hnE:72n, according 
to 

U(a)~ ®2n(f2n) = ~ ®2n((f2nlc,), a = {a,A J, 
(2.11) 

( " ) ( ) ia(p'+"'+P2nl" (A -I A -I ) J2n a PI'''''P2n = e J2n PI,.·· .. ~ P2n 

and thus leaves all % n and therefore, % = $ n = 0 % n in
variant. 

Now by V = U ~ % relation (2.10) is equivalent to 

~ ®2m((Hm,n(f;hn))a) = ~ ®2m(Hm.n(fa;(hn)a)) (2.10') 

for alljEY,hnE:72n, aEP'+ and n,m = 0,1,2, .... By Eq. 
(2.9) and some combinatorics this ~s equivalent to 
F (P)a (PI' P2) = F (fa)( PI' pz), for txt almost all 
(PI,pz)EI X.I, and (PI' pz)EI X( - .I). Because of the Her
miticity relation F(f)· = F(f·) this is equivalent to 

(2.12) 
,.. " A A 

fort Xtalmostall(PI,pz)EI X.I. Therefore,A FisaPoincare 
covariant field according to (2.10) and V = U ~ % if and 
only if the contraction map satisfies relation (2.12). It is quite 
obvious that (A F, V) then satisfy the spectral condition. The 
spectrum of the generators P F of the space-time translation 
in the representation V can be calculated. The result is 

00 

.IF=u{pF)= U .I~, 
n=l 

.I~ = {k = PI + ... + Pn [pjEI} J, 

.I} = (p = ql + q21(ql,qZ)EI x.In supp F(f), 

for some fEY J. 
To analyze locality needs some more calculations. To begin 
with notice that the only contributions (A F (f)A F (g))m,n of 
A F(f)A F(g) which do not vanish identically are those with 
m = n - 2, n - 1, ... ,n + 2. But asA F(f·)~(A F(f))· im
plies (A F(g.)A F(f·))nm ~((A F(f)A F(g))m,n)· we only need 
to consider the cases m = n + 2, n + 1, n. These contribu
tions have to be calculated according to (2.8) and (2.9): 

(A F(f)A F(g))n+2,n~ ®2n(hn) 

(2.13a) 
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(A F(f)A F(g))n + I,n~ ®2n(hn) 

= ~ ® 2(n + II(Hn + I,n + I (f;Hn + I,n (f;hn)) 

+ Hn + I,n (f;Hn,n (g;f2n)))' 

(A F (f)A F (g))n,n ~ ® 2n(f2n) 

= ~ ® 2n(H n,n (f;H n,n (g;f2n )) 

+ Hn,n_1 (f;Hn-I,n(g;hn)) 

+ Hn,n + I (f;Hn + I,n (g/2n ))). 

(2,13b) 

(2.13c) 

As (f,g)~Hn + 2,n + I (f;Hn + I,n (g;hn)) is symmetric with re
spect to permutations off and g, the contribution 
(A F(f)A F(g))n + 2,n is always local. In Appendix B, it is 
shown that locality of the two other contributions is equiva
lent to locality of the following three functionals off, gEY: 

L f(f®g) = Jrf(f®g) 

= LLt (dp)t (dq)F(f)( - P, - q)F(g)(q,p) 

= Lt(dP)KF(f,g)( -p,p), (2, 14a) 

Lf(f®g;gz) 

= LLt(dPI)t(dPzjgz(PI,pz)Kf(f,g)(PI'Pz), (2. 14b) 

L f(f® g;g2'h) 

= LLt(dPI)t(dP2jgZ(PI'pz) 

X Lt(dq)Kf(f,g)(PI' - ql!Z(q,P2)' (2,14c) 

for any g2,hE:7z, where 

K F(f,g)(PI,P2) = Lt(dq)F(f)(PI' - q)F(f)(q,q2)' 

(2.15) 
Kf(p,g)(PI,P2) = HK F(f,g)(PI,P2) + K F(f,g)(PZ,PI)J· 

This then proves: 
Proposition 2.2: For any gffieldA and any contraction 

map F, the Jacobi field A F, as defined according to Proposi
tion 2.1, is a relativistic quantum field if and only if the con
straints (2.12) and (2.14) hold. 

Remark 2.2: It is only the locality condition which fixes 
the three constants in (2.9) uniquely (up to a common posi
tive factor). By definition 2.1, the space of all contraction 
maps for a gf field A is just 

CG'(A ) = .2" h(Y'~ 2(A )). 

According to relation (2.12) Poincare covariance is ex
pressed by a linear constraint on the contraction map. There
fore, the set of contraction maps defining Poincare covariant 
fields A F is a subspace of CG' (A ). It is denoted by 

CG' i (A ) = {FECG' (A ) IA F is Poincare covariant J . 

However, the set 

CG' c (A ) = {FECG' (A ) IA F is a local field J 

is not a subspace of CG' (A ), as the locality constraint (2.14) is 
nonlinear in F. 
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Notice that the spaces f§ z and Y z depend on the mea
sure t defining the gf field A under consideration. This im
plies that the locality constraint (2.14) is highly nonlinear in 
t. This is a major problem in the analysis of this constraint. 
Using additional assumptions a class CG'°(A ) of contraction 
maps such that 

CG'°(A)C n CG'ic(A'), CG'ic(A)=CG'i(A)nCG'c(A), 
IA'I' , 

(I A ' J : set of all generalized free fields over Y) has been deter
mined in Ref. 4. This class CG'°(A) consists of those contrac
tion maps for which A F is the Wick product of A with itself 
or appropriate derivatives thereof. In Sec. V, a class of con
traction maps is exhibited which goes far beyond these mod
els and which uses a much more refined version of combin
ing locality and positivity. 

III. REALIZATION OF POINCARE COVARIANCE AND 
PHYSICAL SPECTRUM 

A first lemma characterizes contraction maps in gen
eral. A second lemma takes into account the covariance con
straint (2.12) and presents a characterization thereof. This 
then allows a discussion of our "ansatz" for contraction 
maps which will be the starting point for incorporating the 
locality condition (2.14). 

Lemma 3.1: ~) F~ any contractiol! m~p F there is a 
function r = rF~ X..!'--+Y'(R4) and a tXt null set 
W= wFcl- xl-such that 

F(f)(PI'Pz) = (r(p;PI,pz),f(p)V(PI,pz)EWCVfEY.(3.1) 

The following sets of distributions are equicontinuous 
A A 

(i) Ir(·;PI,P2)I(PI'pz)E.2' X..!' J. 
(ii) 1(1 + p~)N'(l + p~t'r(.; ±PI' ±Pz)I(PI,P2)E.2' X..!' J, 

NI,N2EN fixed. 

(iii) 1(1 + IPI - P2It'r(';PI' - Pz)I(PI'Pz)E.2' X..!' J 
(3.2) 

Furthermore, we have the following. 
(iv) r*(';PI,P2) = r(.; - P2' - PI)' 
(v) r(';PI,P2) = r(·;P2,PI!· A A 

(b) Conversely any function r~ X..!'--+Y'(R4) which 
satisfies the properties (i)-(v) of (3.2) defines according to 
(3.1) a contraction map. 

Proof According to the definition of a contraction map 
A A A A 

F there is for any fEY at Xt null set Wfc..!' X..!' such that 
(PI,P2)t---+F(f)(PI,P2) is a bounded function on Wi: 

IF(f)(PI,Pz)I<IIF(f)lloo <1l(lly, 

where 11·lly is some continuous norm on Y. Because of the 
separability of Y there is a common tXt null set WCI x.I 
such that (pI,p2~F(f)(PI'PZ) is bounded on We for all 
fEY. This implies that for any fixed (PPP2)EW C

, 

.fi--+F (f)( PI' pz) defines a continuous linear functional on Y, 
e.g., there isr(.; Pl,P2)EY'(R4

) such that Eq. (3.1) holds. On 
Wwe define r(';Pl,P2) to be zero. This proves the first part 
of (a). The rest of part (a) is now an easy consequence of the 
definition taking into account the specific continuity proper
ties of a contraction map, respectively, the symmetry rela
tionsF(f)* =F(f*) andF(f)(PI'pz) =F(f)(P2,PI)' As 

usualfor TEY'wedefine T*by T*(f) = T(f*)VfEY. The 
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proof of part (b) starts by defining a map Faccording to (3.1). 
The properties (3.2) then imply that F is a contraction map. 

Lemma 3.2: (a) The "kernel" r = r F of any contrac
tion map F, which satisfies the covariance condition (2.12) 
has the following form: 

M 

r(p;PI'pz) = L (- 1n)m) (PI> Pz).a" mop, +p,(p), 
m~O 

e.g., (3.3) 

M 

F(f)(PI'Pz) = L Ym)(PI,PZ)·(a"mj)(PI + pz), 
m~O 

A A 

where ym) is a function from r X rinto the space of symmet-
ric tensors of degree m, 

ym)(PI'PZ) = (Yj,JJp"pz), j(,oo.,jm = 0,1,2,3), 
A A 

such that for all (PI> pz)E.2' X..!' the following applies. 
(i) ym)(pI>P2) = ym)(P2,PI)' 

(ii) ym)( - P2' - PI! = (- 1tym)(PI,P2)' (3.4) 
(iii) ym)(Apl,APz) =A "my m)(pI>P2)VAEL f+. 

[. in (2.3) indicates contraction of Lorentz tensors.] 
(b) Conversely, any finite system of tensor functions 

I ym) J which satisfies the constraints (3.4) and has in addition 
the following growth property (3.5): 

(i) on ( -..!' ) X..!' and..!' X( -..!') ym) is bounded, 
(ii) there are integersK, k and numbers CK , dk such that 

for all (p I,P2)E.2' X..!' and alljvEI0,1,2,3J and m = O,oo,M 

IYj, .. jJ ±PI' ±P2)1 

<CK (l + p~)K(l + P~t (either + + or - -), 
(3.5) 

IY}, .. }JPI,-Pz)l<dk (l + IPI-P2W, 

defines by Eq. (3.3) a contraction map which satisfies the 
covariance constraint (2.12). 

Proof The covariance constraint (2.12) implies first that 
(API,Apz)EWC whenever(pJ1pz)EW C forallAEL f+. There
fore, fix (Pl,Pz)EW C arbitrarily and express condition (2.12) 
in terms of the kernel r of F. The result is 

eia'(p, +p')r(Ap;API,Apz) = eia'Pr(P;P(,P2) (+) 

for all a = (a,A )EP f+ andallpj E.2'. Now fix A = 14andleta 
vary in R4. This then implies 

supp r(·;PI,P2)c;;. I pER41P =p( + pzJ. 

Therefore, the tempered distribution r ( ; PI' pz) is a sum of 
derivatives of delta distributions concentrated in 
P =PI +P2: 

r(p;p(,pzl = L (- 1)laIYa (PI,P2)D;op, +p,(p). 
lal.;;.M 

This can be rewritten in the form (3.3). As a"mj = (ai" .. }); 
jloojm = 0,1,2,3) is a symmetric tensor we can and will take 
ym) to be a symmetric tensor too. The covariance constraint 

....... ....... 
(+) reads for VAEL f+ ' V(PI'PZ)E.2' X..!'VfEY: 

M L IA .. mym)(A -IPI,A -lp2) 
m=O 

- ym)(PI,P2)J·(a"ml)(PI + P2) = 0. 
A A 

Choosing now for arbitrary but fixed (PI' P2)E.2' X..!' the test 
functionsj appropriately we get (3.4) (iii). Similarly (i) and (ii) 
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of (3.4) follow from (v) and (iv) of (3.2). This proves part (a). 
In order to prove (b) note first that the growth conditions 
(3.5) are sufficient for (i)-(iii) of (3.2); this allows us to define 
r, respectively, Fby Eq. (3.3). The rest of the proof now is a 
straightforward calculation. Certainly, the tensor functions 
t m

) offormula (3.3) with the properties (3.4) and (3.5) could 
be analyzed further. But, since realization of Lorentz covar
iance is not our main concern, we proceed instead with an 
"ansatz" for a contraction map which is quite obvious by 
Lemma 3.2: 

N 

FI/)(PI'Pz) = I Yv((PI +pz)Z;p~,p~) 
v=o 
XY(LJ)(PI + Pz)VpjElV/EY (3.6) 

with the following specifications: 
(i) Lv is a local L t+ -invariant differential operator on 

Y,e.g., 

(LJ)(x) = (Qv(D If)(x), D = (~ , ... , ~), 
Jxo Jx3 

Lv(IA) = (LJ)A V/EYVAEL t+ , 

Q" is a polynomial in D. 
(ii) y" are measurable functions RXR+ XR+ _R, and 

there is a constant O<C < 00 and there are integers k,KEN 
such that for all (r,t,s)ERXR+ XR+ and all v = O,I, .. ,N 

y,,(r,s,t) = y,,(r;t,s), 

IYv(r;s,t)I<C(1 + Irl)k/2(1 +st12(1 + t)K12. 

We will show that essentially all contraction maps F of the 
form (3.6) will define local fields. This is quite obvious for Yv 
= const.4 

IV. SOME REMARKS ON LOCALITY 

In order to analyze locality of A F, Y E'G' (A ), we need to 
know a kind of test for locality of various distributions. As 
these distributions are given as the composition of a given 
(local) distribution with a linear continuous map on Y, we 
have to know locality of such maps and we have to test given 
distributions whether they are local or not. This section re
calls the basic definitions and gives some results which tum 
out to be useful in the following section. 

Two test functionsj,gEY = Y(R4) are said to have 
spacelike separated supports, denoted by I Xg, iff 

supp/®g~:.JY = !(xl,xz)ER4XR41(xz - xdz <0). 

A distribution TzEYi = Y'(R4XR4) is said to be local iff 

1\ Ix~T2(f®g) = T2(g®/)· 
[.geY 

A continuous linear map I:Y _y is called (i) local iff 
supp I¢Csupp ¢V¢EY, (ii) spacelike separation preserving 
(ssp) iff 

1\ IX~lfX/g, 
[.geY 

(iii) local with respect to a local distribution T2EY~ iff 
I' ® I' Tz is again local (I' :Y' _Y' the dual of I ). 
Just by definition it is easy to see: Every local map is ssp and 
every ssp map is local with respect to any local destribution. 

Remark 4.1: The notation of locality with respect to a 
local distribution may be generalized and this version mostly 
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occurs in applications. A map I on Y is called local with 
respect to T2EY ~.c 

Y~,c = ! T2EY~ I T2 is local) 

iff there is a locally convex topological vector space Y such 
that (i) Y is a dense subspace of Y, (ii) T2 admits a contin
uous linear extension on Y ® TrY' (iii) I:Y -Y is linear and 
continuous, (iv) l' ®1'T2E.Y'i.c (l':Y'_Y' dual map). 
Typically Y is the completion of Y with respect to a contin
uous seminorm P on Y such that I T21 <p ® TrP' 

The general form of a local map is well known (Peetre): 
A continuous linear map I:Y _y is local if and only if it is a 
differential operator on Y, e.g., 

(/¢ )(x) = I aa(x)(Da¢ )(x), aa E& M' 
lal<M 

and the coefficients aa are constant iff I commutes with all 
translations. 

The general form of a ssp map I is much harder to ana
lyze. As this is not in the scope of this section we only men
tion that any map of the form 

(/</J )(x) = ¢ (A.A -I(X - a)), A> 0, AEL, aER4 

is ssp and the conjecture is that every ssp map is the composi
tion of such a map with a local map. 

The following example which is due to Borchers5 shows 
that the set of maps which are local with respect to given 
TzE.Y'i.c is indeed much larger than the set of ssp maps. 
Suppose TzEYi.c is the twofold VEV of a relativistic quan
tum field, e.g., for every I,gEY: 

Tz(f®g) = ft(dPlf( - p)g(p) 

= L"'P(dK) (8
K
+ (p),f( -p)g(p), 

where t (dp)(P(dK)) are positive tempered measures on V + 

[(0,00), respectively]. Suppose now h:(O, 00 )_R to be a poly
nomially bounded function in L ~oc ((0, 00 ), d p) and define 

(/</J )(x) = Y(h (pZ)~ (p))(x)=(h ( - D)</J )(x). 

Then I is local with respect to T2: 

(I' ® j'Tz)(f®g) = 1"0 h (K)Zp(dK) (8K+ (p),f( - p)g(p) 

because pMK) = h (K)Zp(dK) has the same properties as p and 
in case h is not a polynomial this map I is not ssp. 

As we are mainly interested in maps which are local 
with respect to a local distribution we present a simple analy
sis of this notion. For any 12EY 2 = Y(R4 X R4), let us denote 
by 12± the symmetric (antisymmetric) part of/z: 

l:f (x,y) = !lf2(X,y) ±12lv,x)). 
For T2EY~ T 2± are defined in the same way. First recall 

T2E.Y'i is local~supp T 2- ~ .JYc. (4.1) 

Proof If T2 is local we have by definition 

T 2- (f ® g) = 0 for any j, gEY such that 

supp/®gC.JY. 

By continuous linear extension we get T 2- (Iz) = 0 for any 
IzEY with supp 12 ~.JY that is supp T 2- ~ .JYc. If TzEY ~ 
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satisfies supp T 2- ~ %C we use the decomposition 
T2 = T / + T 2- to conclude for all/,g such that/Xg: 

T2(/®g) = T/(/®g) + T 2-(/®g) 

= T/(/®g) = T/(g®/) = T2(g®/), 

e.g., T2EY;.c' 
Now it is easy to prove: 

Lemma 4.2: For any continuous linear map /:Y ----*Y 
the following conditions are equivalent. 

(1) V/1EY2:SUPP/2- ~%~supp /"2(/2-)~%' 
(2) V/2EY2:SUPP/2~%~SUPp (/"%)~%. 
(3) VT2EY;,c :/' ® /'T;EY;,c' 
Proof (1)~(2):lf/2EY 2 satisfiessupP/2~% it satisfies 

supp / 2- ~ % too and therefore, by (I) supp I "2(/2- ) ~ %, 
but 

I "2(/n = (/"2(/2))-' 

(2)~(3):Again wehave(/' ® I'T2)- = I' ® / 'T 2- andthusfor 
all/zEY 2' supp /z ~ %: 

(I' ® I'T2)-(/2) = T 2- (I "Y;-) = 0 

by assumption (2) and supp T;- ~%C; therefore 
supp (I' ® /'T2 )-~%C and thus I' ® /'T2EY;,c' 
(3)~(1): Take/2EY2 with SUPP/2- ~% arbitrarily, but 
fixed. By assumption (3): (I' ® I 'T2)-(/2-) = OVT2EY;,c' 
As (I' ® /'T2 )-(/ 2-) = T 2- (1"2(/2-)) this implies 

T 2-(/"2/2-) = OVT2EY;supp T 2- ~%C, 

that is supp 1"2(/2- )~%. 
This simple analysis shows that a map which is local 

with respect to every local distribution is not necessarily a 
ssp map and thus not necessarily local. This distinction will 
be used for a new realization of locality in our models A F, 

FE1ff(A ). 

Now we want to point out by example that at least cer
tain ssp maps can be obtained as limits oflocal maps. It is, in 
particular, in this repect that we are going to enlarge the set 
oflocal contraction maps. [It is quite obvious that a contrac
tion map which is ssp in both variables separately realizes the 
locality constraint (2.14) and thus defines a local field A F. 

This class of contraction maps has been determined in Ref. 
4]. The translations 7 a , aER4, (7 J)(x) = fIx + a), are ssp 
maps but are not local. But nevertheless it is known that the 
translations are limits of local maps Ln (a), n----* + 00: 

n 1 
(Ln(alf)(x): = L - «(D'f)(x),a"V), 

v=O n! 

(for instance with respect to uniform convergence on R4 for 
any fixed/EY whose Fourier transforml has compact sup
port). 

This section is finished by some sufficient conditions for 
locality. The statement roughly is that L 1+ -invariance and 
temperedness of a distribution of one 4-vector imply locality. 

Proposition 4.3: Every L 1+ -invariant tempered distri
bution is local, e.g., TEY'(R4

), T L 1+ -invarian~T( - S) 
= T(5)VSElR4, S2 <0. 
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Proof The Fourier transform T=.7TofTisL 1+_ 

invariant too, thus by a slight modification of Theorem 5 of 
Giittinger and Rieckers,6 T has the form 

_ N 

T(p) = TI(p2) + €(pO)T2(p
2

) + L cnon8(p). 
n=O 

T2EY'(R+) and TI can be chosen to be in Y'(R). For 
the definition of TI(p2) and €(pO)T2(p2) see Ref. 6. 
This representation implies the following. 

(i) T(ft) = T(p), whereft = (pO, - p) 
(space-reflection symmetry). 

(ii) ThereisNEN such that (,bN(P) = [1 + (p2)2] -N is an 
admissible test function for T (that is T has a continuous 
linear extension which is L 1+ -invariant and is defined on 

(,bN)' 
Therefore, TN (5 ) = (T(p), eiP's{,bN(P) is a well-defined 

polynomially bounded continuous function of SER4. The 
corresponding properties of T and {,b N imply that TN (S ) is 
L 1+ - and space-reflection invariant. In particular, the re
striction of TN to the hyperplane (So = 0 I is space-reflection 
invariant, e.g., TN(O, -~) = TN(0,~)V~ER3. Now any space
like point 7]ER4 is the image under a AEL 1+ of a spacelike 
point S of the form S = (O,~). Therefore, by L 1+ -in variance 
of TN we get for such 7]:TN(7]) = TN( - 7]). 

Observe now that T itself is obtained by applying the 
L 1+ -invariant differential operator (1 + 02)N to the func
tion TN:T(5) = (1 + 02)NTN(5), e.g., 

(T(5),J(s) = fd 4s TN(s)(1 + 02Y"J(S)V/EY. 

Thus we get (T ( - S )/(5 ) = (T (S ), /(S ) for all/EY such 
that supp /~ (S Is 2 < 0 I which proves locality of T. 

Remarks 4.4: This proposition is a simple consequence 
of the following lemma which is a certain generalization of 
the BEG lemma.7 

Lemma: For every L 1+ -invariant tempered distribu
tion TEY'(R4

), there is NEN and a continuous polynomially 
bounded function TN such that (i) T= (1 + 02)NTN' and (ii) 
TN is L 1+ -invariant. 
Obviously these results do not generalize to the case of L 1+ -

invariant tempered distributions on R4n, n> 1. But the fol
lowing related result turns out to be useful. 

Proposition 4.5: Suppose 'T'EY'(R4n) is a tempered space
reflection- and L 1+ -invariant distribution with 
supp 7~ V x~ • Suppose further that 7 has a representation 

7(PI,. .. ,Pn) = IT O;"j71Njl (PI,· .. ,Pn)' 
j=1 

with 7 1Nj l a L 1+ - and space-reflection-invariant continuous 
polynomially bounded function with support in VX~ such 
that there is 0 < Co < 00 and MijEN such that 

Then 

17INjl(PI, ... ,Pn)I<Co IT [1 +Pi"Pj]MijVPiEV+. 
i,j= I 

T(f:)-fiS'I;~IPj( )d4 d 4 
~ - e 7 PI,. .. ,Pn PI'" Pn 

is a well-defined tempered distribution on R4. It is L 1+ -in
variant and local. 
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Remark: By the BEG lemma every space reflection and 
L t+ -invariant tempered distribution with support in V ~ 
has such a representation. Therefore, our assumption essen
tially reduces to the assumption that 71N]! can be dominated 
by the above polynomial of the invariantsPi'Pj' 

Proof By support properties of 7I N,! a tempered distri
bution on R4 is well defined by 

T(f) = f 71Nj! (Pw"'Pn)j~IO;1(PI + ... + Pn)d
4
PI ... d

4
Pn. 

T is space reflection and L t+ -invariant. For Pi' PjE V + the 
following estimate holds: 

1 {( z z ZJ Pi'l)j = T Pi + Pj) - Pi - Pj 

1 1 (n )2 
<T(Pi +Pj)2<T j~/j . 

Therefore, 71 N]\ is dominated by 

If M>m is chosen appropriately tPM(PW··,Pn) 
= [1 + (l:j = IP})Z] - M is an admissible test function for 7. 

Therefore, 

T (E:-) «( ) is·~;~lPj.l. ( ) M ~ = 7 PI' .... 'Pn ,e 'f'M PI, .. ·,Pn 

is a well-defined continuous polynomially bounded function 
of sER4. It is again space reflection and L 1+ -invariant. The 
argument of Proposition 4.3 implies locality of T M and by 
T = (1 - O)MT M locality of T follows as well as L 1+ -invar
iance. 

v. A REALIZATION OF LOCALITY 

In this section the contraction map F is supposed to be 
of the form (3.6). By Proposition 2.2 locality of the field A Fis 
equivalent to locality of the functionalsL i, i = 1,2,3. A first 
lemma ensures that L f is local for every contraction map of 
the form (3.6). 

Lemma 5.1: For any FE'6'(A ) ofthe form (3.6). 

rf(f®g) =Lf(/®g) 

= LLt (dp)t (dq)F(!)( - P, - q)F(g)(p,q) 

is a local distribution. 
Proof We write L f as 

Lf(/®g) = v,~JOO lOOp(dKI)P(dK2) 

X (Dvl' (ty - X);K I,K2);(LJ)(x)(LJl g)(y), 

Dvp(S,KI,Kz) = (OK~(P)OK:(q),eiS(P+qlrv((p + q)Z; 

X~ ,~)rJl((p + q)Z;~ ,~». 
By assumption on the {rv J, Proposition 4.5 applies and en
sures locality of D

Y
/1- (';KpK2) for fixed KI,Kz· Locality of L f 

now follows easily. 
This lemma implies: Within the class of contraction 

maps as specified by (3.6) locality ofthe field A Fis controlled 
by locality of the functionals L f, L f, By combinatorics 10-
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cality of these functionals is a condensed way of expressing 
locality of all VEV of order n>3. 

A first step reduces locality of L f, L f to that of two 
other functionals which are somewhat simpler. By Eqs. 
(2.14b) and (2.14c) locality of L f, L f is seen to be equivalent 
to that of (f,g)-K f(f,g)( PI' pz) for tXt almost all 
(PI' ±pz)E.2' X2. By ole-symmetry this is equivalent to local
ityofK~(f,g)(pl,pz)fort Xtalmostall(pl'pz)~ XI, which 
we prefer to express as locality of 

K! (f®g;gz) 

= ( t (dpdt (dpz)t (dP3)gZ( PI' pz) J}; x 3 

X {F(f)(PI' - P3)F(g)(P3' ±pz) 

+ F(f)( ±pz, - P3)F(g)(P3,PI) J, 
for allgzEY~ = (gzEYz[SUppgzcompactJ. 

(5.1) 

A first realization of locality is obtained by specifying 
the contraction map according to the following assump
tions. Suppose Fis of the form (3.6) but with coefficients r v of 
the following type: 

rv(r,s,t) = L (- rY'Yv,Jl(s,t)V(r,s,t)ERXR+ XR+, 
/1-=0 

(5.2) 

where rv.Jl: R+ XR+-R are measurable functions which 
are symmetric and polynomially bounded. 

Evaluation of %t(f,g)(PI'Pz) yields 

%!(f,g)(PhPZ) 

= lOO p(dK)(.d K+ (y - x), eiP1JC .!/'(f; pi , ~)(x) 

X !f (g;~ , p~ )(y)eiPlY
), 

where 
N nv 

!f(f;s,~)(x) = r L rVJl(s,~)(D"LJ)(x) 
v=op=o 

obviously is a local operator on .Y. Now as 

.J1}(f®g,g2) 

= ( t (dpdt (dpz)gz(PI'Pz) J}; x2 

X (KF(f,g)(PI' ±pz) +KF(f,g)( ±Pz,PI)l 

holds, locality of (f,g)-% t (!®g;gz) follows for any 

gzEY~. 

(5.1') 

The set of "local" contractions obtained this way is de-
noted by '6'?,c(A ), e.g., 

'6'?,c(A ) 

= {FE'6'(A )[F is of the form (3.6) 

with coefficients according to (5.2) J 

and we can summarize: 
Proposition 5.2: Any contraction map FE'6'?,c (A ) defines 

a local relativistic quantum field A F according to Proposi
tion 2.1. 

In order to enlarge the set of contraction maps which 
define local fields we want to take limits of sequences of 
contraction maps in C?,c(A ). This requires some topological 
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considerations. It is well known8 that the set of states on the 
Borchers-Uhlmann-algebra of local relativistic quantum 
fields is a weakly closed convex set. Therefore, if we take the 
closure of the set of states of fields characterized by Proposi
tion 5.2 we still get local relativistic quantum fields. The 
problem now is to exhibit conditions on sequences of con
traction maps of class 'G'?'c(A ) which imply weak conver
gence of the associated sequence of states. In our approach it 
is quite natural to proceed as follows: 

Definition 5.3: A sequence of contraction maps {Fj ljEN 
C 'G'(A) (a) converges to a contraction Fiff Fj(f)-j-",,F (f) 
in Y z, (b) is a Cauchy sequence iff {Fj(f) ljEN is a Cauchy 
sequence in Y z for any fEY(JR4

). 

This is a convenient definition because of 
Lemma 5.4: 'G' (A ) is complete. 
Proof: As L (2) (I,t ) is complete the space Y z too is com

plete. Remember that Ctf (A ) was defined to be the subspace of 
Hermitian elements in if (Y, Y z), the space of continuous 
linear functions Y -Y z, in the sense of 
F(f)* = F(f*) VfEY. By continuity offl-fT in Y and 
fz-f! in Y z, Ctf (A ) is a closed subspace of L (Y, Y z). As 
Y = Y(JR4

) is barrelled if(Y,Y z) is weakly sequential 
complete which proves the lemma. 

Furthermore, it turns out that the functionals L ;, re
spectively, % f are continuous with respect to this notion of 
convergence: 

Lemma 5.5: The functionals L ;, i = 1,2,3 and % fare 
continuous in F, e.g., for any fixedf,gEY, gz,JzEYz the 
relation F = lim Fj implies L ;U® g, ... ) 

=lim~oo L~(f®g, ... ),i= 1,2,3and%f(f®g;gz) 
= limj _ oo % ~ (f®g;gz)' 

Proof: A first step establishes the basic estimates for 
these functionals. Using arguments which are similar to 
those of Appendix A we get by Eqs. (2.14), respectively, (5.1): 

IL f(f®g)I<,Ni.qL-.L(F(f))qtL(F(g)), 

IL f(f® g;gz) 1 V 1%: (f® g;gz) 1 

<,2N ~ q21,2L (g2)QO(F (f))qit.o (F (g)), 

IL f(f®g;g2,J2) 1 <,~Ni {q31,L (gZ)qt3L (f2)QL (F(f))QL (F(g)) 

+ q it.L (g z)q tZL (fZ)qO-:-L (F (f))q to (F (g)) J, 
1 % F (f ® g;g2) 1 <,N ~ {q31,3L (g2)QL (F (f))QdF (g)) 

+ q/L,2L(gZ)qO-:-L(F(f))qL~O(F(g)) J. 
The second step is based on the fact that the functionals 
under consideration depend linearly on the "product" 
F(f).F(g). Thus we get for instance: 

IL -: (f®g) - L nf®g)1 

<,Ni. {qL.L (F(f) - F'(f))qtL (F'(f)) 

+ qL-'L(F'(f))qL~dF(g) - F'(g))l 

and therefore F= limj _ oo Fj implies L f(f®g) 

= lim~oo L ~(f®g). 
An immediate consequence of these continuity proper

ties is 
Corollary 5. 6: The sets Ctf i (A ) and 'G' c (A ) of contraction 

maps defining Poincare covariant, respectively, local fields 
are closed. 
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Proof: P '+ acts continuously on Y 2 and thus for all 
aEP'+ Fj(f)a =Fj(fa)VjENimpliesF(f)a 
= lim~oo Fj(f)a = F(fa)· Therefore, ifF= limj _ oo Fj and 

FjECtf M )thenFECtf M). By Lemma 5.5 thefunctionalscon
trolling locality of A F are continuous in F. Therefore, 'G' c (A ) 
is closed too. 

By these closure properties the class Ctf?'e (A ) of contrac
tion maps defining relativistic quantum fields is easily ex
tended. 

Proposition 5.7: The fields A F associated with contrac

tion maps F in the "closure" Ctf?'e (A ) 
= IFE'iff(AIIF=limj~oo Fj, fFjlC'iff?'c(A)j of'iff?'e(A)are 

local relativistic quantum fields. 
Proof: As the spectral condition is ensured by construc

tion Proposition 2.2 and Corollary 5.6 prove Proposition 
5.7. 

Remark 5.8: Notice the following additional stability 
property of the set Ctf i,e (A I of all contraction maps defining 
local relativistic quantum fields: For every FECtf i,c(A ) and 
every local operator [:Y _Y which commutes with the ac
tion of P '+ on Y we have 

(5.3) 

For the proof recall 8e.Ctf i,c (A ) iff aECtf (A ) and (i) a(fla 
= a (fa )VfEYVaEP '+ , (iiI L~, i = 1,2,3 are local. For 
a = Fo[ (i) is obvious by (If)a = [(fa). To prove (ii) noteL ;1 
(f®g; ... ) =L ;(If®[g; .. ·). 

If we weaken the notion of convergence we have a 
chance to get more limit points and thus in the case under 
consideration more contraction maps defining local fields. 
The way this is done is modeled by the way we get the nonlo
cal (but still spacelike separation preserving) translation op
erators on Y as limits of local operators. But for the case at 
hand we encounter the problem of localization of test func
tions both in coordinate and in momentum space. In order to 
meet this difficulty an additional argument has to be used. 

Let us denote by Y~ = lin {f®glg,JEY, supp/and 
supp g compact J. Then we will use the following notion of 
"weak" convergence. 

Definition 5.9: A sequence of contraction maps is said to 
converge to a contraction map Fin the weak sense iff for any 

f2EY~ and any g2EY~ % f (f2;gZ) - % f (fz;gz)· 
} . 

J-oo 

Note that for those elements in Y 2 for which we have 
convergence of {% f (·;g2) J by definition the locality condi-

} 

tion cannot be formulated. Nevertheless, locality of 
% f (·;gz) is preserved. 

Proposition 5.10: Suppose FECtf (A ) is the limit in the 
weak sense of a sequence {Fj LEN C Ctf e (A ). Then F too de
fines a local field A F, e.g., FECtf ciA ). 

Proof: (a) Take gEY~ arbitrary but fixed and define 

D = D (gz) = { f2EY 21 {% It: (f2;g2) J jEN is a Cauchy se
quence in C J . D is a subspace of Y 2 and a linear functional 
% / is well defined on D by %: (fZ;g2) 
= limj~oo % ~ (f2;g2),J2ED. 

By assumption we know for allf2EY~:% f (f2;g2) 
= limj~oo % It: (fZ;g2)' This implies: (i) Y~ CD, and 

(ii) %/(·;g2) ~ Y~ = %f I Y~. 
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Thus % : (.;g) ~ Y~ is continuous and admits a unique con
tinuous linear extension to all of Y 2 and this extension is 
% f as Y~ is dense in Y 2' Therefore, we know 

(b) Now takef,gEY with spacelike separated supports. 
l'jE'G' ciA ) implies 0 = % f ([ f,g ];g2) 'tIjEN, 

) 

[f,g] =/®g-g®/EY®Y, therefore, [f,g]EDand%: 
([f,g];g2) = O. By (a) we get 

%f([f,g];g2) = % : ([f,g];g2) = o. 

Thus % f (·;g2) is local for any g2EY~. By Proposition 2.2 
we get FE'G' c (A ). An immediate consequence of this proposi
tion is 

Corollary 5.11: Any contraction map Fin 'G'i (A ) which 
is the limit in the weak sense of a sequence! l'j ljEN C 'G' i,c (A ) 
belongs to 'G' i,c(A ) and thus defines a local relativistic quan-

tum field. In particular, we have 'G'M)n 'G'?,c(A t 
~ 'G' i,c (A ), where AI W denotes the "closure" in sense of con
vergence of Definition 5.9. 

VI. CONCLUSIONS 

Proposition 5,7 and Corollary 5.11 tell us which con
traction maps at least give rise to a relativistic quantum field. 
Clearly one could be interested in a more explicit characteri
zation of the elements Fin 'G' i,c (A ) than that given by these 
propositions in terms of the property of being certain limits, 
Instead of doing this we prefer to indicate a class of examples 
which show explicitly that 'G' i,c (A ) contains quite a lot of 
elements which at least for the first moment have a surpris-

I 

ingly general form. As we know (Remark 5.8) that FE'G' i,e (A ) 
implies FoLE'G' i,c(A ) for any L t+ -invariant constant coeffi
cient differential operator L we only discuss contraction 
maps of the form 

F(f)(PI,P2) = Y((PI + P2)2;pi ,p~lf(pl + Pz), (6.1) 

where yis specified according to Condition (3.6) (ii). Suppose 
that for every AER+ = [0,00] there are a real symmetric 
measurable function Y;. on RZ+ which is polynomially 
bounded, a real measurable function c on R+, and a positive 
Borel measure (7 on R+ such that 

(a) for any compact subset K C R3+ there is a measura
ble function Ih on R+ such that ([A ] = largest nEN such that 
n<A) 

(i) sup ly.,ds,t)c(A)(r)IA11<xK(A), (6.2) 
(r',s,t)EK 

(ii) f R+ u(dA )XK(A ) < 00. 
(b) y(r;s,t) = f R+ u(dA )YA (s,t )FA (r), 

FA (x) = C(A )xIA 1. 
Lemma 6.1: Any contraction map F of the form (6.1) 

with Y satisfying condition (3.6) (ii) defines a relativistic 
quantum field, e.g., FE'G' i,c (A ), whenever Y allows a repre
sentation according to (6.2). 

Proof: In order to prove FE'G' i,c (A ) we have to show that 
% f (·;g2) is a local distribution for any g2EY~. Choose 
f,gEY arbitrarily, supp J compact. As supp J and supp g2 are 
compact the domain of integration in % f (f ® g;g2) with 
respect to (p I' P2' P3) is a compact set. Therefore, there is a 
compact set K C R3+ such that for all such (PI' PZ' P3) 
([(PI - P3)2]Z,pi ,p~ )EK, ([(P3 ± Pz)Zf,p~ ,pi )EK, Ifwe choose 
now X K according to (6.2) (i) we have the following estimate: 

f u(dA 1)u(dAz) {f t (dp.)t (dP2)t (dP3) Igz( PI> PZ)YA, (pi, P; )YA, (p~, p~) 

XFA, ([(PI - P3)2j2)FA, ([(P3 ±P2)2]Zlf(PI - P3)g(P3 ±P2)1} 

<f (7(dA.)(7(A 2){ft (dp.)t (dp2)t (dp3)XK (A.)XK(A z) Ig2(PI,Pzlf(PI - P3)g(P3 ±P2)1} 

and this is finite because of (6,2) (ii). 
Therefore, Fubini's theorem applies and by (6.2) (b) we get 

f u(dAI)u(dAz)jt (dp.)t (dpz)t (dp3)g2( PI,P2)YA, (pi, p~ )YA, (pL p~) 
XFA, ([(PI - P3)2j2)FA, ([(P3 ±P2)Z]Zlf(PI - P3)g(P3 ±pz) 

= ft (dp.)t(dPz)t (dP3)gz(pppz)Y((PI - P3)Z;pi ,p;)Y((P3 ±p2)Z;pLp~lf(PI - pii(P3 ±pz)· 

The second summand of % f is treated in the same way and this then implies for all/ ® gEY~ and all g2E~ 

%~ (j®g;gz) = f u(dA.)u(dA2)ft (dpl)t (dpz)t (dp3)gZ(PI'Pz) 

X {YA, (pLp~ )FA, ([(PI - P3)2]2lf(PI - P3)YA, (pLp~ )FA, ([(P3 ±P2)2] )g(P3 ±P2) 

+ YA,(pLp~)FA,([( ±PZ -P3)Z]Zlf( ±PZ -P3)YA,(Pi.P~)FA,([(P1 +P3)Z]z)g(PI +P3)} 

= f u(dA.)u(dA2) f p(dK I)P(dKz)P(dK3)YA' (Ki,~ )YA, (~,~)T ± (f®g;g2;Kj ,Ai)' 

where after changing AI~Az in the second summand, T is given by the following expression: 
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T ± U®g;G2;Kj ,Ai) = f dx dy{GK,K, (x, ±y}f.<, (X)g.<,(y) + GK,K,(Y, ± x}f.<, (X)g.<, (y)}.a K; (y - X), 

GK,K, (X,y) = f /)/, (dpI~K; (dp2)/"Pl + iYP2g2( PI' P2), 

fA (X) = (F.< (D2}f)(x) = cIA )((02
)['< :t)(X). 

As!-!.< is a local operatorlocality of.a K; implies that ofT(·;G2,Kj,A;). Now we use Lemma 6.2 to conclude that % J (';G2) is a 
local distribution for any g2E.91. Our estimate above ensures that this lemma applies. Therefore, we have FEC{J i.e (A ). 

Lemma 6.2: Suppose A C Rm is a Borel subset and (7 is a Borel measure on A, and for every AEA we are given % .< EY;.e . 
Suppose furthermore that there is %EY; such that for all!2EY~ 

(ilfA laidA )1 1%.< (!2)1 < 00, 

(ii) SA aidA )%.<U2) = %(2)' 

Then % is a local distribution: %EY;.e' 
Proof The proof is essentially the same as that of Proposition 5.10 when we start with the definition 

We give now some particular cases of Proposition 5.10, respectively, Lemma 6.1. Suppose g is an entire function which is 
polynomially bounded on R+ and Yo and a are two symmetric continuous functions on R2+ such that a>O and a,Yo are 
polynomially bounded. Then by Eq. (6.1) 

y(r;s,t) = yo(s,t )g(a(s,t )~) (6.3) 

gives rise to a contraction map Fin C{J i.e (A ). For the proof one uses Proposition 5.10 directly or one chooses the building blocks 
(7, C, Y.< in Lemma 6.1 appropriately. 

Remark 6.3: Obviously Lemma 6.1 can be generalized to include more functions r.<, in particular if more information 
about our basic measure t (dp) is taken into account. Also it is possible to construct explicitly other classes offunctions y than 
those of (6.3). 

A contraction map Fin C{J i.e (A ) as described by Propositions 5.10and 5.7 may be thought of as a special pseudodifferen
tial operator and accordingly an appropriate suggestive notation is 

(6.4) 

In order to give an idea about the models A F of relativistic quantum fields constructed this way we write down the VEV's of A F 

up to order 4 thEY): 

rrf(!l ®!2) = L'" 1"" p(dKI)P(dK2) (.a K; (y - x).a K; (y - x),(F(D;~ ,~}fI)(x)(F(D;~ ,~}(2)(y)' 

rrf(!l ®!2 ®!3) = 2v'2 r p(dKI)P(dK2)P(dK3) JR3+ 

x (.a K; (Xl - x 2).a K;(X I - x3).a K;(X3 - x2l,(F(D;~ ,~}fI)(xl)(F(D;~ ,~}(2)(X2) 

X (F (D;~,~ }t;)(X3)' 

Unfortunately the 4-point-function is a bit more involved. We write rr~ as 

rrfUI ® ... ®!4) = rrf(!1 ®/z)rrfU3 ®!4) + rrLUI ® ... ®!4) + JP1,2UI ® ... ®!4)' 

where 

rrj,2 UI ® ... ®~) = (A fl (fr)A fo UT)tPo.A fl (!3)A fo (!4)tPO) 

= 21 .llp(dKj )( {.a K; (X3 - x2).a K; (X4 - Xl) +..:l K; (X4 - x2).a K; (X3 - Xl) 
R+J=I 

+.a K; (X3 - xl).a K;(X4 - x2) +.a K; (X4 - xl).a K;(X3 - x2)j.a K; (X2 - xl).a k: (X4 - x3), 

X (F (D;~,~ }fd(x d(F (D;~ ,~ }(2)(x2 )(F (D;~ ,~}(3)(X3)(F (D;~ ,~}(4)(X4)' 

For shortness the explicit formula for JP1.2 is only written in momentum space: 

JP1.2(!1 ® ... ®~) = (A fl (!T)A foUT)tPo.A fl (3)A fo(~)tPo) 

= 6
1 r. llt(dpj)I'FUJ!( -Pi" -Pi,)F(!2)( -Pi" -P,.JF(3)(Pj"Pj,l Jzx j=1 IJ 
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where l:IJ indicates summation over all i = (i l , ••• ,i4 ), 

j = UI,···,j4) such that 1 i l ,···,i4 J = 11,2,3,4 J, i l < iz, i3 < i4, 
and the same for j. 

As the class of models described above allow a fairly 
general choice of contraction maps a large number of models 
of relativistic quantum fields is provided which allow specifi
cations of the contraction maps involved according to quite 
different purposes. So it might be worthwhile to try to for
mulate equations of motions for some of these models (possi
ble by using pseudodifferential operators) or to consider the 
question of arranging all freedom in this construction in such 
a way that the question for a nontrivial scattering matrix 
allows a sensitive answer (eventually for higher powers of the 
field A). 
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APPENDIX A 

Proof of Proposition 2.1: We have to show for all 
n,m = 0,1,2, ... : (a) A :;'n (f) maps!iJ n into!iJ m for allfEY; (b) 
f~A :;'n (f)tPn is a continuous map from Y into % m for all 
tPnE!iJ n; (c)A ~m(f*)~(A :;'n(f))* for allfEY; (d) tPo is cyclic 
with respect to 1 A F (f) [fEY); 

(a) We prove (a) by showing Hm,n(J,;hn)EY2m 
'tJfEY'tJhnEY2n' and n,m = 0,1,2,00' . Now Hn + l,n(J;hn) 
= const Y 2(n + 1)(xIXIF(f) ®f2n) and XI xIF(f)EY2· 

Therefore, Hn + I,n (J;hn )EY 2n + 2 for n = 0,1,2,." . 
H n- l,n(J;f2n)EY2n __ 2 for n = 1,2,00' follows from 
Ho,1 (J;f2)EYo' But this is immediate because of 

f f F(f)( - PI' - P2l!2(PI,Pl)t (dptlt (dpl) 

IxI 

= f f F(f)( -PI' -P2)(1 +p7)2L 

X(1 +P~)2Lf2(PI,P2).(1 +p7)-2L 

X (1 + p~) - 2Lt (dptlt (dpl) 

and thus 

lRo,1 (J,f2)1 <Niq2L.2L (F(f))qit,2L (f2)' 

The case Hn,n (J;hn) is similar. Notice first that 

(1 + p7)N'(1 + p~)N'Hl,l (J;f2)(Pt>P2) equals 

L(1 + pO) - 2Lt (dpl( [(1 + pO)(1 + /PI - pi) 

X(1 +p7)-I] -N'(1 + /PI -pit' 

(AI) 

XXI(ptlF(f)(PI, - p)(1 + pO)2L +N'(1 + P~t:f2(P,P2) 
+ [( 1 + pO)( 1 + Ipl _ P 1)( 1 + p~) - I] - N, 

X(1 + /Pl -plt'XI(Pl)F(f)(P2' -p) 

X(1 +pOfL+N'(1 +p7)Nfl(P,PI)J 
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and this implies 

qJ,N, (HI,I (I; fl)) < 1 QN, (F(f))qJ, + 2L,N, (fl) 

+ QN, (F(f))qJ, + 2L,N, (flllNi .(A2) 

Now H n,n(J;hn)EY2n for allfEY, allf2nEY2n, and 
n = 1,2,,,. follows immediately. 

(b) In order to prove (b) notice first that 

II¢ "2n(hn)ll
l 

= f }Vl t (dp})[t;n (PI,oo·,PnW 

(A3) 

holds and then 

qJ, .N,. 2(Hn- l ,n(J;hn)) 

<l2n(2n - 1)) I/ZNiqo-:-o(F(f))qJ" .,N,._.,2L,2L(hn), 
(A4) 

qJ".,N,JHn,n (l;f2n)) 
2n 

<2N i I QN)F (f))q J",~ + 2L;Nj + " .. ,N,. (f2n)' (AS) 
}~I 

qJ".N,. +, (Hn + J.n (J;hn)) 
2n + 2 

< 1 (2n + 1)(2n + 2)) -1/2 I qJ"N)F(f)) 
iJ~ I 

i¥} 

X qJ" ... ,N" ... ,Nr-.,N,. + 2 (f2n)' (A6) 

By definition of a contraction map these inequalities togeth
er show thatf~IIA :;',n (f)¢ 2n(f2n )11 is indeed a continuous 
seminorm on Y. 

(c) is a simple consequence of the following equation: 

(7p "2m(g2m),A :;'n(f)¢ "2n(hn) 

= (A ~m (f*)¢ "2m(g2m ),¢ ,,2n(f2n)' 

which in turn follows immediately from the definition and 

the assumption F (f)*( PI' P2) = F (f)( - Pl' - PI) 
= F(f*)(PI,P2)' 

(d) The statespace % of A F is defined this way. Notice 
that by definition of Y 2n , n = 1,2,,,., IHln)(ht>oo.,hn)lhiEY) 
is dense in Y 2n , where Hln)(hl,oo"hn) 
= Hn,n _ I (hi,Hln - 1)(h2,,,·,hn )),HI1i(h ) = 2 -1/2XI xI,F(h ). 

APPENDIX B 

In order to derive the locality constraint we have ac
cording to (2.13) to evaluate 

% n + I.n (J,gi2n) = Hn + I,n ({;Bn,n (g,hn)) 

+ Hn + I,n + I (f;Hn + I,n (gi2n))' 

%n,n(J,g;!2n) (Bl) 

= Hn,n (f;Hn,n (gfzn)) + Hn,n - I (J;Hn - I,n (g;!2n)) 

+ Hn,n + I (f;Hn + I,n (g,hn )). 

By definition (2.9) and some lengthy calculation we get 

% n + I,n (J,g;!2n) 

= Sn + I,n (J,g;!2n) + Cn + I,n (f,g;!2n), 
(B2) 

% n.n (J,g;!2n) 

= 27rf(f®gl!2n +Sn,n(f;g;!2n) + Cn,n(J,g;hn)' 
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Here Sn + I,n and Sn,n are symmetric with respect to permutations ofjand g and are thus "local". The remaining terms are 

2n+2 r 
Cn+ l,n(f,g;/2n) = 4.{(2n + 1)(2n + 2)) -1/2

j
,'h I )}(dp)Xz(Pk)F(f)(Pk, - p) 

Nk 

Therefore, locality of A F is equivalent to locality of 

(f,g)-+ 

(i) 7rf(f®g), 

(ii)¢ "(2n+21(Cn+l,n(f,g;/2n))' and 

(iii) ¢ .. 2n(Cn,n(f,g;/2n)), 

for allj2nEY2n and n = 0,1,2, .... 

(B4) 

By some combinatorics locality of (B4) (ii) can be seen to be 
equivalent to that of ¢ "2(CI,O(f,g)) and locality of(B4) (iii) to 
be equivalent to that of ¢ "2(CI,1 (f,g;/2)) for allj2EY2' In 
order not to deal with vector-valued functions we take scalar 
products with ¢ .. 2(gt), g2EY 2' and thus arrive at the conclu
sion that locality of A F is equivalent to locality of the follow
ing functionals: 

(i) 7rf(j®g) = L [(f®g); 

(ii) (¢ "2(gt), ¢ "2(CI,o(f,g))) = 4vU f(j®g;g2); (BS) 

(iii) (¢ "2(gt), ¢ "2(CI,I (f,g;/2))) = 8L f(f®g;/2,g2); 

for allj2,g2EY 2' 
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An equivalence class of quantum field theories at finite temperature 
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It is shown that there exists a certain equivalence class of quantum field theories at finite 
temperature each of which produces the same statistical averages. The theories in this equivalent 
class are classified by multiplicities offield degrees of freedom and have a one to one 
correspondence with the choices of the path in the real-time path-ordered formulation of the 
statistical average. Among them, thermo field dynamics is found to be the most convenient 
theory. 

PACS numbers: 11.10. - z, 03.70. + k, 05.30. - d 

I. INTRODUCTION 

Thermo field dynamics (TFD) 1-6 has been developed in 
the last ten years as an extension of the quantum field theory 
at zero temperature to finite temperature. It preserves many 
properties of the zero-temperature quantum field theory, 
especially the operator formalism and time-ordered formu
lation of the Green's functions (i.e., the Feynman diagram 
method in real time). It has an advantage of being able to 
include information regarding the states through the tem
perature-dependent vacuum, so that various requirements 
arising from operator relations (such as Ward-Takahashi 
relations) can be treated consistently even when the phase 
transition induces a spontaneous breakdown of symmetry. 
Furthermore, since it is formulated in real space-time, no 
complications other than those which appear in the case of 
zero temperature arise according to, for example, the bound
ary conditions of the symmetry transformation as in the su
persymmetry.7 Also, since the time variable in the TFD is 
real, all quantities calculated are directly related to the fre
quency-momentum dependent observables. These consti
tute the main differences of TFD from the Matsubara 
Green's function method8

-
10 in which the imaginary time (u) 

in the finite interval (O<u<f3) is used and a certain analytic 
continuation is needed in order to obtain time-dependent 
physical quantities. 

Thermo field dynamics has been applied to practical 
computations in many subjects. The perturbation theory in 
thermo field dynamics is developed in Refs. 3, 4, and 6. The 
Feynman rules in TFD with propagators of2 X 2 matrics are 
slightly different from those with one-component propaga
tors used in the recent literature. 11.12 It was pointed out that 
the Feynman rules of TFD ensure that the Kubo-Martin
Schwinger (KMS) condition is satisfied in each order of per
turbation. 13 

It is also shown that the ultraviolet divergences in TFD 
are renormalized by temperature-independent counterterms 
in all orders ofloop corrections, provided the theory is renor
malized at zero temperature. The Ward-Takahashi rela
tions can be employed to develop new techniques in finite 
temperature calculations.4.14 

There have been many attempts to include real-time in 
the calculation of statistical averages. 15-20 As an extension of 
the Matsubara method, the path along the imaginary time 
axis from 0 to - if3 is analytically continuated and the trace 

formula is rewritten in terms of the path-ordered products in 
the complex-time plane.20 Though the choice of the path 
along the real-time axis gives a real-time formulation of the 
statistical average, it has not been elevated to the status of the 
operator formulation of quantum field theory because of the 
complications arising from the fact that operators appearing 
in the path-ordered formalism have the same number of de
grees offreedom as that in the trace formula, contrary to the 
situation in thermo field dynamics in which the number of 
degrees of freedom is doubled. 

Among axiomatic field theorists, it has been recognized 
for some time now that the effect of temperature can be in
cluded in a free field theory by doubling the field degrees of 
freedom.21,22 This approach has been axiomatized by the 
used of the C *-algebra and the Kubo-Martin-Schwin
ger(KMS) condition,23.24 and is now called the axiomatic sta
tistical mechanics.25 Recently the correspondence and 
equivalence between the thermo field dynamics and the axi
omatic statistical mechanics has been clarified.5 

As an immediate extension of the work of Ref. 2, the 
existence of a certain freedom in the choice of the thermal 
vacuum was pointed out in the paper in Ref. 26, the main 
purpose of which was to clarify the relation between the Hei
senberg equation (or the Schrodinger equation) in TFD and 
the Liouville equation of the density matrix and to point out 
the fact that the time-ordered two-point Green's function 
obtained in Ref. 3 may be regarded as a mixing of two 
Green's functions with opposite time directions. 

It is the purpose of this paper to present the relation 
between the path-ordered real-time formalism and the quan
tum field theoretical formulation at finite temperature in its 
most complete and widest sense. In a recent short paper,27 
the authors have presented the relation between the Matsu
bara method and the thermo field dynamics. Extending this 
formalism, we will show that a certain class of the quantum 
field theoretical formulations at finite temperature forms an 
equivalence class and each member of this class has a one to 
one correspondence to each member of a class of choices of 
path in the path-ordered formalism. The structure of the 
quantum field theories in this equivalence class will be dis
cussed. It will be found that each theory in this class is char
acterized by the multiplicity of field degrees of freedom and 
by a metric. Furthermore, the metric can be chosen to be 
unity only in a doublet formalism, which turns out to be the 
thermo field dynamics and which corresponds to a special 
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choice of the path in the path-ordered formalism. Thus we 
conclude that thermo field dynamics is the most convenient 
formalism. 

The analysis in this paper supplies us with a simple rule 
for building a quantum field theory corresponding to each 
choice of path in the path-ordered formalism. It also pro
vides us with a rule whereby one member of the equivalence 
class of quantum field theories at finite temperature may be 
related to another member. 

Our consideration takes the following step. According 
to the Wightman theorem,28 one can reconstruct a Hilbert 
space when a complete set of vacuum expectation values is 
given. Therefore, a possible way of constructing the quan
tum field theory with real time at finite temperature is to 
regard the statistical averages of operators as the vacuum 
expectation values referring to a suitably defined vacuum. 
One may try to perform this task in the framework of pertur
bative expansions. However, it is quite difficult to see if these 
statistical averages in the perturbative expansion satisfy the 
Wightman axioms for the vacuum expectation values. We, 
therefore, take a short route looking for a quantum field 
theory in the form of a perturbative expansion in which the 
vacuum expectation values agree with the statistical average 
of operators with real times. In the course of this study, the 
doubling (more generally 2N-multiplying) of the field de
grees of freedom (the thermal multiplication of fields) natu
rally takes place in order that the perturbation theory ac
quires a causal formulation of a quantum field theory. When 
we cover a variety of choices of the path, we find a certain 
equivalence class of the quantum field theories at finite tem
perature. 

In those quantum field theoretical formalisms, the phy
sically observable results are given by matrix elements only 
of the first component of doubled (or multiplied) fields; other 
matrix elements act as hidden variables which reflect the 
presence of an indeterminate heat bath. The physical equiv
alence among the different formalism is required only for 
physical matrix elements. 

In the next section, we briefly summarize a real-time 
formulation of the qunatum statistical average. The formal
ism follows the method of Mills of Ref. 20. A brief summary 
of the perturbation theory in thermo field dynamics is also 
presented. In Sec. III, the doublet representation of the 
quantum field theory at finite temperature is related to the 
real-time formulation. It will be shown that the most natural 
finite temperature extension of a conventional field theory is 
the thermo field dynamics presented in Refs. 1-6, where the 
Hermiticity of operators is preserved. In Sec. IV, it is shown 
that a real-time formulation requires an even number offield 
multiplication in a corresponding field theory (a 2N-compo
nent field theory). It is pointed out also that the doublet the
ory gives the simplest form of quantum field theory at finite 
temperature. In Sec. V, the results ofthe preceding sections 
in the form of perturbative expansion (Le., the interaction 
representation) will be translated into the language of the 
Heisenberg picture. It will be shown that the equilibrium 
condition and the KMS condition are summarized as the 
tilde-substitution rule. From this follows the physical equiv
alence of the different formalisms. Then we can conclude 
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that there exists a certain equivalence class ofthe field theo
retical formulation at finite temperature which has a one to 
one correspondence with a certain class of choices of path in 
the path-ordered formalism. The inclusion of quantum me
chanical operators such as spin operators in the formalism is 
also discussed. Section VI is devoted to the concluding re
marks. 

II. PRELIMINARY 

A. Real time formulation of statistical average 

For simplicity, we consider a complex scalar field rp (x) 
whose dynamics is determined by a Hamiltonian H. Hereaf
ter when the space coordinates are irrelevant, we will retain 
only the time variables. Let us define the Heisenberg opera
tor with a complex time z by 

A (z) = exp{izH IA (O)exp{ - izH I. (2.1) 

We consider the thermal average of a product of Heisenberg 
operators: 

W(zn, ... ,zd = tr[ e -/3H An(zn ) .•. At(zd ]/tr[e -/3H], (2.2) 

wherep = l/kB T. A perturbation theory is given by separ
ating H into an unperturbed part Ho and an interaction part 
HI as follows. It is well known that we can write 
exp{ - iH(Z2 - zdl as 

exp{ -iH(z2-zt)1 =exp{ -iH~21U(z2,zt)exp{iH~tl 
(2.3) 

with 

U(Z2,zt) = Tc exp{ - if
2

dZ H/(Z)}, 

where 

(2.4) 

(2.5) 

Tc denotes a path ordering product along a certain path 
connecting the complex points Z2 and Zt, and an integration 
is defined along this path. Then the thermal trace of the 
product of the Heisenberg operators is obtained by 

tr [e -/3HAn (zn ) .. ·A t(Zt)] 

= tr[ e - i(1'- i/3IH An (Zn ) ... At!Zt)ei7'H] 

= tr [e - /3HoU (7 - iP,zn)..# n (Zn)U (Zn,zn _ t ) 

X..# n _ t (Zn - t ) ... ..# t(Zt)U(Zt,7)] , 

where 

..# (z) = eiHoZ A (O)e - iHoZ. 

(2.6) 

(2.7) 

Therefore if (z n , .. .z tl are ordered in the appropriate manner 
along a path C starting from a complex number 7 and ending 
at 7 - iP, we can writet9•20 

W( )
_ (TcU(7-iP,7)..#n(Zn) .. ·..#t(Zt)0 

Zn , .. ·,zt - . (2.8) 
(Tc U(7 - iP,7)0 

Here ( ... ) 0 denotes tr [e - /31io ... ] Itr [e - /3H o] • The calculation 
of W(zn , ... Zt) is reduced to a calculation of a path-ordered 
product. 

Defining a path C starting from point 7 and ending at 
7 - ipin the complex time plane and assuming that (Zt,,,,zn) 
lie on the path C, we can define a statistical average of the 
path-ordered product on C by 
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G(ZI,. .. ,zn) = tr[ e-tmTcAI(zd .. ·An(zn)]/tr[e-PH], 
(2.9) 

where Tc is the path ordering operator. Then G (ZI"",Zn) is 
obtained in the interaction picture as 

G( ) 
(Tc U(7 - i,8,7)..w'I(ZI)···..w'n(zn)0 

ZI,. .. ,zn = . (2.10) 
(Tc U(7 - i,8,7)0 

When the path C is chosen along the imaginary axis (i.e., 
7 = 0 andzl""zn are pure imaginary), (2.10) gives the pertur
bation formula in the Matsubara Green's function method. 
In this sense (2.10) can be considered as a generalization of 
the Matsubara method; it may be considered as a result of 
suitable analytic continuation of time variables. 

There is one comment regarding the choice of the path 
C (see Ref. 20). The expectation value of two operators A and 
B, (A (z)B (z'), is shown to be analytic in the domain 

-,8 < Im(z -z') <0. (2.11) 

In order to ensure simultaneous analyticity with respect to 
Z I, ... ,zn in (2.10) in the same region, one must guarantee that 
the path ordering and (2.11) are not mutually incompatible. 
This means that a path C must be chosen with a monotoni
cally decreasing imaginary part. 

In order to apply the above formalism to the calculation 
of the statistical average of dynamical quantities, ! Z 1''''Zn J 
should be real time! tl,. .. ,tn J. In this case the path C should 
run on the real axis to cover the set! tl, ... ,tn J. Because of 
(2.11), the path along the real axis is considered as the limit 
with an infinitesimally small slope. We are thus led to the 
choices of the path C illustrated in Fig. 1; the path runs along 
the real axis 2N fold and the turning points of the path, t A 

and t B, must be taken sufficiently large (t A --* - 00, 
tB --* + 00). These choices of the path C lead to real-time 
formulations for the statistical average. 

It should be noted that the Matsubara frequency meth
od may be employed only when the path C is along the imagi
nary axis. Therefore, the Matsubara frequency is not appli
cable when Z I"",z n are real. 

B. Thermo field dynamics 

In thermo field dynamics, the perturbation theory is 
given as follows. 2-4.6.13 Suppose that a Lagrangian 

Imz 

IA 0 Is 

- iU1 1 Re 

f -iP2 

- iU2 I 
t 

I 
f -iPN 

-iUN 1 
t 

tA - iJ3 

FIG.!. Choice of the path in the real time formulation. 
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:.l'(t/J t (x),t/J (x)) consisting of complex scalar fields t/J (x) and 
t/J t (x) is given. A finite temperature field theory requires that 
the degrees offreedom of the field theory is doubled by intro
ducing tilde fields ¢ (x) and ¢ t (x). They form thermal doub
lets t/Ja (x) and t/J ta (x) as 

t/J a(x) = {!/X) rP ta(X) = {t/J t(x) a = { 1 (2.12) 
t/J (x), tp (x), 2. 

The dynamics of ¢J...a (x) and t/J ta (x) is determined by the ther
mal Lagrangian :.l'(x) defined by 

A ~ 
:.l'(x) = :.l'(t/J t(X),t/J (x)) - :.l'(t/J t(X),t/J (x)), (2.13) ------...... 

where :.l'(t/J t (x),t/J (x)) is given by 
~ 

:.l'(t/J t(x),t/J (x)) = :.l'*(¢ t(x),¢ (x)). (2.14) 

Here * denotes a complex conjugate. In general, the tilde 
operation rule is defined for an operator 0 (or 0 1 and O2 ) and 
c-numbers CI and C2 as 

...--..- --
(I) OP2 = 0 10 2, 

(2) C~OI -fC;02 = CT02 + C!02' 

(3) 0= 'T/00, 

_ { + 1, for a boson-like operator, 
'T/o - _ 1, for a fermion-like operator. 

(2.15) 

We denote the ~nperturbed part of Ji:' as Ji:' 0 and the inter
action part as :.l'I' The field r (x)(t/J ta (x)) in the interaction 
picture is denoted by ffJ a(x)(ffJ ta(x)). The free Lagrangian Ji:' 0 

is assumed to lead to a free field equation, 

[ - ~ - ii/( - iV)]ffJ a(x) = O. (2.16) at 2 

Then ffJa (x) is given by 

ffJa(X)=f d
3
k 

~(217Y2uJ(k) 

with 

X [aa(k)e;k'X - ;",(klt + b talkIe - ;k·x + ;",(klt ], (2.17) 

aa(k) = u~r(m(k))a~(k), b a(k) = u~r(m(k))b ~(k), 
(2.18) 

(
cosh elk) 

UB(m(k)) = sinh elk) 
sinh elk)). 
cosh elk) 

(2.19) 

The annihilation operatorsap(k), bp(k), ap(k), andbp(k) an
nihilate the temperature-dependent vacuum 10,,8) in the in
teraction picture: 

ap(k) 10,,8 ) = bp(k) 10,,8 ) = ap(k)IO,,8) = bp(k) 10,,8 ) = O. 
(2.20) 

Such a Bogoliubov transformation is required by the thermal 
instability of quanta created by at (k) and b t (k), and the Bo
goliubov parameter is chosen as 

sinh2 e (k) = 1!(eP"'(kl - 1) (2.21) 

to reproduce the thermal distribution function. A statistical 
average is given as an expectation value between the tem
perature-dependent vacuums. The free propagator of the 
thermal doublet can then be obtained by direct calculation 
with the use of (2.17), (2.18), and (2.20) as3

•
4 
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T 
.::1 (k) = UB(w(k)) 2 2' UB(w(k)) 

k 0 - w(k) + lTE 

T 

with k ~ - w(kf + iTE 

1 1 ( efk"<k) 
.::1 (k) = k 6 _ w(kf + iE ePcu(k) _ 1 efk"<k)12 

- 21Ti8(k ~ - w(kf) eP"'(k~ 
-1 

1 1 (1 
- k 6 - W(k)2 - iE ePcu(k) - 1 efk"<k)/2 

efk"<k)l2) 
eP"'(k) , 

ePCU(k)l2) 

1 ' 
(2.24) 

with 
(2.23) 

(2.25) 

which can also be rewritten as4
•
6 Then the time-ordered product is given by 

(0 (P)I T¢ a,(x l)···¢ a/(x/)¢ tY,(x; ) ... ¢ tYm(x;,,)IO (P) 

(0,/31 Texp{ iSd 4x 2' dX)}qJ a'(xd"'qJ a/(x/)qJ tY,(x; )"'qJ tYm(x;" )10,/3) 

(0,/31 T exp{ iSd 4X 1" Ax) J 10,/3) 
(2.26) 

where 10(P) is the temperature-dependent vacuum in the 
Heisenberg picture. The Feynman rules are constructed 
with the use of the propagator (2.23) [or (2.24)] and the ver
tices given by 2' I(X).1t has been shown that the above Feyn
man rules are consistent with the KMS condition 13 and that 
calculations performed with only the 1-1 component of 
(2.24) upset the KMS condition. 

III. THERMAL DOUBLET FORMALISM (TWO 
COMPONENT EXTENSION) 

In this section, we will discuss the relation between a 
real-time formulation of statistical average and a double for
malism of quantum field theory. As was pointed out in Sec. 
n A, a perturbation theory of a real-time formulation is ob
tained by a suitable choice of the path C in the complex-time 
plane. Since we are interested in the situation in which the 
times ZI, ... ,zn are real, we chose the path C along the real 
axis. The simplest such path is presented in Fig. 2, in which 
the path goes from one real-time t A. to another real-time t B 

along the real axis, drops vertically from t B to t B - iu 
(0 < u<./3), returns parallel to the real axis from t B - iu to 
tA. - iu and ends at tA. - i/3. We take the limit tr -+ - 00, 

I 

It r-+ + 00. Then the formula in Eq. (2.10) is rewritten as 

G(tl, .. ·,tn)= tA~~jTc exp{ -;f_-i:dZHAtA +Z)} 

tg-++ "" 

xexp{ - i{Adt HI(t - iU)} 

xexp{ -ii-iudZHI(tB +Z)} 

xexp{ - i LB dt HI(t)}..cf' I (td .. ·..cf' n(tn)) ~n, 
(3.1) 

where the notation "con" means the connected part defined 
such that the vacuum diagrams are excluded. The interac
tion Hamiltonian at the vertical region of the path C, H I _ 

(tA.,B + z), always contains tA or tB as a time variable. The 
contributions of this section of the path to (3.1) carry t i_ 

- t A.,B as time variables. Therefore when we consider the 
limit tA.,B-+ + 00, any contribution from HI(tA.,B + z) 
damps. Finally we have 

G (tl, ... ,tn) = (Tc exp{ + if:"" dt HI(t - iu) }exp{ - if: "" dt HAt)}..cf' I(tl) ... ..cf' n(tn)) :on 

(Tc exp{ - iS~ "" dt[ HI(t) - HI(t - iu)] J..cf' I (td .. ·..cf' n(tn )0 

(3.2) 

(3.3) 
(Tc exp{ - iS~ ""dt [HAt) - HAt - iu)]})o 

We consider a complex scalar model where the Lagran
gian density is given by 

2'(x) = 2' o(x) + 2' Ax) (3.4) 

with 

(3.5) 

3079 J. Math. Phys., Vol. 25, No.1 0, October 1984 

Then Hamiltonian density is given by 

with 
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FIG. 2. Choice of the path in the doublet formalism. 

JYI(X) = - 2" I(X), (3.8) 
Free field cp(x) in the interaction picture is given by 

cp(X)=I d
3

k 
~(21T)32w(k) 

X [a(k)e 'k' x ~ iwlk)( + b t(k)e ~ Ik·x + iw1k)(], (3.9) 

with 

[a(k),at(k')] = [b (k),b t(k')] = o(k - k'). (3.10) 

The free Hamiltonian Ho is given by 

Ho= Id 3klU(k)[at(k)a(k)+b t (k)b(k)]. (3.11) 

Propagators appearing in (3.3) can be evaluated using the 
definition of the trace (".)0' The result is summarized as (see 
also Ref. 27 for the nonrelativistic case) 

(T (cp (x,t) )( t( , ') t( " . I)) 
c ( • ) cp x ,t cp x ,t - l(}" 0 

cp x,t - IU 

_ 'Jd 4k ~ikl"~"') 1 -I ---£ ----
(21T)4 2w(k) 

{ 
1 1 

X ko _ lU(k) + iE ePw(k) - 1 

( 

ePw(k) 

X elP /2 ~ y)w(k) 

ko + lU(k) - iE ePw(k) ~ 1 

( 

ePw(k) 

X eIP/2 + y)w(k) 

ko - lU(k) - iE ePw1k) - 1 
eIP/2 + Y)W(k)) 

ePw(k) 

+ 1 1 
ko + lU(k) + iE ePw(k) - 1 

elP /2 ~ Y)W(k))} 
ePw(k) , 

where y is defined by 

U =f3 /2 + y (- f3 /2 <y<f3 /2). 

(3.12) 

(3.13) 

Note that this structure of the propagator is the same as the 
one [cf. (2.23)] in thermo field dynamics of Sec. II B in the 
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case ofy = O. [See also (3.41).] The ( - iE)-term corresponds 
to the returning path as was pointed out in Ref. 26. The 
constant y specifies the intersection of the returning path on 
the imaginary axis. For quantized free fields, the statistical 
average of field products can be expressed by a sum of pro
ducts of two point functions according to Wick's theorem. 
Therefore, the Tc -propagator (3.12) and the interaction Ha
miltonian [HI(t) - HI(t - iu)] determine the perturbation 
expansion of(3.3). The result is the real-time formulation of 
the statistical average. 

In order to express the above real-time formulation in 
terms of the Feynman diagram method, we need one more 
step; that is we have to rewrite the Tc -product in terms of the 
usual T-product. To do this we must use only the real-time 
parameter although we have the complex time t - iu. Since 
u is not a variable, but a constant, we can regard cp(t - iu) 
(cp t (t - iu)) as a function of t, calling it ~ ~ (t) (~(t)). We 
now have the doublet field; cp(x,t) and ~ ~(x,t ) 
= cp (x,t - iu) [cp ~(x,t ) = cp t(x,t ) and ~ (x,t ) 
= cp t(x,t - iu)]. Although cp(x,t) and cp(x,t - iu) are the 

same fields with different complex times, we consider cp (x,t ) 
and ~ ~ (x,t) as two independent fields when we identify 
cp(x,t - iu) as ~ ~ (x,t). This is an important step to elevate a 
real-time formalism to the quantum field theoretical opera
tor formalism. Recalling the fact that u contains a constant 
y, we make use of the notation cp(x,t;y), ~ ~ (x,t;y), cp ~ (x,t;y), 
and if; ~ (x,t;y). 

Summarizing, we introduce mutually commuting fields 
cp(x;y) and ~ (x;y) satisfying equal time commutation rela
tions, 

[cp (X,t;y),~ t(X',t;y)] = io(x - x'), 

[~(X,t;y),~ t(X',t;y)] = - io(x - x'), 

(3. 14a) 

(3. 14b) 

otherwise commute, and make the following correspon
dence: 

cp (x,t )--+cp (x,t;y), cp t (x,t )--+cp ~ (x,t;y), 
(3.15) 

. - ~. t . - . cp(x,t - lU)--+cp (x,t,y), cp (x,t - IU)--+cp (x,t,y). 

Here the symbol t refers to the double-dagger conjugate 
which will be defined later and is reduced to the Hermitian 
conjugate (t) when y = O. We require that the thermal aver
ages are given by the vacuum expectation values. The tem
perature-dependent vacuum IO,(3) is introduced and phys
ical particle creation and annihilation operators are denoted 
by 

a1(k), ii1(k), b 1(k), b 1(k); 

ap(k), iip(k), bp(k), bp(k); (3.16) 

ap (k)IO,{3) = iip (k)I0,{3) = bp (k)I0,{3) = bp (k)I0,{3) = O. 

The free field operators cp(x;y), cp ~ (x;y), ~ (x;y),and ~ ~ (x;y) 
are expressed in terms of these operators as 

cp (x;y) = I d
3

k 
~(21T)32w(k) 

X [a(k;y)e 'k'X ~ iwlk)l + b ~(k;y)e ~ ik·x + iw(k)( ], 

(3.17a) 
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with 

tpt(X;Y) = f 
d3k 

~(21T)32aJ(k) 

X [at(k;y)e - ;k·x + ;cu(klt + b (k;y)e'x,x - ;"'Iklt ], 

(3.17b) 

q; (x;y) = f d
3

k 
~(21T)32aJ(k) 

x [a(k;y)e - 'X'X + ;",Iklt + b t(k, y)e'x,x - ;",Iklt ] , 

(3.17c) 

q; t(x;y) = f d
3

k 
~(21T)32aJ(k) 

X [at(k;y)e'x.x - ;",Iklt + b (k;y)e - 'X'1 + ;"'Iklt ] , 

(3.17d) 

(3.18) 

a(k;y) = e1'cu(kI/2a(k), at(k;y) = e - 1''''lkI/2at (k), 

(
a(k)) (COSh () (k) sinh () (k))(ap(k)) 
at(k) = sinh () (k) cosh () (k) a1(k) , (3.19a) 

(
at(k)) = (COSh () (k) sinh () (k))(a1(k)). (3.19b) 
a(k) sinh () (k) cosh () (k) ap(k) 

[The same relations as (3.18) and (3.19) hold for b, b t , b, and 
bt .] Here 

1 ePcu(kl 
sinh2 

() (k) = cosh2 
() (k) = ---::---

eP",(kl _ l' eP"'lkl - 1 
(3.20) 

Note that, for example, a(k) and at (k) are Hermitian conju
gates of one another but a(k;y) and at (k;y) are not when 
y#O. This is the reason why we distinguished the double
dagger conjugate (t) from Hermitian conjugate (t). It is easy 
to show that 

( Tc (tp (x,t) . )(tp t(x',t ')tp t(x',t' - iU))) 
tp (x,t - lU) 0 

= (O,p I T (~ ~x( ,t;:) ))(tp t(x' ,t ' ;y)q; (x' ,t ' ;y)) I 0,/3 ). 
tp x,t,y 

(3.21) 

In this way the statistical average of the Tc -product becomes 
the vacuum expectation value of the T-product of the quan
tum fields tp, tpt , q;, and q;t . We insist here again that the Tc
product is rewritten in terms of the T-product because of the 
introduction of the two commuting fields. 

Through the correspondence (3.15), the interaction Ha
miltonian density is identified as follows: 

,w'j(tp t(x,t ),tp (x,t ))----+,w'I(tp t(x,t;y),tp (x,t;y)), (3.22a) 

,w'/(tp t(x,t - iu),tp (x,t - iU))----+,w'I(q; (x,t;y),q; t(x,t;y)). 

(3.22b) 

Since,w'l is Hermitian, it satisfies 

! ,w'j(tp t(x),tp (x)) I t = ,w'(tp t(x),tp (x)) 

which leads to a formal operator relation 

Jf1'(tp (x),tp t(x)) = ,w'Atp t(x),tp (x)). 

Then (3.22b) becomes 

,w'j(tp t(x,t - iu),tp (x,t - iu))----+Jf1'(q; t(x,t;y),q; (x,t;y)) 

,. 2iIiiL=.J 

= ,w'/(tp t(x,t;y),tp (x,t;y)), 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

that is, the Hamiltonian for the tilde fields is obtained by the 
tilde operation. With this identification, the Feynman rules 
become identical to those in (3.3). In summary, we have 
proved the correspondence between the path-ordered for
malism with the choice of the path given in Fig. 2 and the 
quantum field theoretical formulation of doublet representa
tion: 

(Tc exp{ - if: ~ dt [HI(t) - H/(t - iu)] }tp(Xd"'tp (x/)tp t(x; ) ... tp t(X;")) 0 

= (O,p ITexp{ - J: ~ dtH/(tJ}tp (xl;y)···tp (x/;y)tp t(x; ;y) ... tp t(x;";y)IO,p), (3.27) 

where 

(3.28) 

with 

(3.29) 

In particular the case y = 0 reduces to the thermo field dy
namics presented in Sec. II B (note,w'/ = -.!e /). 

We will now show that the field theory with arbitrary y 
in (3.28) ( - /3 12<.y<./3 12) can be identified as a field theory 
with a certain metric. In fact, we see from (3.18) that! a(k;y), 
at (k;y), b (k;y), b t (k;Yl I and ! a(k),a t (k), b (k), b t (k) I arerelat
ed to each other through the operator transformation 
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I 
(a(k;y),at(k;y),b (k;y),b t(k;y)) 

= 1]1' (a(k),at(k),b (k),b t(k))1]1'- I, 

where 

(3.30) 

1]1' = exp! - !yHoJ, (3.31) 

Ho = f d 3k w(k)[at(k)a(k) + b t(k)b (k)]. (3.32) 

Similar relations hold for the tilde fields. Therefore tp(x) and 
tp t (x) are defined by 

tp(x) = J d3k 

~(21T)32aJ(k) 

X [a(k)e'x,x - ;eu(klt + b t(k)e - 'X," + ;eulklt ], (3.33a) 
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X [at(k)e - ;k'x + ic.>(k)t + b (k)e,k.,. - ;.,(k)t]; (3.33b) 

and are related to <p(x;y) and cpt (x;y) as 

cp (x,y) = 7Jr CP (x)7J r- I, cp t(x,y) = 7J r CP t(x)7Jr- I. (3.34) 

The tilde fields also satisfy similar relations: 

q; (x;y) = fJrq; (x)fJr- I, q; t(x;y) = fJrq; t(x)fJr- I. (3.35) 

Note that 7Jr = 1 for y = 0 according to (3.31). Nowopera
tors carrying (a constant) yare related with those with y = 0 
through the relations 

o(y) = "'rOfJ; 1, ° (y)t = "'rot",; I, (3.36) 

where 

"'r = 7Jr fJr · (3.37) 

Therefore, when y#O, the double-dagger conjugate assumes 
the role of the Hermitian conjugate: 

(OI(y)02(y))t = 02(y)tOI(y)t, 

(CIOI(y) + C202(y))l = cfOI(y)t + C!02(y)l, 

(0 (y)l)t = ° (y). 

(3.38a) 

(3.38b) 

(3.38c) 

The relation between the Hermitian conjugate and double
dagger conjugate is 

ot = f];20 l",;. (3.39) 

Note that, from (3.36), we have ° (y)l = O(y) if ot = 0. 
Therefore, the self-adjointness is modified as 

° (y)t = O(y) or IO(y)f];J t = ° (y)",;. (3.40) 

In particular when y = 0, we have f]r = I and the double
dagger conjugate and the Hermitian conjugate become iden
tical to one another and the conventional definition of Her
miticity is preserved in this case. For example, the 
Hamiltonian density becomes Hermitian when y = O. 

Since the physical results are given by the expectation 
values of nontilde fields, these expectation values should be 
y-independent. Indeed we can prove this y-independence as 
follows.27 Taking advantage of the on-shell condition of the 
temperature dependent part of the thermal propagator, we 
can rewrite the Fourier component of the rhs of (3.12) as 

(0
1 

_Orlco)UB(CU(k)) k 2 (~)2 . 
e 0 - CU + 11"E 

X UB(CU(k))G e~kJ (3.41) 

The notation is the same as that in Sec. III. In order to obtain 
the perturbation series from (4.2), we need 4N 2 types oftwo 
point functions. Those take a compact form in a 2N X 2N 
matrix: 

( (
CP (x,f - iP;)) ) 

Tc (t .) (cp t(x',t' - ipj)cp t(x',f' - iaj )) 0 
cp x, -Iai 
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by which we can interpret that y-dependent factors appear 
on the propagators terminated at q; or ~l . Diagrams involv
ing an expectation value of nontilde fields do not possess 
ext~mallines of q; or fl , therefore these factors _ar..e assigned 
to HI-vertices. If an HI-vertex terminates in a cp(cpl) field, it 
acquires a factor erlco (e - rico) for each q;(~l). But these y
dependent factors are completely canceled at each HI -vertex 
owing to the ko-conservation. One of the immediate results 
of the y-independence is 

since the left-hand side for y = - f3 /2 (i.e., a = 0) is identity 
according to the corresponding path-ordered form. This 
means that the vacuum fluctuation does not induce a change 
of normalization. 

The above analysis shows that corresponding to each 
choice of the path given in Fig. lone can construct a quan
tum field theory of equilibrium at finite temperature. The 
different choice of the path is related to the change of metric 
in the corresponding field theory, which is characterized by 
y. The tilde field works as a hidden field which manifests the 
thermal effects. The arbitrariness for the choice of y disap
pears when we require that the Hamiltonian density is Her
mitian which gives y = O. As will be presented in the next 
section, we can extend the analysis of this section into a 2N
component field theory. 

IV. GENERALIZATION OF THERMO FIELD DYNAMICS-
2N COMPONENT FIELD THEORY 

In this section we investigate how far the quantum field 
theoretical formulation at finite temperature can be general
ized. In order to avoid the appearance of imaginary time, the 
choice of the path C shown in Fig. I is the most general one; 
the path runs back and forth 2N times along the real axis 
(0 = PI < a l <P2 < a2'" <PN < aN <j3). The points tA and tB 
are taken as infinite; t A ~ - 00, t B ~ + 00. For other 
choices of path, we need to introduce the imaginary time. 

Let us consider the thermal average of the path-ordered 
operators: 

G (tl,. .. ,tn ) = tr[ e -PHTcAI(xt!···A n (xn ) ]/tr[e -PH]. 
(4.1) 

By an argument similar to that presented in Sec. III, (4.1) is 
given in the interaction picture as 

(4.2) 

'fd 4k e-;k(x-x') {F+(ko) F_(ko) 
= I (21T)4 2cu(k) ko - w(k) + iE - ko - w(k) - iE 

+ G+(ko) _ G (ko) } 
ko + cu(k) + iE ko + w(k) - iE ;/ 

(4.3) 

with 
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F+(w) = (e-; 
F -(wI = e-; 
G+(w) = e-: 
G_(w) = (e; 

where e ± pw , e ± UW, S, and Care N X N matrices: 

S= 1 
eP'" - 1 

C=~~W 
ePw-l . 

ePw 

It is easy to see that 

C-S~I=C 

1··· 1 ) 

. . ~ . 
ePw 

Therefore we have the relation, 

(4.4a) 

(4.4b) 

o ),(4.5a) 
eGW 

o ),(4.5b) 
eUW 

e~J 
(4.6) 

(4.7) 

(4.8) 

F+(ko) -F_(ko) = G_(ko) - G+(ko) = r==(~ _~). 
(4.9) 

In order to look for a field theoretical formulation which 
leads to the same perturbation rules, we introudce the 2N
component field tP(x) and tf (x) and identify as 

(
qJ(X,t-iPi )) (tPP,(X)) 

. -tf(x) = ./J: ' 
qJ (x,t - IUj ) If' I:r, (x) 

(4. lOa) 

(cp t(x,t - ipj)qJ t(x,t - iuj))-tf(x) = (~}x)tPGj(x)). 

Their canonical commutation relations are 

[tf(x,t ),¢t( y,t)] = irc5(x - y). 

(4. lOb) 

(4.11) 

We assume that tf(x) and tf (x) are related to the physical 
fields tPp(x) and tP1(x), which are mutually Hermitian conju
gate and satisfy 

(0,/31 TtPp(x)tP1 ( y)IO,/3) 

= if~-ik(X-Y) l' (4.12) 
(21T)4 k ~ - W(k)2 + irE' 

through the following transformation: 
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tP(x) = A ( - iao)tPp(x), 

tf(x) = tP1(x)B ( - iao). 
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(4.13a) 

(4.13b) 

The requirements for the matrices A and Bare 

F+(ko) =A [(1 + r)/2]B = G_(ko), 

F _(ko) = A [(1 -r)l2]B = G+(ko). 

(4. 14a) 

(4. 14b) 

First we ask ifthere exists a choice oft p,u) in which tf(x) 
and tf (x) become mutually Hermitian conjugate. This re
quirement leads to the condition Bt = A, that is, 

r=ArAt (4.15) 

and 

F +(ko) + F _(ko) = AA t = G _(ko) + G + (ko)· (4.16) 

From the explicit form of (F + + F _) and (G _ + G +), we can 
see easily that the condition (4.16) is never satisfied unless 
N = 1. Therefore two-component theory is the only possible 
theory which preserves the Hermiticity of operators at zero 
temperature (y = 0 in Sec. III). In other cases, the double
dagger (t) conjugate, which needs the introduction of a cer
tain metric, requires a generalization ofthe Hermitian con
jugate. 

As an example, we can choose A and B as 

(
e-PW 

A= o 

Then the thermal average is given by 

G (xl, ... ,x/'YI, ... ,ym) 

= (0,/31 Texp{ -;f dt HI(t)} 

X tP(xl)· .. tP(x/ )tf( YI)· .. tPt( Ym) 10,/3 ), 

where 

'" N _ 

HI(t) = L [H}(t) -H}(t)] 
;=1 

= itJ d 3x [ JYI(~,(X),tPPI(X)) 

- JYI(tfa, (x),tPU, (X)) ]. 

(4.18) 

(4.19) 

In a similar way as shown in Sec. III, the rhs of (4.18) is 
proved to be independent of the parameters (P;.ui ); the 
proof heavily depends on the energy conservation at each 
vertex. 

The analysis of this section shows that there is a variety 
of choices for the causal formulation of finite temperature 
field theory, which forms an equivalence class of the quan
tum field theory at finite temperature. However, in order to 
include thermal effects, one must increase the field degrees 
of freedom by a factor two or 2N (N) 1) in general. Since the 
first component is identified as the physical fields, other 
2N - 1 fields are considered as hidden variables. If we re
quire that Hermiticity of operators in the original theory is 
preserved, the only possible theory is the doublet theory 
which is the thermo field dynamics of Refs. 1-6. It is due to 
this reason that we do not plan any furhter study of the 2N
component formalism with N> 1 in this paper. 
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v. OPERATOR FORMALISM IN HEISENBERG PICTURE 
AND KMS CONDITION 

In previous sections, we have identified the perturba
tion theory in a real-time path-ordered formulation of multi
point functions and their causal formulation familiar in ordi
nary quantum field theories. In this section, we reformulate 
the results of the previous sections in terminology of the 
Heisenberg picture. We consider only the thermal doublet 
representation (i.e., N = 1) although we do not assume 
y=O. 

We consider a model of a complex field </J (x) and assume 
that its canonical conjugate is ~ t (x). The Hamiltonian den
sity is given by JY(</J t (x),</J (x)). The results of the previous 
section show that the thermal effect can be taken into ac
count by doubling the freedom ofthe field. The correspon
dence is 

(
</J (x,t) ) IJI (¢y(X,t)) 
</J (x,t - iu) ~ y(x,t) = ¢~(x,t) , (S.la) 

(</J t(x,t)</J t(x,t - iu))~1JI ~(x,t) = (¢~(x,t )¢y(x,t)). (S.lb) 

The fields lJIy(x) and 1JI~(x) satisfy the equal-time commuta
tion relation, 

[ lJIy(x,t), tit ~( y,t)] = i'T£5(x - y). 

The Hamiltonian is given by 

with 

/'- -
H=H-H, 

H = I d 3x JY(¢~(x),¢y(x)), 

if = I d 3X JY(¢~(X),¢y~)). 
Therefore the time development is expressed as 

/'- /'-

(5.2) 

(5.3) 

(S.4a) 

(S.4b) 

lJIy(x,t) = exp! iHt ) lJIy(x,O)exp! - iHt). (S.S) 

The thermal average of </J (x) and </J t (x) corresponds to the 
vacuum expectation value of ¢y(x) and ~(x): 

(</J (xtl···</J (x/)</J t(Yt)···</J t(Ym) 

= (O(,8)I¢y(xtl···¢y(x/)~(Yt)···¢t(Ym)IO(,8). (S.6) 

Here ( ... ) denotes the thermal average. The correspon
dences of(S.I) and (S.6) indicate that 

(A (t - iu)···) = (0 (,8)IAy(t - iU)"'IO(,8) 

= (O(,8)IA~(t)"'IO(,8), (S.7) 

whereA is an operator consisting of </J and </J t . Therefore we 
should have the operator relation 

(0(,8)IA y(t-iP12-iy) = (O(,8)IA;(t). (5.8) 

Here we used the definition u = P /2 + y. 
First, we consider y = 0 case. In this case the double

dagger conjugate is identical with the Hermitian conjugate. 
Then we have 

(0 (,8 )IA (t - iP /2) = (0 (,8 )IA t(t), 

its conjugate is 

A tIt + ip/2)10(,8) =A (t)IO(,8). 

(S.9a) 

(S.9b) 

The relations (S.9) are the tilde-substitution rules. These rela-
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tions indicate that we are very close to the KMS condition. 
In particular when A is the Hamiltonian H, (S.9) indicates 
that 

(H -if)IO(f3) =0. (S.lO) 

In this way the tilde-substitution rule specifies the equilibri
um state. 

When yotO, we require that there exists a metric fty 
which relates Ay and A at y = 0: 

(S.11a) 

(S.lIb) 

Also we require that fty is invariant under the tilde conjuga
tion: 

fty = fty· (5.12) 

From (S.8) and (S.11), we have 

(0 (,8 )lftyA (t - iP /2 - iy) = (0 (,8 )lftyA t(t), (S.13a) 

which becomes 

(0 (,8 )lftyeyHA (t - iP /2) = (0 (,8 )lftyeyH] t(t). (S.13b) 

Here we have used the fact that A consists only of the non
tilde fields (and therefore A consists of tilde fields only). 
Comparing (S.9a) and (5.12) and using (5.10), we see that the 
above condition is satisfied by 

ft y = exp! - y(H + if )/2 ) . (S.14) 

Note that the Hamiltonian density JY(~,¢y) is not neces
sarily Hermitian when yotO but that H is Hermitian by this 
choice of metric ft y : 

Hy = ftyHfty- t = H. (S.lS) 

We notice also that the double-dagger conjugate and Hermi
tian conjugate are related through 

A ~(x) = ft~A t(x)fty- 2. (5.16) 

This means also that 

! 10(,8) jt = (0 (,8)lft;2, 

! (0 (,8 ) I ) t = ft~ 10 (f3 ). 

From (S.8), we have 

A ~(t + iP /2 + iy)ft~ 10 (,8) = Ay(t )ft~ 10 (,8 ). 

Multiplying ft; 2 from the left, we get 

(S.17a) 

(S.17b) 

A ;(t + /1'/2)10(,8) =Ay(t + iy)IO(,8). (S.18) 

The substitution rule for the case of yotO is summarized by 

(0 (,8 )IAy(t - iP /2 - iy) = (0 (,8 )IA ~(t), 

A ~(t + iP 12 - iy)IO (f3) = Ay(t )10 (,8). 

When (5.19) are satisfied, we have 

(0 (,8 )IAy(t )By(t ')10 (f3) 

= (0 (,8 )IA ;(t + iP /2 + iy)By(t ')10 (,8) 

= (0 (,8 )IBy(t ')1 ;(t + iP 12 + iy)IO (f3) 

(S.19a) 

(S.19b) 

= (0 (,8 )IB,,(t ')Ay(t + iP )10 (,8 ), (S.20) 

which is the KMS condition. Also by the use of (S.ll) and 
(S.lO), the y-independence can be shown easily, since 
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(0 (.8)IA y(x) ••• By(y)IO (.8) 

= (0 (.8 )11JyA (x)···B (Y)1J; 110 (13) 

= (O(.8)le- yHA (x)···B (y)eYH 10(13) 

= (O(l3)IA (x) .•. B (y)I0(l3). (5.21) 

In this proof, the equilibrium condition (5.10) plays an im
portant role. In Sec. III, we showed that the energy conser
vation27 is the basis for the y-independence. As a matter of 
fact, (5.10) is intimately related to the energy conservation; 
the condition (5.10) guarantees that there are no energy flows 
between tilde and nontilde systems in the eqUilibrium state. 
This property is not preserved in the nonequilibrium, which 
will be discussed elsewhere. 

As can be seen from the analysis in this section, the 
tilde-substitution rule (5.9) [or (5.19)] is the relation which 
determines the equilibrium properties of thermo field dy
namics and is equivalent to the KMS condition. This rela
tion and the commutativity between tilde and non tilde oper
ators enable us to rewrite the Tc -product into the causal 
formulation, which leads us to a quantum field theoretical 
formulation. The members of the equivalence class in this 
formulation are classified by y. The parameter y is identified 
with the choice of the path and is amalgamated in the metric 
7]y. Even when quantum mechanical operators such as spin 
operators S;(n) (n = 1,2, ... ) are considered, the inclusion of 
these operators in thermo field dynamics is straightforward 
in the light of the above consideration. We introduce tilde 
operators S;(n) which commute with nontilde operators 
S;(n) and require that the tilde-substitution rules (5.9) [or 
(5.19)] are satisfied. Then quantum mechanical operators are 
also included in the causal formulation. An important differ
ence is that they do not simply satisfy Wick's theorem in the 
perturbation calculation. 

VI. CONCLUDING REMARKS 

In this paper, we have studied the relation between a 
real-time path-ordered formulation of statistical average and 
a quantum field theoretical formulation. There exists a natu
ral correspondence between the path-ordered formulation 
and the prescription in quantum field theory at finite tem
perature with multjplied field degrees of freedom with a 
thermal Hamilton H. Those quantum field theoretical for
mulations form a equivalence class of the quantum field the
ory at finite temperature and are classified by the even num
ber of the multiplicities offield degrees offreedom and by the 
metric. This, on one hand, gives a simple rule for identifying 
a particular quantum field theory with a particular path
ordered formalism and, on the other hand, leads to a clear 
perspective over a wide class of equivalent field theories at 
finite temperature. It was pointed out that the tilde-substitu-
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tion rules are the essential relations which enable us to re
write the path-ordered formulation in the causal formula
tion. 

The tilde-substitution rule plays an important role in 
specifying the properties of the equilibrium state as pointed 
out in Sec. V. It is interesting, therefore, to consider how 
these relations are modified in the case of nonequilibrium 
phenomena. Such studies are now in progress. 
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Nonlinear SchrOdinger-type field equation for the description of dissipative 
systems. III. Frictionally damped free motion as an example for an aperiodic 
motion 
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I nstitut fur Physikalische und Theoretische Chemie der Johann Wolfgang Goethe- Universitiit, D-6()(}() 
Frankfurt (Main), Federal Republic of Germany 

(Received 12 October 1983; accepted for publication 18 May 1984) 

A new theory for the description of dissipative systems by nonlinear Schrodinger-type field 
equations (NLSE's) with logarithmic nonlinearity, which has been recently developed by the 
authors, is applied to investigate the frictionally damped free motion and similar spatially 
unrestricted aperiodic problems. Wave-packet solutions as well as time-dependent wave-function 
solutions are derived and discussed. In the limit of vanishing friction (friction constant y-o) these 
solutions turn into the well-known solutions of the respective linear Schrodinger field equation. 
The same applies to the mean values of position, momentum, and energy, as well as to the 
uncertainty product of position and momentum. For Yi=O, however, interesting new effects 
appear. In contrast to the linear theory the uncertainty product of position and momentum does 
not diverge any more for infinitely long times, t--+oo, but asymptotically approaches a definite 
constant value which depends on characteristic parameters of the system like its mass, initial 
width, and friction constant y. Another effect, the faster spreading of the Gaussian wave-packet 
solution compared to the linear theory, can be explained with the help of a special property of our 
nonlinear differential equation. In a way similar to what is usually only known for linear 
differential equations, the wave-packet solutions of our NLSE can be obtained by superposition of 
the wave functions which are individually also solutions of the same NLSE. The properties of the 
time-dependent superposition coefficients appearing in this connection are discussed. The 
extension to the corresponding three-dimensional problem as well as the differences arising in the 
investigation of the NLSE's of the free fall and the motion in a constant electric field are given. 
Concluding, some differences are discussed which appear applying our nonlinear field theory to 
describe periodic or aperiodic motions, respectively. 

PACS numbers: lUO.Lm, 03.65. - w 

I. INTRODUCTION 

In parts II and n 2 of our work, the derivation of our 
nonlinear Schrodinger-type field equation (NLSE) and the 
characteristic properties of our logarithmic nonlinearity are 
discussed in detail and our NLSE is compared with similar 
approaches of other authors. Up to now we only regarded 
spatially restricted, periodic motions like the motion in the 
harmonic oscillator potential, V = (m/2)ll)~x2, or the motion 
in a magnetic field. Subject of the present work is the investi
gation of spatially unrestricted, aperiodic motions damped 
by a linearly velocity-dependent frictional force. As an ex
ample, first the NLSE for the one-dimensional free motion 
including friction, i.e., for the potential V = 0, is solved and 
the properties of the solutions as well as the properties of 
mean values evaluated with the help of these solutions are 
investigated. Important limits like, e.g., the behavior for 
vanishing friction, i.e., y-o, and for the times t = 0 and 
t-+oo, respectively, are regarded. 

constant electric field, i.e., V = - esx (e is the elementary 
charge, S is the absolute value of electric field strength), as 
well as the corresponding NLSE's are considered and differ
ences in comparison to the previous problem, V = 0, are 
specified. 

Relations between the different existing solutions of our 
NLSE are shown, where a special property of our NLSE, 
which is usually only attributed to linear differential equa
tions, becomes evident. After a discussion of the conse
quences resulting from this property, the extension to the 
corresponding three-dimensional problem is given briefly. 
As further examples for aperiodic motions the free fall, 
V = mgx (g is the constant of gravity), and the motion in a 

Finally, essential differences between the results ob
tained from the NLSE of an aperiodic motion and those ob
tained from the NLSE of a periodic motion or from the lin
ear SchrOdinger field theory, respectively, are discussed in a 
short resume. 

II. WAVE-PACKET SOLUTIONS 

A. Gaussian wave packets 

The one-dimensional motion of a system exclusively af
fected by a linearly velocity-dependent frictional force in 
classical particle mechanics can be described by the follow
ing Newton's equation of motion: 

(1) 

The nonlinear field equation of Schrodinger-type 
(NLSE) corresponding to this classical corpuscular equation 
of motion is obtained in a way described in detail in our 
previous works, 1-4 and for this particular problem it is given 
by5 
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- iiiylin If/NL - (In If/NL) )If/NL . (2) 

For the solution of this NLSE an ansatz of the form 

If/wp.Ndx,t) = N exp! - x2/lo(t) + is J, (3) 

with 

x =X -1/(t), S=K(t) +L (t}i, a(t) = aR(t) + iaI(t) 

is chosen. 
With the help of the density function 

If/tP.NL ·If/WP,NL = PWP,NL(X,t) 

= (~)1/2exp{ _X2( a +a* )} 
21Taa* loa * 
1 1 { X2} 

= ..[ii ~2(X2) exp - 2(x2 ) , 
(4) 

which has to obey the Fokker-Planck equation (FPE) 

PNL + diV~NL v) - DilpNL = 0, (5) 

the normalization constant N can be obtained from 

N·N* = [(a + a*)l21Taa*] 112 (6) 

in the form6 

N = [(a + a*)/21Ta2 p"\ (7) 

and the mean value of x2 can be determined to be 

(8) 

Inserting this ansatz for If/NL into the NLSE (2) leads to 
an equation which can be arranged in terms of powers of X. 

From the term linear in x the relations 

L (t ) = (m/li)iJ(t ), 

m;:' + myiJ = 0 

(9) 

(10) 

result. The second ofthese conditions shows that 1/(t ) has to 
fulfill Newton's equation of motion (1). 

Regarding the x2 term, we find that a(t ) has to obey the 
differential equation 

il - ra - i(liIm) = 0, (11) 

which turns into the Bernoulli-type differential equation 

y + rY + (21i1mW = 0 (12) 

using the substitutiony = (i/2)[1/a(t)]. 
By the aid of the solution of this differential equation, 

_() {( 21i I ) yt 21i} - I yt = - + - e --
mr Yo mr 

with 

Yo = y{t = 0), 

the quantity a(t) = aR (t) + iaI(t) can be determined: 

aR (t) = aR,o ·err, 

aAt) = al,O ·err + (Ii/mr)(eyt 
- 1). 

For t = 0 we obtain 

aRlO) = aR,o' aAO) = al,o, 

for t-oo, 
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(13) 

(14) 

(15) 

(16) 

(17) 

The limit of vanishing friction, i.e., r-+o, leads to 

lima(t) = limaR,o +i[limaI.o + (Ii/m)t]. (18) 
y--+O y--+O y--+O 

As aR (t), a/(t), and quantities depending thereon, like, e.g., 
(x2

), in the limit of vanishing friction have to turn into the 
corresponding quantities of the linear Schrooinger theory, 7 

the allowed possibilities for the correct choice of the con
stants a R,O and a 1,0' respectively, are confined. The most sim
ple choice which is in accordance with these limiting condi
tions, a R,O = ao and a 1,0 = 0, shall be discussed in the 
following. 8 

After the determination of a{t) the mean value (x2
) can 

be stated immediately in the form 
"'-

(x2
) = {aol2)feyr + [2Ssinh((r/2)tWJ (19) 

with 

(20) 

and is a measure for the width of the Gaussian function 
PWP,NL (x,t ). 

In particular for 

t = 0, (X2)(0) = ! ao, 

t-oo, (x 2
)( (0) = 00 

are obtained, and for r-+O, 
(21) 

lim(x2) = (a0l2)11 + [(Ii/mao)t ]2) = (x2)v (22) 
y-+O 

As required, the limit r-+O exactly yields the result of the 
linear Schr6dinger field theory, for r#O, however, the width 
of PWP,NL (x,t ) as well as of If/wP,NL (x,t ) increases faster than 
in the linear theory; i.e., the Gaussian function spreads faster 
than in the case without friction. 

Regarding the change of (x2
) with respect to time, 

.!!...- (x2
) = r(a0l2)1 eyr + 2S 2 sinh rt J, (23) 

dt 

in the limit r-+O this also turns into the corresponding 
expression of the linear theory, 

1. d (-2) (1i)2 1 lm- x = - -t, 
y--+O dt m a o 

(24) 

but in contrast to the linear theory, already for t = 0 it has a 
finite positive value, 

.!!...- (x 2 )(t = 0) = r ao , 
dt 2 

(25) 

which vanishes for r-+O, i.e., in the absence of friction. An 
explanation, which makes physically plausible the fact that 
our Gaussian function spreads even faster than the Gaussian 
function of the linear theory, will be given in Sec. III A. 

With the help of PWP,NL (x,! ) the "diffusion constant" D 
of the FPE (5) can now be easily determined in different 
ways, e.g., simply by inserting PWP,NL (x,! ) into the FPE or 
using the condition of separability (see parts I and II) 

- D (ilPNL/PNL) = r(lnp"1L - (InpNL»)' 

The result 

D = (r/2)(x2) 
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shows that in this case due to the time dependence of (x 2
) 

also the "diffusion constant" D is time dependent (but not 
coordinate dependent). 

Now taking another look at the "diffusion term" of the 
FPE, we find 

- D..1PNL = (yI2)(((x2) - x2)1(X2»)PNL' (28) 

i.e., on the one hand this time-reversibility breaking term is 
proportional to the friction constant y, on the other hand, 
however, it is also proportional to the (relative) deviation of 
the quantity x2 from its mean value; that means, this term 
does not only vanish in the limit y-o, but also in the absence 
of fluctuations of x2

• As the relation 

(29) 

shows, this can be reached, if PNL does not depend on the 
coordinates (whereas it still may be time dependent). 

A stationary solution of the FPE is obtained only for 
t-oo with the corresponding limits limt~«> PWP,NL = ° and 
limt_«> (x2

) = 00, respectively; i.e., PWP,NL (x,t) asymptoti
cally approaches a stationary final state which is character
ized by an infinitely broad and at the same time completely 
flat density function (in analogy to the linear theory). 

Finally, the x-independent term of the NLSE supplies 
us with an equation for the determination of K (t ), 

K(t)= ~ m r,2+ L~, (30) 
Ii 2 4 aR 

from which the coefficient K (t ) might be easily obtained. 

B. Mean values and uncertainty relation 

With the aid of the wave-packet solution the mean value 
of energy can be determined to be 

(
'.l:. d ) m'2+ ~ m'2 ~ -yt 171- = -1/ -- = -1/ + --e . 

dt 2 4maR 2 4mao 

We obtain for t = 0, 

( iii ~ )(t = 0) = m r,2(0) + ~ 
dt 2 4mao 

for t-oo, 

(31) 

(32) 

(33) 

and find that again in the limit y-o this result turns into the 
corresponding quantity of the undamped problem, 

1· ( . .1:. d) m' 2 ~ 1m 171- = -1/0 + --. 
y~ dt 2 4mao 

(34) 

What is remarkable is that taking into account friction 
the mean value (ili(d Idt) = (H )for t-oo completely van
ishes [because of (~/4mao)·e - Y1, whereas without friction, 
even for r,o = ° always a constant, contribution ~ 14mao ex
ists. This phenomenon is closely connected to another one 
concerning the time dependence of the uncertainty product 
of position and momentum. Therefore, we will discuss both 
phenomena together after the determination of this uncer
tainty product. 
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For this purpose we need the relations 

..1p2 = (p2) _ (p)2=~/2aR' 

..1x2 = (x2) _ (X)2 = (x2). 

(35) 

(36) 

In our nonlinear theory this leads to the uncertainty 
product 

UNL = ..1p2 . ..1x
2

= ~[l+(;~ YJ 
= ~ [I + S 2( I _ e - yt)2]::.. ~ 

4 ?' 4 ' 

with a minimum at t = 0, 

UNL,O = ~/4 = UNL,min' 

and a maximum at t-oo, 

U 
y2 A2 

NL,«> = (nI4)(1 +S ) = UNL,max' 

(37) 

(38) 

(39) 

The limit of vanishing friction again yields the expres
sion of the linear Schrodinger theory, 

limUNL = (~/4)[1 + ((lilmao)t)2] = UL, (40) 
y~ 

and hence for the minimum at t = 0, 

UL,o = ~/4 = UL,min = UNL,min' 

and for the maximum at t_ 00, 

(41) 

(42) 

It is striking that without friction for t-oo the product 

..1 p2 . ..1x2 diverges, whereas taking friction into considera
tion this product approaches a finite constant value. At that 
poin"t again in our nonlinear theory the dimensionless quan
tity S = lilmyao appears, which is a pure number character
izing the system also with respect to its maximum uncertain
ty. 

We list some consequences. 
(I t-. If m or ao are very large (like in macroscopic sys

tems), S, and hen~ UNL,Max' are very small, and vice versa. 
(2) For Ii-o S also vanishes. 
(3) If my is very small, S, and hence the effect on a 

microscopic level, is very large, however, the effect on a mac
roscopic level, like, e.g., that represented by the friction term 
- myv in Newton's equation of motion, is very small, and 

vice versa. Due to this combined appearance of m and y, the 
same quantity y is appropriate for a microscopic as well as 
for a macroscopic description. 

(4) If y is very large, which corresponds to frequent in-
A 

teractions between the system and the surrounding. S, and 
hence UNL,Max' are very small; however, if the period ~f time 
between two interactions, 7 = l/y, is very large, S, and 
hence UNL,Max' also increase, and in the limit of complete 
absence of interaction (Le., for 7-00, or y-o, respectively) 
we finally end up with divergency. 

(5) Even in the limit of "permanent interaction" or 
"permanent observation," respectively, i.e., for 7-0, it is 
not possible to come below the lower bound UNL,Min 
= UL,Min = ~/4. 

(6) As ..1x2 = (x2) diverges for f-oo, a finite limit 
UNL,Max for f_oo can only be reached if for f-oo the value 
of ..1pz tends to zero in such a way that the product of both 
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factors yields a finite value. But from .:ip2(t_00) = 0 also 
follows that (p2)(t_00)=0 and therefore (p21 
2m) = (ili(d Idt )(t-oo) = 0; i.e., for t_oo the kinetic ener
gy completely vanishes. This is the above-mentioned con
nection between the behavior of the mean value of energy 
and the uncertainty product of position and momentum. So, 
the divergency of UL for t-oo is due to the constant finite 
value accepted by (iIi(d Idt) and hence also accepted by 

.:ip2. This fact together with the divergency of .:ix2 = (x2) 
causes the product of these two quantities to diverge in the 
linear theory also. 

III. WAVE-FUNCTION SOLUTIONS 

A. Wave-packet solution as a superposition of wave
function solutions 

A shortcoming attributed to nonlinear differential 
equations, and thus also to nonlinear Schrodinger-type field 
equations, is that, in contrast to linear differential equations, 
wave packets cannot be constructed in the usual way by su
perposition of wave-function solutions of the respective dif
ferential equation (see, e.g., Refs. 9-12). This problem shall 
be investigated now in further detail with regard to our 
NLSE. 

The Gaussian wave-packet solution '/IWP,L which is ob
tained from the solution '/IwP,NL of our NLSE in the limit of 
vanishing friction, is a general solution of the linear SE of 
free motion, As the superposition principle is valid in the lin
ear theory, this wave-packet solution can be represented by 
means of the particular solutions 

'/Ik,dx,t) = (l/~).exp{ i[ kx - (J)k t ] 1 
in the form 

'/Iwp,dx,t) = ~ f dk Adk )'/Ik,dk,t) 

(43) 

= -1-fdkAdk)ei(kx-"'kt), (44) 
~ 

where the functions '/I k,L describe plane waves traveling with 
the constant group velocity Vg = (lilm)k (Vg = 2vp; vp is the 
phase velocity) and (J)k = Iik 212m is also constant for given 
k. 

The expansion coefficients Adk) can be determined 
from 

AL(k) = -1-fdX '/IWPL(x,t)·'/Itdx,t), (45) 
~ , , 

As these coefficients Adk) are not time-dependent, it is 
practical to solve this integral for the most simple case, i.e., 
for t= 0, 

AL(k) = -1-fdX '/Iwpdx,O).e- ikx, 
~ , 

(46) 

which means that the Fourier transform of the initial state 
'/I WP,L (O,t ) has to be determined. 

For the Gaussian wave packet under consideration this 
leads to 

(
a )114 

AL(k) =: exp{ - (aol2)(kwp - k )2} (47) 
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with kwp being the constant k-value of the wave-packet solu
tion. 

In order to investigate whether it is possible to find a 
representation of the wave-packet-type solution of our non
linear problem comparable with the one of the linear theory 
which is based on the superposition principle, it first has to be 
analyzed whether there also exist wave-function solutions of 
our NLSE comparable with the plane waves of the linear 
problem, 

Such functions '/Ik,Ndx,t;k (t)) can actually be deter
mined. They have the form 

'/Ik,Ndx,t;k (t)) = (l/~).exp{ i[ k (t)(x - a[k (t)) 

(48) 

with 

k (t) = ko.e - yt 

and for y-D they turn into the plane wave solutions of the 
linear SE. 

The mean value of energy, given by 

(
'Ii d ) _ m . 2() Ij2k ~ _ 2yt 
I dt - 2'" t = ~.e , 

for t_ 00 approaches zero. 

(49) 

An expansion of the wave-packet solution of our NLSE, 
'/IWP,NL (x,t;kwp (t )), appropriately written in the form 

( 1 )1I2( aR )114 {I 2 
'/IWP,NL = -;; --:;; exp - 2;; (x - a [kwp ) 

+ i[ kwp(x - a[kwp) + ~k~p(eyt + 1) + X(t)]}, 
(50) 

with 
X(t) = (yI4)(a[la R ), (51) 

has the form 

'/IwP,NL (x,t;kwp (t )) 

= f dk (t) ANL (k )'/Ik>Ndx,t;k (t)). (52) 

The coefficientsANdk) are determined with the help ofthe 
relation 

ANL(k) = f dx '/Iwp,Ndx,t ). '/I t,NL (x,t ), (53) 

taking into account that in contrast to the linear problem 
now these coefficients ANL are time dependent due to the 
time dependence of k = k (t ). Therefore, it is not sufficient to 
determine the coefficients for the most simple case t = 0, but 
one has to use the explicitly time-dependent functions 
'/IwP>Ndx,t) and '/Ik,Ndx,t) for the calculation. In this way, 
we finally obtain 

ANdk) = ( a; )114 exp{ _ a; (k _ kwp)2} 

xexpH : (k~p - k 2)(eyt - 1) + X(t)]}. (54) 

For t = 0 these coefficients are identical with those of 
the linear theory, 
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(55) 

which are also obtained in the limit y-o. For t #0, however, 
due to the time-dependence of the A NL (k ) they are different 
from those of the linear theory. 

The variation in time of the coefficients is given by 

(56) 

with 

I(k) = (yI2){! + aR (kwp - k )2 

+ iaAk ~p - k 2) + q a[laR }, (56') 

and in particular for t = 0 by 

ANdt = 0) = yHaol2)(kwp,o - kO)2 + a JAdko)' (57) 

In the limit of vanishing friction the variation in time 
also vanishes, which is in agreement with the coefficients of 
the undamped problem being constant in time. 

So the problem just discussed represents an example for 
a nonlinear differential equation for which a Gaussian-type 
solution function exists which can be expanded in terms of 
wave functions. As a special feature in this case, however, the 
fact has to be regarded that each of these expansion functions 
is also a solution of this nonlinear differential equation. That 
means we can construct a solution of a nonlinear differential 
equation by superposition of other solutions of the same 
equation which is usually valid only for linear differential 
equations. In this sense, in analogy to the linear case, our 
Gaussian function can actually be denoted as a wave-packet, 
constructed by superposition of wave-function solutions 
provided with appropriate coefficients. 

From the explicit form of the components tf/k,NL and 
ANdk), respectively, another feature of the wave-packet so
lution of our NLSE also becomes transparent, namely its 
faster spreading compared to the corresponding wave packet 
of the linear SE. 

In the linear case, for t = 0 the Gaussian wave packet is 
constructed from conponents tf/k,NL with different but con
stant k-values, where the contributions of the individual 
components are determined by the constant coefficients 
AL(k). 

For t> 0 a dephasing, and hence spreading, of the 
Gaussian function starts, as the individual components, al
though having constant ceofficientsAL(k), have different k
values and therefore different group and phase velocities. 
However, the differences in velocity remain constant for all 
times t. 

In the nonlinear case, for t = 0 the situation is analo
gous to the linear case, only now the k-values and coefficients 
ANdk) are time dependent. For t> 0 this entails the follow
ing consequences. 

( 1) In addition to the effect of the linear case based on 
the different initial k-values, in the nonlinear case because of 
k (t ) = koe - rt a different change in time of these different 
initial k-values takes place, wherefrom velocity differences 
result which are variable in time. 

(2) Due to the time dependence of the coefficients 
ANL (k) the contributions of the individual components 
tf/k.NL to the wave-packet are also variable in time. 

That means, the reason for the faster dephasing, and 
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hence spreading, of the wave-packet compared to the linear 
case is twofold. It is not only a consequence of the variable 
velocity differences between the components of the wave 
packet, caused by diferent changes of the initial velocities 
during the progress of time, but also a consequence of the 
time dependence of the contributions ANL (k ) of the compo
nents. 

B. Further properties of the coefficients A Ndk) 

A further subject of interest, e.g., with respect to the 
behavior of the density functionpwp,NL = tf/;"P,NL tf/wP,NL' 
are the properties of the absolute values of the coefficients, 
IANdk)l: 

(58) 

with 

Ik 1= Ikwp - k I, 
This quantity depends on the difference between the k

value concerned and the fixed constant value kwp . 
Regarding the change in time also for this quantity, we 

find the following relation 

d 
-IANdk)1 
dt 

=y{ a; k2+ ! }( a; )1I4.exp{ _ a; k2}. (59) 

[Note: (d Idt )IANL(k)1 # I(d Idt )ANdk )1· 
Therefrom we see that the change in time of IANdk)1 

on the one hand is proportional to the friction constant yand 
vanishes for t-o and on the other hAand depends on JA NL I 
itselfandon Ik I. The dependence on Ik I is of such a kind, that 
one term exists which is proportional to k 2e - (aI2)Rk', there
fore corresponding to a Maxwell-Boltzmann-distribution 
law, and a second term which is proportional to e - (aI2)Rk', 

thus describing an exponential decay. This second term war
rants that also for k = 0, i.e., for k = kwp , the absolute value 
IANL I changes in time, despite the fact that the first term 
vanishes in this case; i.e., all coefficients are time dependent. 
A rough qualit!lti ve draft of the change in timAe of IA NL (k ) I as 
a function of Ik I shows a curve starting at Ik I = 0 with the 
posit~ve value Uy((aI1T)R )1/4], running through a maximum 
at IkMax I = (312aR )1/2 with the maximum value of 
e- 3/4[y((a!1r)R )114] and finally approaching the Ik I-axis as
ymptotically (see Fig. 1). 
A The maximum value itself as well as its position, i.e., 

I kMax I, are time dependent, whereby the position of the max
imum approaches Ik I = 0 with the progress of time. 

IV. THREE-DIMENSIONAL FREE MOTION INCLUDING 
FRICTION 

With the aid of the product ansatz 

tf/(r,t) = tf/x(x,t ). tf/y ( y,t ).tf/(z,t), (60) 

the corresponding NLSE 

{Hi!£ + ~.1 + i~ln tf/ - (In tf/»)} tf/ (r,t) = 0 (61) 
dt 2m 

can be separated into three NLSE's of the same kind, 
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0.50 

0.25 

{ ifl!!:.- + .!f.- ~ + iflr{ln IJIx - (In IJIx»)}lJIx(X;,t) = 0, 
dt 2m dx2 , " 

I (62) 

which is the NLSE of the one-dimensional free motion in
cluding friction, already discussed in the previous sections of 
this work. 

V. FURTHER APERIODIC MOTIONS 

A. Free fall Including friction 

Inserting the potential V = mgx, wherefrom the con
stant force of gravity K = - mgex (with ex = unit vector in 
the x-direction) can be derived, into the NLSE and again 
arranging the terms in powers of x = x - TJ(t), in compari
son to the NLSE of the free motion we obtain an additional 
contribution to the x- andxO-terms, respectively; thex2-term 
remains unchanged. 

The additional contribution to the x-term entails that 
TJ(t ) now has to obey the classical equation of motion 

mr, = - mg - mriJ. (63) 

Due to the additionalxO-termk (t ) for the wave-function 
solution in this case has the form 

k = ~ ( m iJ2 - mgTJ) = ~ ~(TJ,iJ;t), (64) 
fl 2 fl 

with 

~(TJ,iJ;t) = (mI2)iJ2 - mgTJ = T(iJ) - V(TJ) 

and 

( ifl!!:.- ) = m iJ2 + mgTJ = T(iJ) + V(TJ), (65) 
dt 2 

and for the wave-packet solution 

k = ~ ( m iJ2 _ mgTJ) + L ~ , 
fl 2 4 aR 

(66) 

respectively. 

B. Constant electric field Including friction 

As in this case the potential V = esx also linearly de
pends on x, just as in the preceding problem we get an addi-
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FIG. 1. Rough qualitative draft 
of(d /dt )IANL(k)1 asa function of 
I k I. Ordinate in units of 
[r(aR hr)'/4]. 

Ik I 

tiona! x- and xO-term, respectively. 
The x-term leads to the classical equation of motion 

mr, = es - mriJ· (67) 

From the xO-term results 

k = ~ (m iJ2 + eSTJ) = ~ ~(TJ,iJ;t) 
fl 2 fl 

(68) 

for the wave-function solution and 

k = ~ ( m iJ2 + eSTJ) + L ~ 
fl 2 4 aR 

(69) 

for the wave-packet solution, respectively. 

VI. CONCLUSION 

We would like to conclude with a few remarks compar
ing periodic and aperiodic motions in the linear Schrodinger 
field theory and our nonlinear field theory, respectively. 

Describing a spatially restricted periodic motion like 
the motion in the potential of a harmonic oscillator by the 
aid of both methods mentioned above, it is found that in both 
theories a positive ground state energy has to exist in order to 
fulfill the uncertainty relation of position and momentum. In 
this ground state, however, the system has a momentum and 
thus a velocity larger than zero. Therefore, in the nonlinear 
theory which takes into account a velocity-dependent fric
tional force, also in this energetically lowest state there still 
exists an interaction with the surroundings (for details see, 
e.g., Refs. 1-3). 

Regarding now a spatially unrestricted aperiodic mo
tion like the free motion, in the framework of the linear the
ory, i.e., without friction, we find that always UL >f!2 14 is 
fulfilled. 

(1) (..:1 p2)L always has a constant positive value f!2 12ao• 
This also manifests in the fact that for every choice of iJkl' 
even for iJkl = 0, the energy of the system contains a con
stant positive contribution EL •O = f!2 1 4mao > 0, in a way a 
kind of "ground state" energy. 

(2) (..:1X2)L is certainly time dependent, but it only ac
cepts values between aol2<:. (..:1X2)L <:. 00. 

But ..:1 p2 does not necessarily have to have a positive 

Schuch. Chung. and Hartmann 3091 



                                                                                                                                    

value different from zero for all times t in order that u~fi1 14 
is valid. It only has to be warranted that the product fulfills 
..::1x2 • ..::1p2 ~fi1 1 4, and in particular that it does not complete

ly vanish. In this connection it is quite possible that the fac

tor ..::1 p2 changes in time in a way that it becomes zero under 
certain conditions (e.g., for t---+oo), if only at the same time 

..::1x2 changes in a way that always the product of both fac
tors fulfills the uncertainty relation. 

It is exactly this case that we find investigating our 
NLSE for the frictionally damped free motion. Therefore, in 

spite of satisfying the uncertainty relation, (..::1 PZ)NL = 0 is 
nevertheless possible for t---+ 00 and consequently the com
plete dissipation of the energy (also of the contribution E L •O' 

mentioned above) can be reached. Thereby any further inter
action with the surroundings (due to p = 0 or v = 0, respec
tively) also comes to an end. 

One more consequence of this behavior of (..::1XZ)NL and 

(..::1 p2) NL is the effect that in contrast to the linear theory 
UNL does not diverge for t---+oo, but approaches a constant 
xalue which is characterized by the system-specific quantity 
S = fzlmyao' A more detailed discussion of this fact has al
ready been given in Sec. II B. 

Another important result of the present investigation 
concerns the construction of a wave-packet solution of a dif
ferential equation by superposition of solution functions of 
this equation. 

In a theory based on a linear differential equation (in 
this case the SE) it is possible, for periodic problems as well as 
for aperiodic problems, to obtain solutions of this equation 
by superposition of other already known solutions of this 
equation due to the mathematical properties oflinear differ
ential equations. Moreover, every arbitrary function can be 
represented as a superposition by the solutions of such a 
linear differential equation, if these solutions form a com
plete basis set. So for the harmonic oscillator the correspond
ing properties of the Hermite polynomials can be applied 
and for the free motion we can apply the properties of the 
plane waves. 

Investigating the periodic problem of the undercritical
ly damped harmonic oscillatorl-3 it was certainly also possi
ble to represent the wave-packet-like solution with the help 
of Hermite polynomials containing the correct reduced fre
quency n = (lU~ - yI4)1/2, but this was only a consequence 
of the just-mentioned completeness of this basis set. The in
dividual functions of the representation, however are no so
lutions of the NLSE (except for the function of the stationary 
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final state), a fact which is not unusual for nonlinear differen
tial equations . 

On the contrary, the result obtained for the here-inves
tigated damped free motion is quite unusual. In this case we 
also found a wave-packet solution which can be expanded 
with the aid of a set off unctions similar to the plane waves of 
the linear theory and even turning into these for y---+O. But 
now the innovation lies in the fact that each of these wave 
junctions by itself is also a solution oj this NLSE. So we can 
here in fact speak of a real wave packet. This phenomenon is 
quite untypical for nonlinear differential equations (for some 
works concerned with superposition in other NLSE's see, 
e.g., Refs. 13-16) and resulting consequences will be consid
ered in forthcoming works. 
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The derivation (Forgacs and Manton) of a classical gauge plus Higgs field theory from a purely 
symmetric gauge theory by dimensional reduction is translated into the pictorial language of 
symmetric connections on principal bundles. The bundle description provides a better 
understanding of symmetric gauge theories; its global nature excludes some gauge group
symmetry group combinations, and shows that the reduced gauge group is larger than the 
centralizer C H as previously thought. In general it is a certain factor group, N K / K, involving both 
the gauge and symmetry groups, and contains C H as a normal subgroup. The commonly used F 2 
Lagrangian of symmetric gauge theories will not prescribe the dynamics of fields associated with 
this larger group, unless these fields are suitably constrained. It is shown that a constrained 
Kaluza-Klein metric is required to construct theF 2 Lagrangian, thus pointing the way to include 
dynamics for the N K / K group. 

PACS numbers: 11.15. - q, 02.40. + m, 11.30. - j 

I. INTRODUCTION 

Several attempts have been made to "derive" the 
electroweak theory,l--6 however, the approach of Forgacs 
and Manton7 seems to be the most promising (we will refer to 
the work of these authors as FM). This approach has been 
successfully used to derive the bosonic sector of the theory8 
as well as to produce the fermion-Higgs couplings.9

•
iO The 

approach is simply to start with a gauge field (group G ) on an 
extended space-time M (4 + extra dimensions) with metric 
and require that the gauge and metric fields be invariant 
under a symmetry group S. The symmetry removes the extra 
dimensions of extended space-time as being true indepen
dent variables and also turns some components of the vector 
potentials on M into Higgs fields corresponding to a reduced 
gauge group (see Secs. II and III) on reduced space-time M: 
(four dimensions). The remaining vector potential compo
nents on M transform as vector potentials on M: but under a 
smaller gauge group. 

Parts of the construction seem somewhat arbitrary and 
others difficult to follow when presented in the usual vector 
potential approach of gauge theories. However, to those fa
miliar with principal bundles it becomes extremely transpar
ent when stated in terms of a symmetric connection. In parti
cular a careful bundle analysis clearly shows that N K / K (not 
C H) is the correct reduced gauge group before spontaneous 
symmetry breaking (see Sec. II), and also gives explicitly 
which representations of NK/K can appear as Higgs fields 
(see Sec. III). Some of these results have been independently 
found by Jadczyk and Pilch. II 

In general the resulting gauge field on M: corresponding 
to N K / K contains fields from both the symmetric metric 
and the symmetric gauge field (group G) on M. However, in 
FM the metric on M was constrained so that only part of the 
N K / K connection was nonintegrable, i.e., the part corre
sponding (isomorphic) to the centralizer group 12 C H C G [see 
Sec. II, Defs. (f) and (g)]. Consequently, with a proper choice 
of gauge (cross section) the nonvanishing vector potentials of 
N K / K take their values only in the Lie algebra of CHand are 
completely determined by the original symmetric gauge field 
on M. In the conventional presentation, the dynamics is giv-

en by taking f - !F2 dVm as the action for the symmetric 
gauge field on M. Because of the invariance of both the gauge 
field and the metric on M, this integral reduces to an action 
on 1\1 for the reduced gauge plus Higgs fields, including a 
Higgs potential, which for the proper gauge-group-symme
try-group combination is exactly the potential of the GWS 
theory8 (see 5.28). In this conventional approach the con
struction of the F2 Lagrangian appears to depend on a some
what arbitrary choice of metric on extended space-time. 
However, in the bundle description the metric on M is seen 
to be the metric of a reduced Kaluza-Klein space. 13 

In the next three sections we define several needed 
mathematical structures. In Sec. II we give those definitions 
necessary to understand symmetric principal bundles, and in 
Sec. III those needed to understand invariant connections on 
such bundles along with their related Higgs fields. Also in 
Sec. III we elucidate the global construction by looking at 
the familiar Higgs fields of rank 2 gauge groups.8 In Sec. IV 
we define Kaluza-Klein spaces and reduced Kaluza-Klein 
spaces after pointing out that structures beyond a symmetric 
connection are required in the FM construction. We are then 
able to give the full geometrical description of dimensionally 
reduced symmetric gauge theories. In Sec. V we express the 
commonly used F2 action on extended space-time in a gauge
independent form and use the S symmetry to reduce it to an 
action on space-time for the reduced gauge plus Higgs fields. 
For completeness we then apply the reduced action to the 
examples of Sec. III and derive the bosonic sector of the 
GWS theory.8 Even though these rank 2 models are incor
rect when fermions are included,9 no currently known model 
properly includes both. 

II. THE SYMMETRIC PRINCIPAL BUNDLE 

If a simple Lie group S acts as a group of bundle auto
morphisms of a principal bundle 52 = [Q, M, 11, G, If/] we 
call 52 symmetric. 14-18 As usual we take Q to be the bundle 
space, M the base space (extended space-time), G the (simple 
compact) Lie group, 1Tthe projection ofQ onto M, and If/ the 
right action of G on Q (see Fig. 1). Symmetry means there 
exists a map f/>: Q X S--Q such that 
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f---:;,.4-t-_by R'I,I .<1101 

or H. actioD OD q 

Space leoerated 
by S action on .(q) 

~M=Q/G 

FIG. I. The symmetric principal bundle!12 = [Q, M, 'IT, G, If/] and associat
ed quotient space M. 

cPs is a diffeomorphism, 

cPs, ° cPs, = cPs,s" cPs°tJIg = tJlg0cPs. (2.1) 

We will denote the induced action of Son M by rp, i.e., rp: 
MXS~M, where 

(2.2) 

We can also define an action ~ of S XG on Q, i.e.,~: 
QX(SxG)~Qby 

~(s.g) = \fIgO~S = ~so\flg. (2.3) 

Several essential structures can now be defined 

(a) M as reduced space-time 

M=Q/(S X G )~M/S, 

where factorization is by the action of ~ and rp, respectively 
(see Fig. 1). We assume the Sand G actions are such that the 
factor spaces are all well-defined differentiable manifolds, 
and that the projections rrtp: M~M, 1T.x: Q~M have locally 
trivial sections with fibers generated by homogeneous ac
tions of Sand S X G, respectively. Here 1Ttp and 1T.x are de
fined by 

1Ttp (m)=rps(m)= {rps(m)EM IsES }EM/S, 

1T.x(q) ~SXG(q)={~(s.g,(q)EQI(s,g)ESXG}, (2.4) 

and since m==tJlG(q)=={ tJlg(q)EQlgEG }EM = QIG, we con
sequently have rps(tJlG(q)) =~SXG(q) = 1T.x(q), or equiv
alently 1T.x = 1Ttp 01T. In Manton's examples8 M is just Min
kowski space and M is M with a two-sphere, S 2, attached to 
every point. The rp action of S is the simultaneous rigid rota
tion of all the two-spheres into themselves. 

(b) Kq CS X G as the isotropy group of qEQ, i.e., (r, 
h )EKqq~I'.h)q = q. 

(c) RTrl,q) CS as the isotropy group of 1T(q), i.e., rERTrl,q) 
Q({J,(1T(q)) = 1T(q). 

It then follows that Kq and RTrl,q) are isomorphic [i.e., (r, 
h )~r]. The proof is short. Let (r, h )EKq~~I'.h)(q) 
= ~o~I'.h)(q) = 1T(q) but the left-hand side simplifies 
1TO~I'.h)q = 1T0tJIh ocP,(q) = 1T0cP,(q) = rp,01T(q) and hence 
rERTrl,q)' Conversely if rERTrl,q)~(q) = rpr!1T(q)) = 1TOcP,(q) 
~ and cP,(q) are on the same fiber and hence there exists a 
unique lj(r)EG such that tJI~I,)(cP,(q)) = q, i.e., (r, lj(r))EKq. 
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From this proof we see that Kq defines a homomorphism of 
RTrl,q) onto a subgroup Hq C G, 

r~lj(r)q(r, lj(r))EKq. 

(d) QK as the reduced bundle space of the reduced gauge 
group before spontaneous symmetry breaking (see Fig. 2). It 
is the subspace of Q which has a common isotropy group 
K,15 

(2.5) 

What we assume here is that K is a Lie subgroup and that M 
is covered by local sections of 1T.x: Q~M = Q/S X G con
tained in QK (see Fig. 2). These are quite restrictive but are 
tacit assumptions made in FM. The latter amounts to assum
ing that when 1T.x is restricted to QK (call it 1T:2') then 

(2.6) 

is a locally trivial fiber bundle. If R CS is defined as the 
projection of K into S by R =pr\(K) we can define MR 
d1T(QK) by 

(2.7) 

and consequently there is a set of sections of 1Ttp: 
M~M = MIS covering M and contained in MR (see Fig. 2). 
When 1T.x and 1T are restricted to QK we call them 1T:2' and iT, 
and when 1Ttp is restricted to MR we call it 1Tip' From the 
above it follows that 

(2.8) 

and all are projections for locally trivial fiber bundles. At the 
end of this section we argue that they are in fact principal 
bundles. 

(e) ZR' ZH' and ZK are the centers of R, H, and K, 
respectively [H = pr2(K)CG). Here 

ZR-{rERlrr'=r'r, Vr'ER} (2.9) 

is the subgroup of R which commutes with every element of 
R. ZH and ZK are similarly defined and ZK = CKnK, etc. 

(f) CR, CH, and CK = (CR, CH) are the centralizers ofR, 
H, and K in S, G, and S X G, respectively. Here, 

CR ={ eES ler = re, Vr ER }, (2.10) 

Fiber "' .... Ied by 
NKIK action OD q 

("1-:----"J1t-- Fiber generated. by 
CH action on q 

Fiber generated by 
P11(NK)/R action on 1r(q) 

MR =,(QK) 
=QKICH 

FIG. 2. The reduced symmetric principal bundles !12 K = [QK, M, 1T'I. 

NKIK, 1'], JlR = [MR, M, 1T'~, NRIR, qJJ, and i?i = [QK,1T{QK), 1i', CH , 

~]. 
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is the subgroup of S which commutes with every element of 
R. CH and CK are similarly defined. 

(g) NR, N H' and NK are the normalizers of R, H, and K 
in S, G, and S X G, respectively. Here, 

NK={nESXGlnK=KnJ (2.11) 

is the largest subgroup of S X G which contains K as a normal 
subgroup. Similar definitions are given for NR and NH. No
tice that N K also contains C K as a normal subgroup, and the 
connected components of the identities are related by N~ 
= C~.Ko (see Appendix). 

(h)AR ,AH, andAK are the connected normal subgroups 
of C R' C H' and C K' respectively, generated by the subalge
bras of C ~, C k, and C;' which are Killing orthogonal to 
Z R' Z it, and Z;', respectively. Killing orthogonal means 
orthogonal with respect to the negative definite Killing me
trics on S, G, and S X G. For the connected components of 
the identities, it follows that C~ = AR .Z~, C~ = AH'Z~, 
and C~ =AK'Z~, Since Sand G are compact and ZR is 
closed inAR the intersectionsARnZR, AHnZH, andAKnZK 
all have trivial Lie algebras. 

(i) WR, WH, and WK are the connected normal sub
groups of R, H, and K, respectively, generated by the subal
gebrasofR ',H', andK', which are Killing orthogonal toZ ~, 
Z it, and Z;', respectively. Again we have R 0 = WR .Z~, 
H O = WH·Z~, and K O = WK·Z~, with finite intersections 
WRnZR, WHnZH, and WKnZK. 

We conclude this section by showing that if 

1T"I: QK __ M = Q/(S X G) (2.12) 

is a locally trivial bundle then it is a principal bundle with 
group N K I K. The proof is done in two steps. The first is to 
show that N K is the subgroup of S X G which maps ~ onto 
itself under the action of I and second that N K I K acts free
ly. First 

In (q)EQK, for all qEQK 

~IdIn(q)] =In(q), for all kEK, qEQK 

~In-' {IdIn(q)]J =q 

~Inkn-' (q) = q, for all kEK, qEQK 

~nKn-l=K 

~nENK' 

Second we start by defining the action ~ of N K IKon QK by 

~lnK} (q) = Indq) = Ink,(q)· (2.13) 

This equation shows that ~ is a well-defined action of cosets. 
If it were not free then q = In(q) = Ink(q) for some qEQK, 
but then n would be in Kq ( = K) and hence a member of the 
identity coset K. We call this bundle 

.@K_[QK,M, 1Tb NKIK,~] (2.14) 

(see Fig. 2). From (g) above and the second isomorphism 
theorem of groups it follows that N~/Ko = C~.Kol 

KO=C~/(e~nK°) = e~/z~ =AK/(AKnZ~). Exactly 
the same arguments as above can be used to show that 

1Tq;: MR __ M (2.15) 

is a principal bundle with groUpNRIR and an induced ac
tion 7jJ on MR defined by 
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7jJ(nR} (m) = <f'nr(m) = <f'nr' (m). (2.16) 

We call this principal bundle 

J(R = [MR, M, 1Tq;' NRIR, 7jJ]. (2.17) 

Using arguments as above (2.15) we see (N~/ 
R O)=ARI(ARnZ~), and since the homomorphism N~I 
R 0 __ (N R I R )0 is onto and has finite kernel, the Lie algebra of 
N R IRis just A ~. The typical fiber for 

iT: QK->-1T(QK)CMR (2.18) 

is found by intersecting (e, G) with NK, i.e., (e, G )nNK = (e, 
e H)' and since If/ acts freely it follows that e H is the group. 
We call this bundle 

pj = [QK, 1T(QK), iT, CH, 1jI], (2.19) 

where IjI is the restriction of If/ to the action of CHon QK. 
It is clear that 

(2.20) 

is a normal subgroup of N K I K and is isomorphic to C H C G. 
It is this subgroup that "carries" the gauge field dynamics in 
the FM construction. 12 The remaining part of N K I K is re
lated to the symmetry group S, 

(NK IK)/CH=pr1(NK)/R, (2.21) 

where pr1(NK ) is the projection of NK into S and satisfies 

CR·R~pr1(NK)CNR' (2.22) 

The Lie algebra of pr liN K)/ R is the same as the Lie algebra 
of NRIR which, from above, isA~. 

In Manton's example we don't have to worry about 
gauge dynamics beyond the CH group because NRIR =Z2' 
the cyclic group of order 2 and A R = I~A ~ = O. The boson 
part of the electroweak theory is derived by taking 
- 0 M = space-time,S = SU2 (orS03),R=U! (orS02),and C H 
=AH,ZH withAH=SU2andZH =H=U!.ltthenfollows 

that if G is simple and connected, it must be one of the rank 2 
groups SU3 (or PU3), SP2 (or SOs), or G 2. 

III. A HIGGS FIELD ON M FROM AN S·INVARIANT 
GAUGE FIELD ON M 

In the FM construction, the single dynamical field on 
extended space-time (M) that ultimately produces two dyna
mical fields (gauge plus Higgs) on reduced space-time (M) is 
an S-invariant gauge field. Since Trautman's lectures of 1967 
(see Ref. 19) it has been known that the mathematical struc
ture behind a gauge field on a space M corresponding to a 
gauge group G is a connection w on a principal bundle, 
.@ = [Q, M, 1T, G, If/]. We shall assume this now standard 
description. 

We know that a connection w on .@ is a one-form on Q 
oftype "ad" (the adjoint representation) which takes its val
ues in G I (the Lie algebra of G), i.e., 

If/g(w) = adg -. ow. (3.1) 

Here, w also satisfies 

(3.2) 

wheregEG I and If/g is the Killing field on Q generated by the 
right action of If/eXP(Ag) on Q, i.e., 

d 
If/g(q)= dl{ [If/exP(Agdq)] IA ~ o· (3.3) 
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Readers more familiar with the conventional treatment of 
gauge fields are referred to Sec. IV where 0) is expressed in 
terms of vector potentials df(x) by choosing a local cross 
section u: U C M_Q, introducing a coordinate chart (Xi] on 
U, and a basis (g a] of the Lie algebra G ' . 

ForO) to be called invariant underS (seeRefs.14and 16) 
it must simply satisfy 

cPs(O)) = 0) for all sES. (3.4) 

The presence of such an impressed symmetry reduces the 
dynamical freedom of 0). What starts out as a gauge field on 
!!) reduces, because of the symmetry constraints (3.4), to a 
gauge field on PJ along with some Higgs fields on !!)K. If 
N R / R is finite as in Manton's example, 0) completely deter
mines a connection on !!)K; otherwise, 0) will only determine 
a connection on !!)K if the metric on M is suitably con
strained, e.g., as in FM (see Sec. IV). 

The differential equivalent to (3.4) can be stated in terms 
of a Lie derivative of the connection form 0) with respect to 
the Killing fields cPs generated by sES' (see Ref. 10), 

g <1>,(0)) = cPs...JdO) + d(cPs...JO)) = 0, (3.5) 

where 

Since 0) is a one-form of type "ad" and cPs is G invariant, 
cPs --Xv = O)(cPs(q)) is a O-form (a function) on !!) oftype "ad" 
with values in G '. Its dynamical contents are the Higgs fields 
which spontaneously break the symmetry of the vacuum. 
The differential constraints (3.5) are used in Sec. V to identify 
the kinetic and potential energies of these Higgs fields as part 
of the F2 Lagrangian. The Higgs fields JY on !!)K are the 
irreducible parts of 

JY: QK_S*®G', 

where 

(3.6) 

Remember that Higgs fields are scalars on :M but trans
form under some representation of the internal gauge group 
(here it is NK/K), i.e., they take their values in some vector 
space on which NK/K acts. In this case the space is a sub
space ofthe tensor product ofS * (thedualspaceofS') and G '. 
Such a vector, JY(q), can be thought of as a bilinear map of 
S' ® G * into the reals as defined by (3.6). As we move up and 
down the fibers over :M by applying N K / K via], the values 
of JY will change according to some representation p of the 
reduced gauge group N K / K, i.e., 

(3.7) 

Herep is determined by the properties of 0) [(3.1), (3.2), (3.4)] 
as well as the definition of JY (3.6). Also, S * ® G ' transforms 
as ads ® adG under S X G and (3.1) along with (3.4) imply 
that JY transforms under N K CS X G by the corresponding
ly induced action (aos is just the coadjoint action of Son S *). 
This is proved by the following steps. Let n = (n R' n H)EN K 

then 
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. 
JY(..!'n (q))(s, g) 

= g{ 0) [ cPsI..!' n (q)) ]} (by def. of cW') 

= g{ liJ [ cPsI 'PnH °cP nR (q))] } 

= g{ 0) [ 'PnH • cPslcPnR (q))]} 

= g{ 'PnHO) [cPs(cPnR (q))]} 

= g{ adni/ ,00) [cPs(cPnR (q))]} [by (3.1)] 

= (adnHg){ liJ [cPslcPnR (q))]} 

= (adn;){ 0) [cPnR • cPni< ,.cPs(cPnR(q))]} 

= (a-dnHg){ 0) [cPnR • cPadnR(S)(q)]} 

= (adn;){ 0) [ cP adnRIs) (q)] } [by (3.4)] 

= JY(q)(adnRs, adn;) [by (3.6)] 

= (ad _, ® ad _ ,)JY(q)(s, g). 
nR nH 

Since qEQK is a fixed point of the isotropy group 
KCNK, the above also shows that JY(q) is fixed under the 
induced action of K, i.e., JY takes its values in the subspace 
(S * ® G f on which K acts as the identity, 

(S* ® G't=(vES* ® G'ladr ®ad~lr)(v) = v, 

VIr, f)(r))EK ]. (3.8) 

By decomposing the vector spaces S * and G ' into direct 
sums of subvector spaces which are invariant under the 
coadjoint and adjoint actions of NR and NH , respectively, 

C~ 

r--L-, 
(3.9) 

(3.10) 

we can expand (S * ® G f as a direct sum of five subs paces 
(all invariant under NK and NK/K) 

(S* ®G't = (A ~ ®A y)G)(A ~ ®Zy)G)(X~ ® Wy)K 

G)(X~ ®XytG)(R *®H,)K. (3.11) 

In the above N ~, W~, Z ~, and A ~ are the dual spaces 
to the Lie subalgebras of S' corresponding to the subgroups 
N R, WR, ZR' andAR respectively, andX~ andX y are the 
vector subspaces of S * and G ' which are "Killing" orthogo
nal to N ~ and Ny, respectively, and are invariant under the 
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action of N R and N H (remember Sand G are simple compact 
Lie groups). Equation (3.2) further restricts ~ to a subspace 
of (S· ® G ')K. Since .Ik(q) = '/Il)(,) <P,(q) = q it follows that 
'/Il),(~)(q) + <P~(q) = 0 and (3.2) implies 

w(<P~(q)) = -f)'(r). (3.12) 
Here f)': R ' _H ' is the Lie algebra homomorphism induced 
by the Lie group homomorphism f): R-H [see Sec. II, Def. 
(c)]. From the definition of ~ in (3.6), . . . 

~(q)(r, h ) = h [w(<P~(q))] = - h (f)'(r)), (3.13) 

i.e., ~(q)'s values in (R • ® H ')K are completely determined 
by f): R-H and consequently the dynamical freedom of the 
Higgs field is carried by the components of ~(q) in the first 
four invariant subspaces of (3.11). 

We will not go further into the general decomposition 
of ~(q) into irreducible parts but will tackle each case indi
vidually. Even though Manton's first examples8 do not prop
erly include the fermions of the GWS theory,9 they are sim
ple and familiar enough to clarify the coordinate free 
definition (3.6) as well as to illustrate how the global struc
ture excludes some symmetry-group-gauge-group combina
tions. In these examples we have S = SV 2 (or S03)' R = VI 
(~S02) and consequently CR = ZR = R~CRIR -::::d, A ~ 
= (NRIR)' = 0, A ~ = O. We also have C~ = H·A H with 

ZH =H~Vl and AH~SV2' Since WH =1, W~ = (H I 
Z H)' ~(I)' = 0 and consequently only the subspace (X ~ 

e_
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e_3/ 2 

-
e 3/ 2 

® X ~)K remains as the dynamical range of the Higgs field. 
The most efficient way to analyze this subspace's transfor
mation properties under actions of the reduced group N K I K 
is to choose a special basis for S' and G '. If we pick I L 3, L +, 

L -I as a basis of S' (SV; or SOi ) and the dual basis I 0 3,0 - , 
0+1 as a basis for s· [0 -(L+) = 1, etc.], we then have I L31 
as a basis of R " I 0 31 as a basis of R ., {L +, L -I as a basis of 
X ~ , and IO - , 0 + I as a basis of X ~ . Here, R acts on X ~ by 

adexp(8L,){L ± ) = e=F i8L ± ~[L3' L ± ] = += iL ± ' 

(3.l4) 

andonX~ by 
-d (0 'f) - ± i80 =F a exp(8L,) - e , (3.lS) 

where 0<,0<, OR , OR = 21T for S03, OR = 41T for SV2. 
For a basis of G' we pick I YH, 13, 1+, 1_, ea }, where 

I YH I is a basis of H', II3,! +, L I a basis of A ~~SV;, and 
I Y H, I3J a basis of a Cartan subalgebra. That G' is rank 2 
follows from C ~ = V; Ell SV; (it contains all group genera
tors commuting with V;). The ea are a set of root vectors 
beyond 1+ and 1_. There are four, six, and ten of them for 
G' = SVi (PVi), Sp; (SO;), and G;, respectively. All basis 
vectors are chosen to have equal Killing lengths and scaled 
so that 

adexp(tPI,)(I±)=e=FitPI±~[I3'!±] = +=iI±, (3.16) 

where 0<''''<''''3 ("'3 = 21T or 41T), see Fig. 3 for all root dia-

Y
H 

13 FIG. 3. Root diagrams. 

-
eO 

e 3/ 2 

13 

-
e_ 3/ 2 
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grams and configurations. This scaling makes {I3' 1+, 1_ J 
the usual weak isospin generators but makes Y H only pro
portional to the weak hypercharge Y. The homomorphism 
~: R ---+H is uniquely determined by an integer n i-0, 

exp(OL3l---+~(exp(OL3)) = exp(tPYH) 

= exp[(ntPHIOR)OYH], (3.17) 

which in turn determines ~': R '---+H', 

~'(L3) = (ntPHIOR)YH· (3.18) 

Here the domain for Ois O<O<OR and fortP isO<tP<tPH' 
The ratio tP H I OR is fixed by which Sand G are used as well as 
by which SU2 subgroup of G is picked for A H • Equations 
(3.13) and (3.18) fix K(q)'s value in (R • ® H ')K of (3.11) as 
- ntPHIOR0 3 

® YH' The hypercharge operator, Y, is the 
generator ofU 1 scaled so that exp(21T Y) = I, and consequent-
ly 

(3.19) 

Here U 1 representations will be given by integer values (Yj 
= 0, ± 1, ± 2, ... ) ofthe hypercharge. 

The N K I K invariant subspace (X ~ ® X Ii)K is now easy 
to determine, it is the space spanned by all vectors of the 
form 

TABLE I. Parameters associated with various GS combinations. 

Gauge Symmetry 
group group exp(6RL3) = I 

G S 6R 

SU3 SU2 41r 

S03 2fT 
PU3 SU2 41r 

S03 2fT 

SP2 SU2 4fT 
S03 2fT 

SOs SU2 4fT 
S03 2fT 

SP2 SU2 4fT 

.~ 
S03 2fT 

SOs SU2 4fT 

S03 2fT 

G2 SU2 4fT 

dt . . . 
S03 2fT 

@- G 2 SU2 4fT 

. . S03 2fT 
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{O-®em +O+®emJ and i{O-®em -O+®emJ, 
(3.20) 

where em transforms as adli(r)em = e - igem to just compen-

sate for adr(O -) = ei90 -. From (3.17) we have 
ad (e) = e - i[9R/n~HJ~e 

.XP~YH m m' (3.21) 

or equivalently 
[YH, em] = - i[ ORlntPH ]em, (3.22) 

i.e., the YH components of the root vectors for em must 
match one of the numbers 0R/(ntPH)' where n = ± 1, ± 2, 
... ; or equivalently the hypercharge Yj as defined by (3.19) for 
em must match one of the values OR/(21Tn). This is a con
straint on G' caused by the group homomorphism 
~: R ---+H C G and excludes several S-G combinations. In par
ticular, the G = SU 3 case is excluded altogether (see Table I). 
Equation (3.22) shows that the permitted em's come from a 
single horizontal (see Fig. 3) string of roots corresponding to 
a (2j + I)-dimensional irreducible representation of the iso
spin (~SU2) subgroup generated by {I3' 1+, LJ. Conse
quently the complete Higgs field is 

K(q) = m~+j(JI1""(q)O-®em +c.c.)- ntPH 03®yH, 
m=-j OR 

exp(~HYH)=I Isospin 

~H j 

4rn 

4fT/V3" 

4fT 

2fT 

4fT ~ 
0 

~ 
0 

4fT ~ 
0 

~ 
0 

~ 
0 
! 
~ 
0 

! 

4fT/V3" ~ 
0 

! 
0 

Hypercharge 

YJ 

3 

2 
2 
1 
1 

1 
2 
1 
2 
1 
2 
1 
2 

1 
2 
3 

1 
2 
3 

2 
1 

2 

~:R-+H 
rep. 

integer n 
6R /(2fT YJ) 

2 
1 

1 

! 
2 
1 

2 
1 
1 

! 
2 
1 
1 

! 

2 
1 

i 
1 

! 
~ 

2 
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Possible 
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no 

no 

yes 
yes 

yes 
no 
yes 
yes 

yes 
yes 
yes 
no 
yes 
yes 
yes 
no 

yes 
yes 
no 
yes 
no 
no 

yes 

yes 
yes 

no 

3098 



                                                                                                                                    

where F"(q) are complex functions on QK and transform as 
a (2j + 1) representation ofisospin and aYj = OR/(21m) re
presentation of hyper charge Y. This fixes the permitted val
ues of n at ± 1 for S03 (::::} Yj = ± 1) but allows n = ± 1, 
± 2, for SV 2 (::::} Yj = ± 2, ± 1). See Table I for the permit

ted Higgs field and their V I' SV2 representations. From this 
table and Fig. 4 it is also clear that for a given homomor
phism lj: R -----+H, only one set (j, Yj) of Higgs fields appear at a 
time. 

The dynamical components of the symmetric connec
tion w on Q beyond those contained in the above mentioned 
Higgs field on ;!}K are equivalent to a connection w on 
gwhich is given by pulling w back to the subspace QK C Q. 
This connection is invariant under the action of pr 1 (N K ) C S 
as given by 'iP [<P restricted to pr 1 (N K P C Rand QK ]. We 
first prove that w takes its values in C II' Let id be the sub
space mapping QK-----+Q, then w = id w = id(Ikw) for all 
kEf(. The last equality follows from the definition ofQK, i.e., 
I K oid = id. But we know 

Ikw = 1[I~lr) <Prw = 1[I~lr)w = ad~lr)-1 ow, (3.24) 

from (3.1) and (3.4), and consequently 

w = ad~w' Ow = adh _lOW, (3.25) 

for all rER or equivalently for all hEll, i.e., w takes its values 
in the subspace of G' which is invariant under the adjoint 
action of H C G. This subspace is C II' the Lie algebra of C H 

[see (t), Sec. II]. The three properties necessary for w to be a 
symmetric connection on g, 

q/chW = adch _lOW, (3.26) 

W(q/Ch (q)) = th, (3.27) 

and 

<Paw = W, (3.28) 

all follow from (3.1) and (3.4) along with ide q/ch = I[Ich oid 
and ido4)a = <Pcroid. 

The restriction of w to QK in general cannot completely 
define a connection on ;!} K because of the absence of values 
inA ~,or equivalently the horizontal subspaces defi~ed by w 
are dimensionally larger than the tangent spaces to M by the 
dimension of A ~ . However, in the general case it does deter
mine part of the reduced connection wK on ;!}K. In FM, 
where there are no dynamic gauge fields associated with 
pr I(N K)/R [see (2.21)], w determined "all" of WK. In particu
lar, ifCR = ZR thenA ~ = OandwK = wis the reduced con
nection on ;!}K. For Manton's special cases, C H = V; 
$ SV;, and the connection wK is the gauge field of the inter
mediate vector bosons of the electroweak theory. 

IV_ KALUZA-KLEIN SPACES 

The Lagrangian density used in FM was the standard 
- IF 2 term of the symmetric connection wand is currently 

in wide use. Even though the Lagrangian cannot exploit the 
dynamics of the full reduced gauge group N K / K we can 
show its construction requires the presence of a Kaluza
Klein structure thus pointing the way to the Lagrangian 
which can. Here, Fis just the pullback of w's curvature (11 ) by 
a cross section (0-, U) 

F=o-l1, (4.1) 
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where 

11 =hor dw = dw + Hwlw]. (4.2) 

Since 11 is a G ' -valued two-form of type "ad," construction 
of the cross section (gauge) independent scalar -lF 2 re
quires two, possibly dynamic, fields beyond w on ;!}. One is 
equivalent to a metric gM on M, and the other is equivalent 
to a symmetric nondegenerate field gG of type ad ® ad on P2 
(i.e., gG has values in the space of inner products on G '). 
These two fields, along with w, make 5!2 a Kaluza-Klein 
space as can be seen from definitions below. In general, gM 
andgG contain fields whose dynamics are not determined by 
a Lagrangian density of the form -lF 2

• In the FM con
struction these fields are externally prescribed, however, by 
altering the Lagrangian their dynamics could easily be de
fined. 

Kaluza-Klein spaces are of two types, the principal 
bundle type and the reduced-symmetric principal bundle 
type2

0-
23; we will call them KK and reduced KK, respective

ly. A KK space (P2, gQ) is a principal bundle 

P2 = [Q, M, 1T, G, 1[1], (4.3) 

with a nondegenerate G invariant pseudo-Riemannian met
ricgQ on Q. This metric has to induce a nondegenerate met
ric on the fibers of P2 thus allowing the decomposition of the 
tangent space TQq at qEQ into a direct sum of a vertical 
subspace Vq (=subspaceofTQq tangent to the fibers) and a 
horizontal subspace Hq (== subspace of TQq orthogonal to 
Vq by gQ): 

TQq = Vq $Hq, 

with Vq·Hq = O. 

(4.4) 

Giving such a G invariant metric gQ on Q is equivalent 
to giving three separate structures: 

(1) w, a connection on P2; 

(2) gM' a metric on M; 
(4.5) 

and (3) gG' a nondegenerate field on;!} of type ad ®aa with 
values in G * X G * (i.e., with values in the space of inner pro
ducts on G '). Now gQ can be expressed in terms of these three 
equivalent fields as 

gQ =gGo(W®W)$1TgM, (4.6) 
where gG and w can be found from gQ by choosing a basis 
{ 2' a J of G' and from it computing a basis of Killing fields 
{Sa J on Q [by using (3.3)]. ThengG and ware given by 

gG(q) = gQ (Sa (q), Sp(q))oa ® OP, (4.7) 

w = [gQ (Sa (q), Sp(q))] -lgQ(Sp, _)2' a' (4.8) 

where {e a 1 is a basis of G * dual to {.2" a J, and gM is most 
easily consructed by projecting gQ" I onto M (see 4.31). 

Various restrictions can be, and are frequently, placed 
on the range of gG' e.g., gG can be restricted to take on only 
"ad" invariant values, or even further restricted (as in FM) to 
the fixed Killing form of G. In all but the latter case there is 
some dynamical freedom in gG' Because such fields behave 
as scalars on M, (P2, gQ) is sometimes called a Jordan-Ka
luza-Klein space.24 

Besides any artificial restriction of gG as in the FM con
struction, the underlying KK metric gQ (or equivalently w, 
gM' and g G) has to be constrained by the group of bundle 
automorphisms (2.1), (S, <p), acting as isometries, 
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cf>sgQ =gQ' (4.9) 

or (by a not too difficult proof) equivalently, 

cf>sw = w, 

and 

(4.10) 

(4.11) 

cf>sgG = gG' (4.12) 

WhengQ is restricted to QK~Q [see (2.5) and (2.14)], it 
induces a metric gQK on QK (which we assume to be nonde
generate). If gQK is also nondegenerate on the fibers of f!)K it 
becomes a KK metric for the principal bundle f!)K. The in
variance of gQK under the~ action of N K I K follows from the 
invariance of gQ under the ~ action of N K ~ S X G. As in 
(4.5), gQK is equvialent to three fields (wK, gM' and gNKIK) 
with no remaining symmetrics such as (4.7), 

gQK =gNKIKO(WK®WK) (})17'gM' (4.13) 

The connection wK will contain gauge field freedom from 
w(w) which is related to the subgroup CH of NKIK and 
gauge field freedom from gM which is related to pr I (N K)I R 
[see (2.21)]. In FM, gM was constrained to make the gauge 
field related to pr I (N K )1 R integrable and a cross section was 
chosen so that potentials with values in (pr I (N K)I R )' =A ~ 
did not appear. 

As for the general structure ofgM , condition (4.9) (and a 
nondegeneracy assumption below) makes 17'",: M-M into a 
reduced Kaluza-Klein space. Recall from Sec. II (d) that 

17'",: M-M = MIS, (4.14) 

has homogeneous fibers (S IR ) generated by the non-free ({J 

action of S preventing M from being the bundle space of a 
principal bundle and hence (M, gM) from being KK. How
ever, when £): R-H of Sec. II, Defs. (c) and (d) are a group 
isomorphism, M and its metric gM can be looked at as the 
result of factoring (reducing) the larger KK space ( f!jJ, gQ)' 
where 

f!jJ = [Q, Q/S, 17's' S, cf> ], (4.15) 

by the action of a group of isometric, bundle automorphisms 
(G, 1jI). What we are now requiring is that the cf> action of Son 
Q be free, thus producing another principal fibration f!jJ of 
Q. The action of G which commutes with the cf> action of S 
now acts as bundle automorphisms of f!jJ. Both bundles f!jJ 

and f!) have the same bundle space Q and the same KK 
metric gQ' gQ can also be decomposed by using the princi
pal fibration f!jJ of Q as 

gQ =gso(ws ®ws)$17'sgQ/S' (4.16) 

where Ws' gQ/S' and gs are defined analogously to (4.5). 
When Q is factored by the 1ft action of G, (.9', gQ) is reduced 
to (f!jJ I G, gM) which symbolically stands for the bundle 
(4.14) and its invariant metric, and which we call a reduced 
Kaluza-Klein space. 

For the simplest example we can take Q to be the direct 
product 

Q = MX(K,,-S XG), (4.17) 

where M, s, G, and K are as before, and K ,,-S X G is the space 
ofleft cosets. Right multiplication by G and right muItiplica-
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tion by S are separately free when K defines an isomorphism 
£): R-H [Sec. II (c) and (d)]. AKKmetricgQ onQforboth 
principal fibrations f!) and .9' can be constructed from a KK 
metric g for the principal bundle 

MX(SXG)-M, (4.18) 

if g is constrained to be invariant under the left action of K 
and nondegenerate on the K fibers. The metric g induces the 
desired metric gQ on the factor space Q in (4.17). This exam
ple is not only KK with respect to the two principal fibra
tions .9' and f!) but also reduced KK with respect to the 
S XG fibration 17'I: Q_M [see (2.3) and (2.4)]. The left ac
tions of K provide the bundle automorphisms. The KK met
ric g on MX(S X G) is equivalent to (see 4.5) a connection 
WSXG = Ws + WG' ametricgM onM and a fieldgsXG ' Here 
Ws [not the same as Ws in (4.16)] must be invariant under left 
actions of R, w G under left actions of H, and g S x G under left 
actions of K. 

Besides these necessary constraints the FM construc
tion further requires the following. 

(1) Ws must be integrable. 
(2)gs xG at any pointinMX(S X G) must take on values 

in the space of inner products on (S X G)' = S' (}) G' which 
when restricted to the G' subspace is the Killing inner pro
duct (up to a fixed constant - G 2), i.e., 

gSXG(x,s,gj(gl,gz) = _GZKG,(gl,g2), (4.19) 

where 
K (" ")-C a Cf3 "yJ.-A 

G' gl,gz = f3y aAgI~2' 
G G 

(4.20) 

whengl andg2 have been expanded in a basis!!f a 1 ofG' in 
which [!fa' !f f3] = C~f3!f y' i.e., 

G 

gl=g'f!fa and gz=f{!fa. 

(3) K' and G' must be orthogonal subspaces, i.e., 

gs x G (x, s, g)(k, g) = 0, (4.21) 

for all kEK' and gEG '. 
(4) The Killing inner product K s' on S' defines a sub

space R ~ orthogonal to R ' and at (x, s, g) the metric gs x G 

defines a subspace (H' X G ')1' orthogonal to H' X G '. In the 
FM construction R ~ projects isometrically [up to a scalar 
S2(X)] onto (H'xG')p i.e., 

gs XG(.s\ + kl + gp 52 + k2 + g2) 

= S2(x)Ks' (51 + rl , 52 + r2 ), 

where 

(4.22) 

gSXG(5; + k; + g;, k) =gsXG(5; + k; + g;, g) = 0, 

for all kEK', gEG', and K s ' (s; + ro r) = 0, for all fER '. 
The K invariant KK metric g on M X (S X G ) that pro

jects by 17'K: MX(S XGI-MXK "-(S XG) to give the FM 
metric gQ on Q (see 4.6) is not unique, however, the simplest 
suchg is 

g = G 28af3 ({J a(g, xl ® ({J f3 (g, x) 

+ (-S2(x)8IA + G28af3~(x)~(x)) 
X ad;nad1n cf> n (s) ® cf> n (s) 

+ G 28af3JY~ (x)ad;-'yad1n 
X (({J Y(g, x) ® cf> n (s) + cf> n (s) ® ({J Y(g, x)) 

+ g;j(x)dx; ® dx j, 
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where rpa(g, x)=fP a(g) + ad;-.p df(x)dxi. 
In (4.23) 1T S x GgM = gij (X)dxi ® dx j is the lift of the met

ric gM on M (space-time), written in terms of coordinates 
! Xi) on M. ! fP ~ (s)) is a basis ofleft invariant one-forms on S, 
corresponding to an ON (orthonormal) basis! 2" ~) of S'. 
Here ON is with respect to the negative definite Killing inner 
product onS', and! fP a(g)) is similarly defined for the simple 
compact group G; and ad;II and ad;" are the adjoint repre
sentations of Sand G, respectively, written in terms of the 
bases ! 2" ~ ) and ! 2" a ) • 

In (4.23) the connection CtJs xG = CtJs + CtJG is given by 

CtJs = fP~(s)2"~, (4.24) 

CtJG = rpa(g, x)2" a' (4.25) 
i.e., CtJs is integrable butCtJG is not. Becausegis constrained to 
be invariant under the left actions of K on QK, 
ad;-.p df(x)dxi 2" a must take its values in C ~, the Lie alge
bra of the centralizer of H (similar to 4.9~.1O). The df(x) 
are just the non vanishing potentials for N K / K, the reduced 
gauge group on fl)K, in a special gauge (see 4.34). 

In (4.23) the functions ~ (x) on M contained in gs x G 

are nothing more than the Higgs fields of (3.6), in fact 

JY(q) = ad:-'a~(x)ad;ne n ® 2" P' (4.26) 

where! en) is a basis of S * dual to ! 2" n ). TheK invariance 
of g implies the K invariance of gs xG (similar to 4.9~.12) 
which produces the K invariance of JY and the decomposi
tion (3.11). Now g of (4.23) can be rewritten in a simpler
looking form as 

g = G 2oap7p a(s, g, x) ® 7p p (s, g, x) 

- S2(X)O~A fP~(s) ® fPA (s) + gij(x)dx' ® dxJ, (4.27) 

where 

cpa(s, g, x) = rp a(g, x) + ad;-'yJ¥1(x)ad;n fP n (s). 

Here gQ is more easily constructed from g in this form be
cause cpa(k ) = dxi(k ) = 0, for all kEK', which follows from 
(3.13) with k = r + g'(r) or equivalently from (4.21). By writ
ing 

g=gKO(CtJK®CtJK)ffJ1TKgQ' (4.28) 

we see that the part of g not determined by gQ is, in our 
simple example, 

gKo(CtJK ® CtJK) = - S2(x)oabad~~ad~A fP ~ (s) ® fP A (s), 
(4.29) 

where! 2" a) C! 2" ~ ) is an ON basis of R '. Note that this 
CtJK is not the same as CtJK in (4.13). Consequently, 

1TKgQ = G 2oapcpa(s, g, x) ®7pp(s, g, x) 

- S2(Xl[ 8~A - 8ab8~o~ ]ad;IIad:n 

X fP II (s) ® fP n (s) + gij(x)dx' ® dx j. (4.30) 

The metric gQ on Q is most easily written as go 1, it is 

gill =g'j(x)hi ®hj - S-2(x)o~nh~ ®hn 
+ G -2oaPSa ®Sp, (4.31) 

where the horizontal vectors hi and h~ are defined by 

h =~ - da _AP(-)f:' 
i-axi a g-'P oYL i X ~a' 

(4.32) 
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Here, S~ and Sa are just the 1TK projections onto Q of the 
Killingfields/~ and/a onMX(S XG)generatedby 2" ~ and 
2" a' respectively, or in other words the Killing fields on Q 
generated respectively by 2" ~ and 2" a [see (3.3) and (3.5)]. 
The hI'S are not all linearly independent. Here CtJ is not easily 
written down, but its pullback 1T KCtJ from Q to M X (S X G ) is 
just 

(4.33) 

where cpa is given in (4.27). Likewise, the pullback of the 
reduced connection on fl)K, CtJK, can be written as 

1TKCtJK = fP~'(s)2" I' + rpa'(g, X)2" a" 

=fPI'(S)2"I' +fPa'(g)2"a' 

+ ad;~.pdf(x)dxi2" a" (4.34) 

where! 2" I' ) C! 2" I) and! 2" a' ) C! 2" a) are ON bases 
of A ~ and C~, respectively. 

v. THE F2 ACTION 

In the FM construction the standard gauge field action 

(5.1) 

was used to give dynamics to the reduced gauge and Higgs 
fields. In general (5.1) originates as an action integral on Q, 

IQ = f - ~gG(nl\*n), JQ 4 
(5.2) 

where * n is the dual of n computed using the KK metric 
gQ .25 The form n 1\ *n is proportional to dVQ,26 has values 
in G' X G', and transforms as a field type ad ® ad, i.e., 

n 1\ *n = (n, n )gQ dVQ, (5.3) 

where (n, n )gQ stands for the inner product of two p( = 2) 
forms induced by the KK metric gQ' and dVQ is the corre
sponding volume form. When g G' a field of type ad ® ad, is 
applied to n 1\ *n as in (5.2) the integrand becomes a form 
proportional to dVQ which is of type p = 1, i.e., invariant 
under the IjI action of G. Equation (5.2) produces (5.1) when 
evaluated using a local cross section (u, U) to "coordinatize" 
Q: 

(5.4) 

where 

(5.5) 

is the volume of the fiber over mEM as measured by the 
vertical part of gQ' see (4.6), and is naturally cross-section
independent. Here d V M is the volume form on M defined by 
gM and also is defined independently of a cross section. The 
other term, ugG(F, F)gM' turns out to be cross-section-inde
pendent because ofthep = 1 nature of(5.2). The action inte
gral (5.2) on the KK space (fl), gQ) can be reduced to an 
action integral on the KK space (fl)K, gQK)' For a general S 
and G invariant scalar function 2" Q on Q, 

1 1 ( VGOiT ) 2" Q dVQ = 2" Q dVQK , 
Q QK VNKIKo1Tz 

(5.6) 
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where VG was defined in (5.5) and VNK1K is defined as the 
volume of the fibers of fl)K over M as measured by the verti
cal part of gQK. The action (5.2) was constructed from var
ious parts of the KK metric gQ on fl) (4.5), however, the 
reduced action on fl)K contains not only parts of gQK' but 
also parts of gQ not contained in gQK' e.g., the Higgs field of 
Sec. III which comes from the OJ part of gQ' When (5.6) is 
applied to (5.2), using (5.3) we get 

IQ = r K( VGoiT _){ - ...!..-gG(.o,.o)gQ}dVQK, (5.7) 
JQ VNKIKo1T.x 4 

and when a cross section aX: M_QK is used to evaluate (5.7) 
we get 

IQ = fM (VGo~){ - ~ gG(.o,.o )gQ oaX }dVM, (5.8) 

where ~: M_M is the cross section defined by ~=iToaX. 
When this is evaluated we arrive at equation (5.7) ofFM (see 
Ref. 7). gQ 1 as given in (4.31) can be used to decompose 
-l gG(.o,.o )gQ of(5.7) and (5.8) into the sum of three terms, 

-l gG(.o, .a )gQ 

= -! gNKIK(.o K, .a K)goK 

+ ~GzS -Z(x)K;; 1 ®KG,(DKiff, DK7t}gQK 

- V(7t}, (5.9) 

where the Higgs potential V (7t) is given by 

V(7t} = ! S -4(X)gG(.o (h.x, hn ), .a (hn' hA ))8 .xn8 IlA 

= l S -4(X)gG(.o (S.x, SIl)' .a (Sn, SA))8 .xn8 nA 

=! S -4(X)gG(OJ( [S.x, Sn ]) + [OJ(S.x), OJ(Sn)] G' 

OJ( [Sn, SA ]) + [OJ(Sn), OJ(SA)] G)8 .xn8 nA. 
(5.10) 

The first step in (5.10),.0 (h.x, hn ) =.0 (S.x, Sn), follows 
from (4.2) and the vertical nature of Sa [Sa is the Killing 
field on Q generated by .5t' aEG' as in (3.3)]. The next step in 
(5.10) required (4.2) to write 

.a (S.x, Sll) = dOJ(S.x, Sn) + [OJ(S.x), OJ(Sn)] G' (5.11) 

and the identity dOJ(u, v) = u(OJ(v)) - v(OJ(u)) - OJ[u, v] along 
with (3.5) to write 

dOJ(S.!' , Sn) = OJ [S.!', Sn ]. (5.12) 

Since 1T Kin = Sn we can evaluate OJ(Sn) by applying its pull
back 1TK OJ [of (4.34)] to In' 

OJ(Sn) = 1TKOJ(/n) = ad;~'rJ¥1.(x)ad;n.5t' a' (5.13) 

from which we can express the Higgs potential as 

V(7t} = lGzS -4(X)8ap{~(X)q:in + ~;/jJ¥1.(X)iff~(X)} 

X{~(X)q~A + ~~A~(x)iff~(X)}8.!'n8nA. 
(5.14) 

In this example VG is constant and we treat (5.9) as the 
Lagrangian density. The first term in (5.9) is the usual - }Fz 
type term for the free gauge field OJK, corresponding to the 
reduced gauge group N K / K. However, when (4.31) is used in 
(5.7) this term starts as 

-l gj.o (hi' hk).o (hj' hi )g'<1, (5.15) 
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but.o (hi' hj) = dOJ(hi' hj) = - OJ[ hi' hj ] = - OJK [hi' hj ] 
= dOJK (hi' hj ) = .a K (hi' hj ). All steps follow because OJs of 
(4.24) is integrable or equivalently because the hi are hori
zontal in both bundles fl) and fl)K [i.e., OJ(hi ) = OJK (hi) = 0]. 
Since the hi contains no S.!' 's then it contains no Killing fields 
generated by ARCS' [see (4.32)], and we are using a gauge 
adopted to the partial integrability of OJK. Applying gNKIK(q) 
for qEQK to (5.14) is exactly the same as applyinggG(q) be
cause (1) .oK(h;. hj) takes on values only in C~C(NK/ 
K )'nG', and (2) both metrics are defined bygQ' i.e., they agree 
when applied to common directions [see (4.7)]. When (5.15) 
is evaluated using the vector potentials of (4.32) the first term 
in (5.9) becomes 

-lgNKIK(.oK,.oK)g K 
Q 

= -lGz8apgj(x)F:k(x)F~(x)g'</(x), (5.16) 

where 

F:k(x)= ~. &'%(x) - -4- &'f(x) + &'r!x)&,J(x)C;/j' ax' axk G 

The second term in (5.9) is the kinetic energy of the 
Higgs field. The one-form on QK, D K iff, is the OJK gauge 
covariant derivative of iff, recall from Sec. III that K trans
forms under a (in general reducible) representation of N K / K. 
Here, (D K iff, D K 7t}g is the usual inner product of one-QK 
forms andK s-; 1 ® KG' is an invariant field on fl)K construct
ed from the Killing inner products onS ' and G " respectively, 
with values in the space ofinner products on S· X G '. When 
(4.31) is used in (5.7) this term starts as 

!GzS -z(x)K;; 1 ®KG,(DKiff, DK7t}g QK 

= ! S -Z(x)gjgG(.o (hi' hn ), .a (hj , hA ))8nA, (5.17) 

however, .0(_, Sa)=O=}.o(hj , hA)=.o(hj , SA) and OJ(hj ) 
= O=}.o (hj' SA) = dOJ(hj' SA)' From (3.5) dOJ(hj' SA) 
= ( - SA ..JdOJ)(hj) = d (OJ(SA ))(hj ) = hj(OJ(SA))' Using (5.13) 

and recalling the partial integrability of OJK we get hj(OJ(SA)) 
= D t(7t}(.5t' A)' where 

D t(7t} = ad;~'p(~jiff~)ad~ (iA ®.5t' a' (5.18) 

with 

~jiff~= ~. ~(x) + C~/j&'J(x)iff~(X). 
ax' G 

Putting this back into (5.17) we have the kinetic energy of the 
Higgs field with minimal coupling to the reduced gauge 
group [the second term in (5.9)], 

!GzS -z(x)K s-; 1 ®KG,(DKiff, DK7t}gQK 

= !GZS -Z(x)gij(x)811A8aP(~i~)(~jiff~). (5.19) 

For completeness we evaluate (5.9) for the electroweak 
examples of Sec. III. Choosing a cross section aX: M_QK

, 

which is induced by the canonical cross section of 
M_M XS X G, we can write the reduced gauge field as 

&,K _aXOJK = dxi &'f'{x).5t' a' 

= dxi(gBi(x)YH + gA i(X)/3 

+gWi+(x)L +gWi-(x)/+J. (5.20) 

The basis of G' used is given in the paragraph containing 
(3.16) and is only ON up to a constant k G,2, see (4.20), 
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- k G,2==KG, (YH , YH ) =KG,(/3,/3) = KG,(/+, 1_) 

=KG,(ea, tal. (5.21) 
The constants g, g', 1", and A are the usual constants of the 
GWS theory and are introduced at the appropriate places to 
conform to Abers and Lee.27 Only two independent param
eters, G and S, are present and we choose to rewrite them as 
functions of g and I" (g' and A are determined by this theory), 
i.e., we choose 

G = kG./g, S -I = r-Iji!, 
and (5.22) 

gij = 1'J;j = ( +, -, -, -). 
When the Higgs field is pulled down to 1M by aX it be

comes 
KK(X)=aXK 

= mr+
j
( g K"'(x)O - ®em + c.c.) 

m= -j r=J? 

- cot OJj 0 3 
® YH, (5.23) 

wheren;HIOR of(3.23) has been replaced by cot 0Jjforj=l=O 
representations. We define tan OJ as the ratio of the Y Hand 
13 root values of ej (see Fig. 3). 

Using (5.20) and (5.22), (5.16) becomes the usual gauge 
term, 

- !G 28 a,Bgij(x)F;k (x)F~ (X)g"1 (x) 

= - !1J;j{B;kBjI + A ~kA JI + 2WJ Wi" J1Jkl, (5.24) 

where 

B;k=a;Bdx) - akB;(x), 

Aik=a;Ai -akAi+ig(W/Wk- - W;-Wk+), 

W J =a; W! - ak W;± ± ig(A i W k± - A i W;± ). 

(5.25) 

For the gauge (reduced) covariant derivative of the Higgs field, (5.18), we have 
m= +j 

aXDKK=(g~)dXk L {[a;K"'(x) 
m= -j 

- i(gjtan OjB;(x) +gmA ~(x))K"'(x) - ig~(j + m)(j - m + 1)/2 W;-(X)K"'-I(X) 

- ig~(j - m)(j + m + 1)/2 W/(x)K'" + I(X)] 0 - ®em + [c.c.]O + ®em J, (5.26) 

and for the Higgs kinetic energy, (5.19) becomes 

~G2S-2giJ8"A8a,B(g;;~)(g;j~) 

m= +J 
= L [a;K"'(x) - ig(j tan OjB;(x) + md'i(x))K"'(x) 

m= -j 

- ig~(j + m)(j - m + 1)/2 W;- (x)K"' - I(X) - ig~(j - m)(j + m + 1)/2 W / (x)K"' + I(X)] X [c.c.] . (5.27) 

The Higgs potential term, (5.14), is 
1 4(Cot 0 )2 m = + J • 1 (m = + j .)2 

V (£') = - ~ -. -j + 1"2 L . K"'(x)K"'(x) + - g2(j tan OJ)2 L. K"' K"' 
2 is } m= -j 2 m= -j 

+ ~ g2C~~j mK"'J~-J + g2cmt~/(j + m)(j - m + 1)/2K'"(X)r-
l
(x)}..rc.c.). (5.28) 

For the doublet Higgs this reduces to 

VI£') = ~p,2 csc2 01/ 2 + p,2:JrtK + A {:Jrt£')2, 
4 A 

(5.29) 

where A =1 g2 sec2 01/ 2, 
As pointed out by Manton,S 01/ 2 is the weak or Wein

berg angle Ow (g'lg = tan Ow), and the Higgs mass Myr 
= F2jiI is the same as the ZO mass (Mz = ~vJil + g/2). 
Of the rank 2 gauge group models the bosons are best de
scribed by SU2-.G2 and S03-02 where j = ~, YJ = 1 for 
which Ow = 30" agrees reasonably well with current values 
as does Mw = ~[- p,2/A] = 76 OeV, and M z = 88 GeV. 
The subgroup C H CO2 is generated by exp { 9' Y H J 
xexp{9' 313 +9'+1+ +9'-L} and is isomorphic to U2, 
consequently the reduced gauge group NKIK is U2, not 
U I X SU2 but does have the same algebra. 

In conclusion we point out the usefulness of recognizing 
(1) that N K I K is the correct reduced gauge group-color 

3103 J. Math. Phys., Vol. 25, No.1 0, October 1984 

j 
can now be included in the symmetry group, i.e., in NRIR; 
and (2) that a reduced Kaluza-Klein structure is necessarily 
present when constructing symmetric gauge Lagrangians
the dynamics of the full reduced gauge group N K 1 K can be 
determined by the Einstein action. 
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APPENDIX: PROOF THAT N~ = C~.Ro 
We show here that if S I possesses a definite inner pro

duct, ( , ) which is ads invariant then the connected compo
nent of the identity of the normalizer of R, N ~, is the pro
duct of C~ and R 0, i.e., 

(AI) 
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[see Sec. II (f) and (g)]. 
It is first obvious that R 0 is a connected normal sub

group of N~. Consequently, if hEN R' h can be uniquely 
writtenash =, + p, where fER ',peS' and where (R ',p) = 0 
(i.e., p is orthogonal to R '). Since fEN R it also follows that 
pEN R' i.e., [p, R '] CR ' and from the ads invariance of the 
inner product 

0= ('I'P) = ([rl' 'z],P) + ('I' [p, 'z]), (A2) 

for all 'I and 'zER '. However, (['I' 'z], p) = 0 because ['I' 
, z]ER " and hence 

([p, 'z], R ') = 0, (A3) 

for all'2ER '. SincepEN R' [p, 'z] is both in and orthogonal to 
R " and hence the definiteness of the inner product requires 
[p, R '] = O. In other words, pEe R or equivalently (A 1). 
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An asymptotic formula of the S-matrix as k---+ 00 will be shown for the general short-range 
scattering in R N (N~ 2). The main tool for the proof is the spectral decomposition theorem for the 
SchrOdinger operator. By the use of the asymptotic formula, the uniqueness of the inverse 
scattering problem will be shown and a reconstruction formula for the potential will be presented 
for the general short-range scattering. 

PACS numbers: 11.20.Fm, 03.65.Nk 

I. INTRODUCTION 

In a previous paper I we gave an asymptotic formula for 
theS-matrixS (k), k > 0, associated with the Schrodinger op
erator T3 = -..:1 + Q (y) in R3 with a short-range potential 
Q(y) = O(lyl-ll) (Iyl---+oo,,u > 1). It was usedl

,2 to show the 
uniqueness for the inverse scattering problem and present a 
reconstruction formula for the potential Q (y) from the scat
tering data. 

In this paper we shall show that these results can be 
extended to the Schrodinger operator 

T= TN = -..:1 + Q(y) (Ll) 
in RN, N~2, where Q (y) = 0 (Iyl- Il) (Iyl---+oo, ,u> 1) is a 
short-range potential in RN. First we shall prove an asympto
tic formula 

lim kN-I(F(k)x ,.x ) N-l = - 217'1 Q(y)dy 
k,z k,z S I IN - I 

k~", RN y-z 
(1.2) 

in Sec. II. Here 

F(k) = - 217'ik - (N - 2)(S (k) - I) (k> 0) , (1.3) 

I denotes the identity operator on L 2(S N - I), 

xk,z(t:u)=e- ikzeu (UleSN-I,ZERN), (1.4) 

and (, )SN-l is the inner product of L 2(SN-I). A necessary 
and sufficient condition for the solvability of the integral 
equation 

g(Z) = - 217' r Q(y)dy 
JRN Iy _zIN-I 

(1.5) 

will be given in Sec. III and, by using these results, the uni
queness of the inverse scattering problem in RN will be 
shown with a reconstruction formula which will enable us to 
reconstruct the potential Q (y) from the scattering data. The 
mathematically rigorous proof of the main results in Sec. III 
will be given in Appendices A and B. 

Faddeev's work3 seems to be the first which gave a rig
orous prooffor the fact that a high energy limit of the scatter
ing amplitude becomes the Fourier transform of the poten
tial. The present work is along the line ofFaddeev's work3 in 
the sense that it tries to solve the inverse scattering problem 
through a high energy limit of the S-matrix. Recently Iso
zaki and Kitada4 extended Faddeev's result to include long
range scattering as well as short-range scattering. On the 

other hand NewtonS gave an extension to R3 of the Mar
chenko equation and the Gel'fand-Levitan equation for the 
Schrodinger operator on RI, through which he got a recon
struction formula for the potential Q (y). Here Q (y) is as
sumed to satisfy more restrictive conditions than ours. As 
for an application of Newton's method to R2, see Cheney.6 

II. AN ASYMPTOTIC FORMULA FOR THE S-MATRIX 

Let Hbe a (unique) self-adjoint realization in L 2(RN) of 
the differential operator 

T= -..:1 + Q(y) (y = (YI,Y2,oo"YN)ElRN), 
(2.1) 

D(T) = CO'(RN), 

where D (T) is the domain of T and Q is the multiplication 
operator by a function Q (y) on RN. The potential Q (y) is 
assumed to satisfy the following assumption. 

Assumption 2.1: Q (y) is a real-valued, continuous func
tion on RN, N~ 2. There exist constants Co > 0 and,u > 1 such 
that 

IQ(y)I<Co(l + Iyl)-Il 

for all YERN. 

(2.2) 

Let S = W~ W _ be the scattering operator associated 
with H, where 

W ± =s - lim eiHte-iHot in L 2(RN) (2.3) 
t-------.. ± co 

with a unique self-adjoint extension Ho of the Laplacian 

N ~ 
-..:1 = - I -2 on CO'(RN). 

j= I aYj 

It is well known that there exists a family [S (k )j k> 0 of uni
tary operators on L 2(S N - I) such that 

(YSY*G)(t) = [S(lt I)G(lt I·)j(t) 
(2.4) 

(GECO'(RN), tERN, t=t/ltl), 

where Y is the usual Fourier transform from L 2(R:) to 
L 2(R:) and y* is its adjoint. Here S (k ) is called theS-matrix 
associated with the SchrOdinger operator H. For k > 0, S (k ) 
is a unitary operator on L 2(S N - I). For k > 0, S (k) - I is a 
compactoperatoronL 2(SN-I) (see Refs. 7 and 8). Let us set 

F(k)= -217'ik -(N-2)(S(k)-I). (2.5) 
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If f.L > (N + 1 )/2 in Assumption 2.1, F (k ) is shown to be a 
Hilbert-Schmidt operator on L 2(S N - I), and its Hilbert
Schmidt kerneIF(k;ev,ev'), tu, ev'ES N - I, is called the scatter
ing amplitude.9 By applying the spectral representation the
ory for the Schrodinger operator H, S (k ) can be represented 
by the eigenoperators associated with Ho and H, respective
ly. Let 8 be a constant such that 

! <8 <f.L12, (2.6) 

and set 

L2±<5(RN) = V(xyL)1 + lyl)±21lIf(yWdy< oo}. 

(2.7) 
Here L 2± {j are Hilbert spaces with their inner products and 
norms 

(2.8) 

(2.9) 

respectively. Then it follows from the limiting absorption 
principle (Agmon,7 Saito, \0 Ikebe-Saitoll) that we have the 
limit 

R±(k)=lim(H-(k 2±i€))-1 (k>O) (2.10) 
EIO 

in B(L ~ (RN), L 2_ Il (RN)), where B(X, Y) means the Banach 
space of all linear bounded operators from X to Y. For r>O 
and k > 0 let us define the operators ¢ t(r,k ) and ¢ '!r (r,k ) on 
L 2(SN-I) by 

{¢t(r,k)x)(ev) = (21T)-NI2 LN_I eikrOK<J'x(tu')dtu', (2.11) 

[¢'!r (r,k)x)(tu) = [¢t(r,k)x}(tu) - {R_(klfo)(rtu) , 
(2.12) 

where xEL 2(SN-I), fo(Y) = Q(y)[¢t(lyl,k )x}(y) with 
y = yllyl, and tutu' means the inner product in RN for tu, 
tu'ES N- I. Then it can be shownl2 that 

LOO (1 +r)-21l11¢t(r,k)XII~2ISN_I)~-ldr<00, (2.13) 

1 (1 + r) - 2{j11¢ '!r (r,k )XII~ 2IS N- I) ~ - I dr < 00, (2.14) 

or, equivalently, 

[¢ t(lyl,k)x} (y), [¢ '!r (Iyl,k)x )(y)EL 2_ {j(RN) (2.15) 

forallxEL 2(SN-I)andk>0. v(y) = {¢ '!r (Iyl,k)x}(y) satis
fies (H - k 2)V = 0 at least in the sense of distributions and 
¢ '!r (r,k) [and its adjoint ¢ + (r,k ) in L 2(S N - I)] are used for 
constructing a spectral decomposition theorem for H.7

•
J3 

Theorem 2.2:14 Let Assumption 2.1 be satisfied and let 
F(k) be as in (2.5). Then we have 

(F(k )x,X')SN- L = - 2r i Q (y)[ ¢ t(lyl,k)x) (y) 
RN 

x {¢ '!r (Iyl,k )x') (y) dy (2.16) 

for x, x'EL 2(SN-I) and k>O. 
In order to show the asymptotic formula (1.2) we need 

to recall the following. 
Lemma 2.3: There exists a constant CI such that 
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" mm ---C .{ II} 
'" I ,IN - 1)/2 ' ,IN + 1)12 

(2.17) 

for all r> O. 
Proof Introducing polar coordinates (OI,02,· .. ,ON _ I ), 

we get 

= 1T' /rcos /II (sin e )N - 2 dO . 2 -1N-I)/2 iTT 
r((N _ 1)12) 0 I I 

(2.18) 

Then we can show the asymptotic formula 

(

21T)IN-I)/2 ( (N-l)1T) =2 ---;- cos r- 2 +O(r- 1N - I)/2) 

(2.19) 

from the representation formula for the Bessel function 
J

v
(r),15 

Jv(r) = (rI2)V (TT eircos /I sin2v 0 dO (v:real), 
for (v +~) Jo 

(2.20) 

and the well-known asymptotic formula 

Jv(r) = .J!; cos(r - (2V; 1)1T) + 0 (r- 3/2) (r-+oo). 

(2.21) 

Inequality (2.17) is easily obtained from (2.19). 
Q.E.D. 

The next lemma, which can be easily derived from 
(2.17), is a key lemma for the proof of (1.2). 

Lemma 2.4. Let h (y) be a bounded, measurable func
tion on RN such that h(y)=O(lyl-I-E) with €>O as 
Iyl~oo. Then we have 

lim k N- I ( h(y)I(21T)-NI2 ( eikIY-Z)WdtuI2 dy 
k_oo JRN JSN- I 

=~ ( h(y) dy 
1T JRN Iy - ZIN-I 

(2.22) 

for each zERN, where (y - z)ev is the inner product of y - Z 

and tu in RN. 
Proof Setting 

q(r) = ( eirww
' dtu' 

JSN-I 

-2- cosr- , ( 
21T)IN - 1)/2 ( (N - 1)1T) 
r 2 

(2.23) 

we obtain 
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k N- 1 f h(y)I(21T)-NI2 f eikIY-Z)WdwI2 dy 
JRN JSN-l 
=~ f h(y){cos(2kly-zl-(N-l)1T)+lJ d + 4k IN - 1)/2 Re f h(y)cos(kly-zl-[(N-l)12)1T) 

1T JRN Iy _ ZIN - 1 Y (21T)IN + 1)/2 JRN Iy _ ziiN - 1)/2 

kN-1i 
xq(k Iy - zl)dy + -- h (y)lq(k Iy - zlW dy==.ll + J2 + J3 • 

21T RN 
(2.24) 

It follows from the Riemann-Lebesgue theorem that 

lim J
I 

= ~ f h (y) dy. (2.25) 
k-oo 1T JRN Iy _ ZIN - 1 

Let a> O. Then 

IJ
2
1<4k IN - 1)/2 f Ih(y)llq(kly-zlll dy 

(21T)IN + 1)/2 J1y _ zl <a Iy _ ZIIN - 1)/2 

+ 4k 1N -1)/2 f Ih(y)llq(kly-zl)1 dy 
(21T)IN+ 1)12 J1y-zl>a Iy _ZIIN-I)/2 

==.121 + J22. (2.26) 

By the use of the boundedness of h (y) and the estimate 

Iq(k Iy - zlll <Clk -IN - 1)l21y - zl-IN - 1)/2 , (2.27) 

which is obtained from (2.17), wehaveJ21 = o (a)(a!O) inde
pendent of k. Next it can be easily seen that J22 = 0 (11k) 
(k-+oo) for fixed a > O. Thus we have shown thatJ2 = 0(1) as 
k too. Quite similarly we can show that J3 = o( 1) as k too. 

Q.E.D. 

The following formula is an extension to RN of the one 
which was obtained in the case ofR3

•
16 

Theorem 2.5 [asymptotic formula for F (k )); Let Q (y) 
satisfy Assumption 2.1 and letF (k ) be as above. For k > 0 and 
zeRN set 

Xk,z(w) = e - ikzw . (2.28) 

Then we have 

lim kN-I(F(k )xk,z,xk,z)SN-l = - 21T f Q(y)dy . 
k_oo JRN Iy _ZIN-I 

(2.29) 
Proof It follows from Theorem 2.2 and (2.11) and (2.12) 

that 

kN-I(F(k )xk,z,Xk,z)SN-l 

= -2rkN-I f Q(y) 1_1_ f eikIY-Z)WdwI2 dy 
JRN (21T)N 12 JSN - 1 

+2rk N- 1 f Q(y) {_1_ f eikIY-Z)Wdw} 
JRN (21T)N/2 JSN-l 

x (R_(k lftJ(y) dy 

=KI +K2 , 

where!1 =!o in (2.12) with x = Xk,Z, i.e., 

ft(y) = Q(y)_I_ f eik(y-z)wdw. 
(21Tt/2 JSN-l 

From Lemma 2.4 with h (y) = Q (y) we see that 

limK1=-21T f Q(y) dy. 
k-oo JRN Iy _ ZIN-I 
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(2.30) 

(2.31) 

(2.32) 

Since (1 + lyIl2.5IQ(y)I<Co by Assumption 2.1 and the de
finition of 8, we have 

IK21<2rCokN-III-I- f eikl' -Z)"'dwll 
(21T)NI2Js N-l -.5 

XIIR_(klflll_.5' (2.33) 

It is knownl7 that we have 

(2.34) 

where IIR_(k)11 is the operator norm of R_(k) in 
B(L ~(RN), L 2_.5(RN)). Therefore IIR_(k lflll-.5 can be esti
mated as 

Thus we obtain from (2.33) and (2.35) 

K2 = o(!) 
X k N - 1 f (1 + Iy I ) - 2.51 f eik ( Y - z)", dw 12 dy, 

JRN JSN-l 
(2.36) 

and hence, by using Lemma 2.4 again, the term K 2 is shown 
to be 0 ( 11k ), which completes the proof. 

III. THE INVERSE SCATTERING PROBLEM 

Let us consider the integral equation 

g(z) = _ 21T f Q(y)dy , 
JRN Iz _ yiN-I 

(3.1) 

where g(z) is a given function and we seek the solution Q (y) 
which is a short-range potential in the sense of Assumption 
2.1. In this section we shall give a necessary and sufficient 
condition on g(z) for the unique solvability of Eq. (3.1), 
through which we shall show the uniqueness of the inverse 
scattering problem and a reconstruction formula for the po
tential Q ( y). Since the argument can be done quite similarly 
to the three-dimensional easelS the details of the proofwill be 
given in Appendices A and B. 

Let us first introduce some notations. Let E be a positive 
number. Then a function space AE is defined by 

AE = {!eC(RN)/!(y) = O(lyl-E) as Iyl-+oo J ,(3.2) 

Le.,J( y) is a continuous function on RN and satisfies the esti
mate 

(3.3) 

with a constant C>O. Let .Y = .Y(RN) be all rapidly de
creasing functions on RN, and let.Y' = .Y/(RN) be all linear 
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continuous functionals on Y. The pairing between Y and 
Y' will be denoted by ( , >. The Fourier transforms Y, Y, 
Y*, y* are defined by 

(Yf)(S-) = (21T)-NI2 J e-isYf(y)dy, 

(Yf)(S-) = (Yf)( -S-), 

(Y*F)(y) = (21T)-N12 J eiSYF(s-)dS-, 

(Y*F)(y) = (Y*F)( -y). 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Here S-y is the inner product of y and S- in RN. 
Definition 3.1: Let gEAE with € > 0 and let s > O. Then a 

linear functional A Sg on Y 5 = Y(R~) is defined by 

(A Sg,G > = ( g(y){ Y*(IS- ISG)j(y)dy (GEYs)' 
JRN 

(3.8) 

where y* is as in (3.7). 
Then we can show that A SgEYt = Y'(R~) (see Appen

dixA). 
Let QEAI' with 1 <J-l <N and let g be defined by (3.1). 

Then it can be easily seen that gEAI' _ I' and hence A Sg is 
well-defined for any s> O. Then, taking the Fourier trans
forms of the both sides of (3.1), we have 

Yg = _ (21T)NI2+ IY(lyl-(N-II)XYQ (3.9) 

in the sense of Y'. Here we used the well-known formula 

Y(f*g) = (21T)NI2( Yf)x( Yg), 

where * means convolution. On the other hand, we have 

Y(lyl-t)(s-) =Btls- I-(N-t l (O<t<N) (3.10) 

in Y' with 

B = 2N12 - t r((N - t)l2) (3.11) 
t r(t/2) ' 

r (t) being the r-function. 19 1t follows from (3.9) and (3.10) 
with t = N - 1 that 

4ff\N + 31/2 
Y _ If;-I-IYQ 

g - - r((N - 1)12) ~ . 
(3.12) 

The well-definedness of Ag( = A Ig) shows that we can obtain 
from (3.12) 

YQ= -.BNIs-IYg= -.BNAg in Y' (3.13) 

with 

.B - r((N - 1)12) 
N - 4-n"N + 31/2 . (3.14) 

Thus we have 

Q(y) = -.BN Y *Ag. (3.15) 

Since the whole process can be reversed, we can see that 
(3.15) gives a unique solution ofEq. (3.1) under the condition 
that Y * AgEAI" Thus we get the following theorem. 

Theorem 3.2: The integral equation (3.1) has a unique 
solution QEAI' with 1 <J-l < N if and only if 

gEAI' _ 1 and Y * AgEAI' . (3.16) 

Then the solution Q(y) has the form (3.15). 
Remark 3.3: Let a,A. be constants such that 0 <a <N, 
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AEe and let us consider a more general equation 

g(Z)=A ( Q(y) dy. 
JRN Iy _zla 

(3.17) 

Then Theorem 3.2 can be easily extended to the case of Eq. 
(3.17) (see Ref. 20). 

This theorem, together with Theorem 2.5, guarantees 
the uniqueness of the inverse scattering problem and gives a 
reconstruction formula for the potential Q (y) (see Refs. 3-6 
in Sec. I). In Appendix B it will be shown that the formal 
argument can be verified rigorously. 

Using Theorem 3.2, various kinds of reconstruction 
formulas for Q (y) can be obtained. In the following examples 
(3.4--3.6) it is assumed that 1 <J-l < N, Q (y)EAI" and g(z) is 
defined by 

g(z) = lim (F(k }xk,z,xk,z)SN-1 , 
k~oo 

(3.18) 

where F(k) is defined by (2.5) and xk,z is given by (2.27). 
Example 3.4: Letg satisfy 

(3.19) 

H 6/2gEAI' ' (3.20) 

where Ho is a unique self-adjoint extension of -.:1 on 
C O(RN) and D (H 6/2

) is the domain of H 612• Then Q (y) can 
be represented as 

Q= -.BNHb12g (3.21) 

with.BN given in (3.14). 
In fact in this case we have Y *Ag = H 612g in Y'. 
The next example shows that Q (y) can be represented as 

a form of convolution if g(z) is assumed to behave more nice
ly. 

Example 3.5: Let g(Z)EAE with some €> 0 and let gs 
= Y * A SgEAI' with 1 < s <J-l < N. Then we have 

Q( ) = - 1 gs(z) dzEA (322) 
y Ys,N I IN+I-s I+I'-S . 

RN y-z 

with 

r((N -s + l)l2)r((N - 1)12) 
Ys,N = 21 +s~+3/2r((s _ 1)12)' (3.23) 

The proof is essentially the same as in the case ofR3.21 
Therefore only the formal proof will be given. Taking the 
Fourier transforms of the both sides of (3.1), we get 

Yg= -21T(21T)NI2BN_IIs-I-IYQ, (3.24) 

whence follows 

Q_ 1 y*( 1 If;-Isy) 
- - (21T)NI2+ IBN_

1 
IS- IS-I'!> g 

= - (21T)N +\BN _ 1 Y * (IS- I~ - I)*gs . (3.25) 

Thus we have (3.22) from (3.25) and (3.10) with t = s - 1. 
A special case of Example 3.5 with s = 2 is as follows. 
Example 3.6: Let gEAE with € > 0 and .:1gEAI' with 

J-l> 2, where.:1g is defined in the sense of distributions. Then 
Q (y) can be represented as 

Q(y) = _ {r((N - 1)12W ( (.:1g)(z) dz. (3.26) 
8~+2 JRN ly-zIN-I 
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Theorem 3.2 can be used to characterize the asymptotic 
behavior of the S-matrix S (k ) as k~ 00. Let {Sj (k )/k> O), 
j = 1,2, be two families of bounded operators on L 2(S N - I). 
We shall say that SI(k) is asymptotically equal to S2(k) with 
respect to xk,z(m) = e - ikzw if and only if 

lim k({SI(k)-S2(k)}xk,z,Xk,z)sN-I =0. (3.27) 
k~oo 

Theorem 3.7: Let {S(k )Ik> OJ be a family of bounded 
operators on L 2(S N - I). Then there exists QEA f.L with f-l > 1 
such that S (k ) is asymptotically equal to the S-matrix So(k ) 
associated with the Schrodinger operator H = - Li + Q 
with respect to x k,z if and only if there exists the limit 

g(z) = lim k N-)( F(k )xk,z,Xk,z)SN-I 
k~oo 

for each zElRN and g(z) satisfies 

gEAf.L- 1 ' 

Y*AgEAf.L ' 

whereF(k) = - 211'ik -(N-2)(S(k) -I). 

(3.28) 

(3.29) 

(3.30) 

Since the proof is essentially the same as in the case of 
lR3,22 we omit it. 
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APPENDIX A: PRELIMINARY ESTIMATES 

Let A Sg be as in Definition 3.1. In order to show that 
A SgEYt = Y'(lRf), let us introduce the following norm 
IG Is for GEYs = Y(lRf): 

IGls= I I f Isls-IPI+laIIDaG(s)lds 
IP I <N a<p JRN 

= I I IG la,p , (AI) 
IPI<Na<p 

where a=(a),a2, ... ,aN), /3= (/3),/32, .. ·,/3N) are multi-in
dices with non-negative integers aj , /3k' a</3 means that 
aj </3j for any j = 1,2, ... ,N, and 

(A2) 

For any s > ° it is easy to see that the topology induced in Y 5 

by the norm I I S is weaker than the proper topology of Y s. 
Lemma A.I: Let s > 0. Then there exists a positive con

stant Cs such that 

I(A Sg,G) I <CsII(1 + lyl)-NgIIL1(RN)IGls (A3) 

for any gEAE with € > ° and any GEY s. Here Cs depends 
onlyons>O. 

Proof Let us first assume that N is an even positive 
integer so that we can write N = 2M with a positive integer 
M. It follows from the identity 

e- iyS = (I + IYI2)-M(1 -Lis)Me- iYS (A4) 
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that we have, by integration by parts, 

Y*Us ISG(5))(y) = (211')-N/2(1 + lyI2)-M 

X f e- iYS(I-Li s)M(lslsG(5))ds. 
JRN 

(A5) 

Since the integral in the right-hand side can be estimated by 
IG Is, we get 

IY*(lslsG(s))(y)I<Cs(1 + lyl)-NIGls' (A6) 

whence (A3) follows directly. Let us next consider the case 
that N = 2M + 1 with a positive integer M. Proceeding as 
above, we have 

Y *(lslsG)(y) = (211')-N12(1 + lyI2)-M(iYj)-1 

X f e - iys(~)(1 _ Li )M 
JRN aSj 5 

x{lslsG(s)jds. (A7) 

Take tPjEC 0' (lRN), j=0,1,2, ... ,N, such that O<tPj(y)<I, 
~J"=o tPj(y) = I, the support oftPo(y)isinBo = ! y/lyl <2}, 
and the support of tPj(y) is contained in Bj 
= ! y/~N + IIYj I> Iyl, Iyl> 1} for j = 1,2, ... ,N. Then we 

have 

(A Sg,G) = (211') - N /2 f tPo( y) f e - iyS IslSG (s )ds dy 
JBo JRN 

+ jtl (211')-N12 Ii tPj(y)(1 + lyI2)-M(iYj)-1 

X f e-iys(a~J(I-Lis)M!lslsG(s)JdSdY, 
(A8) 

from which (A3) is easily obtained. 
Q.E.D. 

It follows from Lemma A.I and the remark about the 
norm I Is before Lemma A.l that A Sg is well-defined as an 
element of Y t. 

The next lemma about the norm I Is will be used to 
show Theorem 3.2 in Appendix B. Let p(s )EC 00 (lRN) such 
that O<p(s)< 1 and 

pis) = {a, Isi,q, (A9) 
1, Isl>1. 

Set Pm (5) =p(ms)· 
Lemma A.2: Let s > ° and let I I s be as in (A 1). Then 

we have 

(AW) 

for any GEY s. 
Proof Since 

IGls = I I IGla,p, 
IPI<Na<p 

we have only to show that IG -PmG la,p~ (m~oo) for 
each pair (a, /3) such that 1/31 <N, a</3. It follows from the 
estimate 
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(All) 

that we have IG -PmG lo.p-D (m~oo) for any flsuch that 
Ifll <N. Let us next assume that lal #0. Then we have 

IG - Pm G la.p 

= r 15'ls-IPI+laIIDaG(5)(I-Pm(5'))ld5' 
JRN 

+ 2: Ca,.a, r N 15'ls-IPI + lal 
al+uZ=a JR 

a,,",O 

X ID a'Pm (5' )IID a'G (5' )ld5' 

< r 15'ls-IPI+laIIDaG(5')ld5' 
Jlsl<m-' 

+ 2: Ca,.a, r 15'ls-IPI 
a,+a,=a Jlsl<m-' 

a,,",O 

(Al2) 

where Ca,.a, is a constant depending only on a l and a 2, and 
we have used the estimate 

ID
a

'Pm(5')1 = m lal l(D
a
'p)(m5')1 

<15'1- lal l(D
a
'p)(m5')1 (15'I<m- I). (A13) 

From (AI2) we can easily see that IG-PmGla.p-D as 
m~oo. 

Q.E.D. 

APPENDIX B: PROOF OF THEOREM 3.2 

A rigorous proof of Theorem 3.2 can be obtained from 
the following two propositions. 

Proposition B.l: Let QeAl-' with I <Il <N. Letg be de
fined by (3.1), i.e., 

g(z) = - 21T r Q(y)dy . (BI) 
JRN Iz _ yIN-I 

Then we have geA I-' _ I and 

Q= -flNY *Ag, (B2) 

whereAg = A Ig is defined by Definition 3.1 andflN is given 
in (3.11). 

Proof Let us first start with approximating Q (y) by 
smooth functions. Take a sequence [Qn J such that 

QnECO'(RN) (n = 1,2, ... ), (B3) 

IQn(y)I<C(1 + Iyl)-I-' (YERN, n = 1,2, ... ), (B4) 

(BS) 
n~oo 

where C> 0 is independent of n = 1,2, .... Set 

gn(z) = - 21T r Qn(Y) . 
JRN Iz _ yIN-I 

(B6) 

Then we can easily see that 

Ign(z)I<C'(1+ Izl)-II-'-I) (zERN,n=I,2, ... ), (B7) 
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where C' > 0 is independent of n = 1,2, .... Further it is 
shown that 

Ygn = -flH II5'I- IYQn (B9) 

in Y~. In fact, we have for any GEY s 

(Ygn,G) = (gn'Y *G) 

= - 21T(lyl-IN-I)*Qn,Y *G) 

= -21T(lyl-IN-lJ,Qn*Y*G) (BIO) 

with Qn (y) = Qn ( - y), where we should note that 
Qn*Y *GEYy = Y(R~'). Since it follows from (3.10) with 
t = N - 1 that 

iYl-IN-I)=BN_I Y*(I5'I-I) (Bll) 

with 
1TI/2 

BN_ I = 2NI2 - IF((N _ 1)/2) , (BI2) 

we have from (B 10) 

(Ygn,G) = - 21TBN_ 1 (Y *(15'1- 1), Qn*Y *G) 

= - 21TBN_ I (/5'1- 1, Y(Qn*Y *G) 

= - (21Ttl2+ IBN_ 1 (15'1- 1, (Y Qn)G) 

= -flH 1(15'1-I(YQn),G), (B13) 

where we have used the formula Y(F*G) = (21T)1T12( YF) 
x( YG). Equation (B9) is immediate from (BI3). 

Since 15'IElY s' we cannot multiply both sides of(B9) by 
15'1 to get 

YQn = -flNI5' I Ygn (BI4) 

in Y~. But (B14) holds good. In fact, letpm(5') as in Appen
dix A and let us define Yo = YOs by 

Yo=Yos = [GEYs/G(t)=O 

in a neighborhood of 5' = OJ. (BIS) 

Then we have Pm (5' )GEYos for GEY s and we have 
15'IPm (5 )GEYos C Y s' too. Thus, using (B9), we get 

-flN(Agn,Pm G ) = -flN(gn' Y *(I5'IPm G ) 

= -flN(Ygn, ItIPm G ) 

= (15'1-
I
YQn' 15'IPm G ) 

= iN 15'1-1( YQn)(5')lt IPm(5')G(5')dt 

(BI6) 

Noting Lemma A.2 and letting m~oo in (B16), we arrive at 
(BI4). Equation (B2) is now obtained by letting n~oo in 
(BI4). 

Q.E.D. 
Proposition B.2: Let geAl' _ 1 with Il> I and let 

Y *AgeAl-" i.e., there exists heAl-' such that h = Y *Ag in 
Y'. Then 

Q = -flN Y *Ag (= -flNh) (BI7) 

is a solution of (B I). 
Proof Let GEYos> where Yos is given by (BIS). Then 

Itl-1N-I1*Y*GEY, because Itl-IGEYosCYs and we 
have 
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Isl-IN-I)*Y *G = (21T)N/2B I-I Y *(Isl-IG). (BI8) 

As for the definition of Y * and B 1, see (3.7) and (3.11), 
respectively. Then it follows from (BI6) and (BI8) that 

( Y(lyl-IN-I)*Q),G) 

= (Q,lyl-IN-I)*y *G) 

= -f3N(Y*Ag,lyl-(N-I)*Y*G) 

= -f3N(21T)N/2B I-I( Y *Ag, Y *(lsl-IG) 

= -f3N(21Tt12B I-
I(Ag,lsl-IG) 

= -(21T)-I(g,Y*(lsllsl-IG) 

- (21T)-I(g, Y *G) = (- 21T)-1( Yg,G) , (BI9) 

where we should note that f3N(21T)N12B I-I = (21T)-1. Thus 
we get 

(Y{g + 21Tlyl-IN-I)*Q),G) = 0 (B20) 

for any GEYos' which means that the support of 
Y{g + 21Tlyl-IN-I)*Q 1 is contained in the origin S = O. 
Therefore there exists a polynomial P(y) = P(Yl,Y2'·'·'YN) 
such that 

Y{g + 21Tlyl- IN - 1)*Q 1 = P(D)8, 

where 8 is the Dirac 8-function and 

D = ( - j a~l ' - j a~2 , ... , - j a:N) 

(B21) 

(see Ref. 23). Since Y *P(D)8 = P(y), we have from (B2I) 

g + 21TiYl- IN - 1)*Q = P (y) . (B22) 

Here the left-hand side of (B22) is o( I) at infinity by the condi-
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tion imposed on g(z), and hence we have P (y)=O, which im
plies that Q is a solution of (B2). 

Q.E.D. 
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General equations governing the static deformation of the surface of a conducting liquid under an 
electric field, when there is an electric double layer at the surface, are here applied to the general 
situation where the undeformed surface is a horizontal plane, and a number of specific problems 
are solved. The theory in this case has two features which distinguish it from other situations, 
studied previously, where the undeformed surface is curved. One feature requires a difference in 
the practical process of solution, while the other requires some careful theoretical examination in 
order to justify properly the solutions actually obtained. 

PACS numbers: 41.10.Dq, 46.20. + e, 68.10. - m 

I. INTRODUCTION 

We consider the separating surface S between an elec
trically conducting liquid A and a nonconducting fluid B 
(perhaps air or empty space), and suppose that at S, there is 
an electric double layer. An electrostatic field is applied, 
which has the effect of maintaining S in a state of static defor
mation, and our concern is with the problem of determining 
the shape of S. 

The reduced problem in which there is no gravity (as 
whenA andB are of the same density) and no electric field, is 
that of determining S under just the influence of surface ten
sion, and is the Plateau problem of classical hydrostatics. To 
generalize the problem so as to include a gravity effect, one 
must consider a hydrostatic equation containing a gravity 
term and a nonconstant hydrostatic pressure, and its further 
generalization to include an electric field is accomplished by 
replacing the hydrostatic pressure by the Maxwell stress ten
sor. The validity of this step, long believed in the history of 
electrostatics, was established rigorously only relatively re
cently, by Brown. 1 

Brown's justification of the Maxwell stress theory is 
correct provided there is no electric double layer at the 
boundary S. Otherwise, a refinement is needed,2 and this 
leads to different equations governing the shape of S (see Ref. 
3). Since the presence of a double layer is a normal property 
of matter, this is clearly significant, which is especially true 
since the double-layer effect has an essentially linear depen
dence upon the field (in contrast with the essentially quadrat
ic classical effect), and is in terms of a new constitutive con
stant characterizing the interface (the familiar one being the 
surface tension). 

In Ref. 3, the surface deformation theory was applied to 
sphere and cylinder problems, by which we mean that the 
surface in the absence of gravity and an electric field (the 
"zero-order surface") is (or is part of) a sphere or a cylinder, 
as the case may be. In the present paper, we apply it to plane
surface problems. 

Despite its apparently more fundamental character, the 
plane-surface theory has peculiar features not shared with 

oj This paper is an amplified version of an address given by the author at the 
2nd Latin-American Symposium of Applied Mathematics, Rio de Jan
eiro, December 1983, and published (in Spanish) in the Proceedings. 

the sphere and cylinder theories, features which, in fact, are 
responsible on the one hand for its being technically more 
difficult, while on the other hand presenting a difficulty of 
principle in the theoretical basis of the solution procedure, 
one which it is important to clarify if the solutions them
selves are to be deemed acceptable. It is thus felt that the 
plane-surface theory requires its own special exposition. 

In the next section we review, for easy reference, the 
general surface-deformation theory. In the following section 
we make the specialization appropriate to the plane-surface 
situation. We next solve a specific plane-surface problem in 
some detail, and thereafter give the solutions of a number of 
other problems doing little more mathematically than writ
ing them down, the mode of solution in each case being the 
same. Finally, we discuss the special features, mentioned 
above, of the present plane-surface theory. 

II. GOVERNING EQUATIONS AND SOLUTION 
PROCEDURE 

We assume that the system is either axisymmetric with 
vertical axis, or two-dimensional with representative section 
in a vertical plane. In either case, S is generated by a curve C 
in a vertical plane, which we call the profile, and the equa
tions for determining this are3 

EE~ av aXJ . 
-- - 2Km (T + (/JEB ) + gwx - r = --. -- TA j, 
~ ~' ~ 

dEB av ax j . 
(/J--=----T '., 

dt ax; at A J 

aT J; h { j } . {h} ax -- T. _TJ =--ax J + 'h j h i j ax ; gp, 

(g;;gii)1/2T ~ = (giigii)1/2TJ; (i,j not summed). 

The meaning of the notation is as follows. 

(1 ) 

(2) 

E B : the normal component of electric intensity at, and 
on the B side of, S, with positive direction A~B. 

E: the dielectric constant of B. 
w: the density of B. 
p: the density of A. 
T: the surface tension at S. 
(/J: a constant which is characteristic of the double layer 
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(measuring the interactability of the double layer with a 
field). 

Xi: orthogonal curvilinear coordinates, with i = 0, 1, 2, 
such that S under no field and no gravity is a surface 
X O = const. 

gij' gij: the metric tensors for Xi. 
T i

j : the stress tensor in A (in mixed form), relative to 

TA i j: Ti j at, and on the A side of, S. 
v: distance measured normally from S and with positive 

direction A_B, at the point of S concerned. 
t: a parameter for the profile C. 
Km: the mean curvature of S [reducing to half the 

(signed) curvature K of C in the two-dimensional case], reck
oned positive if S, as the boundary of A, is locally convex. 

x: a vertical Cartesian coordinate with positive direc-
tion upward. 

g: the acceleration due to gravity. 
r: a constant fixed by the solution in a particular case. 
As we brieft.y indicated, we classify problems according 

to the form of what we call the zero-order surface, S under no 
gravity and no electric field. For example, a drop of liquid 
without these inft.uences assumes a spherical form, which is, 
in fact, the most elementary solution of the classical Plateau 
problem. But under gravity and a field, there is a departure 
from the spherical form. It is the object of the present theory 
to be able to calculate this departure. However, we call all 
specific problems sphere problems, because the zero-order 
surface is at least partially (here wholly) a sphere. 

The field strength E B is obtained from the solution of an 
electrostatic boundary-value problem in which the potential 
V takes a constant value of S, and this pinpoints the essential 
difficulty of solving (1) and (2). One needs to know EB in 
order to determine S, while at the same time, one has to know 
S in order to determine E B' The difficulty is overcome by the 
use of perturbation theory, regarding the field and gravity 
effects as both small and represented by perturbation param
eters. The first step is to determine E B for the zero-order 
surface. Calling the result the first-order field, E B. 1 , one uses 
it to determine a first-order surface, one represented by a 
profile which is to the first order in the perturbation param
eters. One then redetermines E B using this first-order sur
face. The result is the second-order field, E B. 2 , and one uses 
it to determine the second-order surface, and so on. 

III. REDUCTION OF THE EQUATIONS FOR PLANE
SURFACE PROBLEMS 

The procedure described has, as we said, already been 
used for sphere and cylinder problems,3 when the coordinate 
system Xi in (1) and (2) is, in the respective cases, spherical 
polar and cylindrical, and the zero-order profile in both 
cases a circle or circular arc. 

Plane-surface (or free-surface) problems are those for 
which the zero-order surface is a horizontal plane, and the 
zero-order profile, a line. Such problems can be two dimen
sional or three dimensional. Two dimensionally, the appro
priate system X i is Cartesian coordinates (x, y, z) with, say, x 
asXo and the y axis is the representative section. Axisymme
trically, it is cylindrical coordinates (r, cp, x), taking x asXo (r 
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is X O in the cylinder problems). In both cases, x may be con
sidered the same as the x in Eq. (1). 

To focus for the time being on the two-dimensional 
case, we seek to approximate to a profile solution of the form 
x = x( y), and with X i as the said Cartesian coordinates, (1) 
and (2) reduce with a little elementary differential geometry 
to 

EE2 
__ B _ K(T + rpEB ) + gwx - r 

81T 

Txy = Tyx ' 

where x' means dx/dy. 

(3) 

(4) 

We conveniently take the origin of coordinates in the 
undeformed surface, so that the zero-order profile is the line 
x = O. Then the form of solution we assume, in terms of 
perturbation theory, is 

00 

x =x(y) = L An(Y), (5) 
n=l 

where An (y) is a homogeneous nth-degree polynomial in the 
perturbation parameters. The nth-order solution, that is to 
say, the nth approximation to x( y), is 

n 

x=xn(y)= L Ar(y)· (6) 
r= 1 

We suppose that we have the first-order solution 
E B. 1 (y) of the field problem, and assume the following form 
of solution for the stress-field equations (4): 

Txx = -Po +M(x)F(y), Txy = Tyx = G(y), 

Tyy = -Po + N(x)H(y), (7) 
where Po is a constant. Working to the first order, the use of 
(7) in (3) and (4) enables us to determine the functions in (7), 
except for N (x) which happens, at the said order, to drop out. 
Then, using the well-known Cartesian formula for the curva
ture K, and continuing the due approximation, the first of 
Egs. (3) is reduced to the differential equation 

d 2
x 1 _g(p-w)x _..j _ EE~,1 

dy2 T 1 - 1 81TT' (8) 

where..j 1 is a constant, and whose solution is the first-order 
profile. We see that the constant rp has disappeared, so that, 
at the first order, the present theory predicts identically with 
the classical theory. 

We regard the magnitude of the applied field as gauged 
by a parameter P, so that E B. 1 ( y) is oftheform P!( y), where! 
is a function ofy only, containing no hidden parameters. We 
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choose one perturbation parameter r as a convenient multi
ple of p2, and it is contained implicitly in (8). A second,Bis a 
multiple of if>P and, as we have said, falls out of the first
order problem. 

Having the solution of(8), we re-solve the field problem 
but using the boundary x = XI( y), thus obtaining the second
order field, which we shall write as EB , I (y) + e2(y). Now, 
repeating the process outlined above, but with x I known and 
working to the second order, we obtain a differential equa
tion for the second-order correction A2( y) to the profile solu
tion: 

d
2

( if> ) g(P-W)( if> ) dy2 A2+
T

x IEB,1 - T A2+
T

x IEB,1 

g(p -w) EEB, I e2 
= O2 - T2 if>xIEB I - 41TT ' (9) 

where O2 is a constant. 
In the axisymmetric theory, we have the same equa

tions, (3) and (5)-(7), except for the replacement ofy by r, the 
inclusion of a stress T4> 4> in the analog of (7) and which we 
equate to T'r> and the retention of the 2Km of (1) [this reduc
ing to the ordinary (signed) curvature of the profile only in 
the two-dimensional theory]. The analog of (4) is somewhat 
different, but the axisymmetric departure which takes effect 
is the different formula for 2Km (Eisenhart,4 p. 227), leading 
to analogs of(8) and (9) which differ by containing first-deri
vative terms. The equations that we obtain are 

d
2
xI +.l dX I _ g(p -w) XI =.:1

1 
_ EEi, I (10) 

dr r dr T 81TT ' 

d
2 

( if> ) 1 d ( if> ) dr ..12 + TXI,EB, I + -;:- dr ..12 + T XIEB, I 

g(p-w) ( cJ> ) - T A2 + T x I EB ,1 

g( P - w) EEB, I e2 
= O2 - T2 cJ>xIEB, I - 41TT ' (11) 

and again, the if>-effect enters only at the second order. 
The solution of a specific problem to an order not high

er than the second involves solving the appropriate one or 
ones ofEqs. (8)-(11), the problem being distinguished by the 
function E B, I (y) that is used and, if the order is the second, 
e2( y). Each of the equations contains an unknown constant, 
and two more enter through the integration. It is found that 
the three constants are fixed by the following two conditions: 

X(y) (x(r))-o, y (r)-+oo, x'(O) = 0, (12) 

the alternatives in the former applying to the respective two
dimensional and axisymmetric cases, The physical propriety 
of the condition on x is obvious. That on x' is implied by the 
smoothness of the profile in the axisymmetric case, but is so 
in the two-dimensional case only if there is symmetry about 
the x axis. There will be symmetry in the problems here. If 
there is not, the condition x'(O) = 0 is replaced by x( y)-o, 
y-+ - 00, one found to be equivalent to the former if there is 
the symmetry. 

IV. THE DIFFERENTIAL PROFILE 

Before turning to the solution of specific problems, we 
shall discuss a point already hinted at and of much signifi-
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cance in electrohydrostatics with the electric double layer, 
especially so in the plane-surface theory. 

Referring to the parameter P which gauges the strength 
of the applied field and, for ease of explanation, treating spe
cifically the two-dimensional theory, let us express the pro
file as x = x( y;P). The function 

Xd =x(y;P) -x(y; -P), (13) 

we call the differential profile, being the difference of the 
profile from that obtained on field reversal. 

There is no differential profile in the classical theory, in 
which no account is taken of the electric double layer, be
cause the field enters only through E i. It is thus something 
representing the qualitative difference of the predictions of 
the present theory from those of the classical theory, and is, 
in essence, the double-layer effect. It has been mentioned 
before3 that the probable interest in the present electrohy
drostatic theory is its allowing measurement of the constitu
tive constant cJ>, and that the obvious property to use is the 
differential profile, practical measurement being, no doubt, 
of the differential maximum height.5 

Now here, there is no first-order differential profile [cf. 
(8) and the remark following], but by the form of (9), we 
expect there to be a nonzero second-order differential pro
file, and this will be given by 

Xd =Ad,2(y;P)=A2(y;P)-A2(y;-P), (14) 

the first-order parts x I (y;P), x I (y; - P) being equal and can
celing. 

The two functions ..12 on the right of(14) satisfy (9) sepa
rately, but of course for the different respective fields. How
ever, the function EB , I e2 is the same, for it is proportional to 
p4. To see this, let us, as we may, write EB, I as 
P {/( y) + ¢( y) J, where, as before [paragraph following (8)], 
PI( y) is E B, l' so that P¢( y) is e2. Now as we said,!( y) con
tains no "hidden parameters," but this is not so of ¢( y) as it 
depends upon the first-order profile. If,B had not dropped 
out, it would, to the required order, be a homogeneous linear 
expression in,B and r. But,B did drop out, leaving r which is 
proportional to P 2 , a fact which leads at once to the point in 
question. It follows that when we subtract Eq. (9) for the 
respective functions ..12, the last terms cancel, and taking this 
with the fact thatxlEB , I is a proportional top 3

, we conclude 
from (9) and (14) that Ad, 2 satisfies the equation 

d
2 

(A 2cJ> E ) g(p-w) (A + 2cJ> E ) dy2 d,2 + T x I B, 1 - T d,2 T x I B, 1 

=od,2 - [2g(p-w)/T2]cJ>XIEB,I' (15) 

where Od, 2 is some new constant. 
Likewise, we have in the axisymmetric case, 

- [g(p - w)/T] (Ad, 2 + (2if> IT)xIEB, I) 

= Od, 2 - [2g(p _W)/T2]cJ>XIEB, I' (16) 

Clearly, if we know the second-order profile, we can 
obtain the second-order differential profile at once from (14) 
[or (14) with r in place ofy if the problem is axisymmetric]. 
But if we do not, we can find the latter directly by solving (15) 
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or (16), and the importance of this alternative is that these 
equations do not contain the second-order field. Now the 
practical obstacle to carrying specific problems to the second 
order is always that of finding the second-order field, this 
being invariably a major undertaking of electrostatics. We 
therefore have the remarkable situation that the difficult as
pect of the theory, in the problem-solving context, does not 
operate to hinder calculation of the most interesting conse
quence. 

It is a situation holding in any electrohydrostatic prob
lem in which there is no <P-effect at first order, something 
always true in our plane-surface problems, and so exception
ally in the sphere and cylinder problems.3 If there is a <P
effect at first order, we stilI do not need the second-order 
field if, as probable, we are content to know the now nonzero 
first-order differential profile. The special point of the con
siderations of this section is that, in the plane-surface theory, 
where the first-order differential profile is always zero, we 
are not prevented by the difficulty ofthe field problem from 
finding the second-order differential profile. 

V. THE LINE CHARGE PROBLEM 

Perhaps the most fundamental two-dimensional prob
lem is that of a uniform line charge of strength f per centi
meter, passing through the point (a, 0) (a > 0) of the xy plane. 

Taking the potential of the conducting liquid as zero, so 
that the potential V in the space above becomes zero at the 
liquid surface,6 the first-order electrostatic problem is well 
known as the most elementary of two-dimensional image 
problems,7 giving 

V=lln (x +af + y2 
E (x_a)2+y2' 

fromwhich,sinceEB • 1 = -(aVlax)x=o, 

EB,I = -(4jIE)[al(a2 +y2)]. 

We define the perturbation parameters 

f3r = 4j<P lET, Yr = 2f2hrET, 

(17) 

(IS) 

(19) 

so that, with (IS), the differential equation for the first-order 
profile (S) becomes 

d
2
xI _ 2X =.J _ Yro

2 
2_q(p-m) 

d 2 q I I (2 2)2' q - (20) 
Y a +y T 

The solution of such equations as this, arising in the 
electrohydrostatic theory, is most conveniently carried out 
by the method of variation of parameters (see, e.g., InceS

). In 
the present case, with a view to optimum computational use
fulness of the result, we invoke the extensively tabulated 
functions Ei;, ; = 5 + iT], the exponential integral of a com
plex variable.9 We define, for complex parameters a and f.t, 
the two real functions 

v(a;S;,J.l; ±) = a{ eS + P Ei(s + f.t) ± e- s+ p Ei( - 5 +f.tlJ 

+ a{ eS + ~i(5 + Ii) ± e - S + Ii Ei( - 5 + Ii) J, 
(21) 

an~ using complex partial fractions on the right of (20), ap
plymg the said method of solution and using the end condi-
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tions (12), we obtain for the first-order profilelO 

Xl = (rrIS)v(1 + ilqa;qy;iqa; + ). (22) 

The second-order differential profile is easily found by 
solving (15), but the present problem happens to be the only 
one of our set for which we can actually calculate the second
order profile itself. The quite difficult electrostatic problem 
which is for the line charge and zero equipotential given by 
(22) has been solved (to the required order) before. 10 With the 
use of its solution, and (22) again, in (9), solving by variation 
of parameters and using (12), the second-order profile is 
found to be 

x 2(y) = xl(y) + A.2(y), 

A.
2
(y) = f3rYr { av(1 + ilqa;qy;iqa; +) 

S a2 + y2 

x v( 1 + if qa;qt;iqa; + )e - qt dt} 

a2 + t 2 

+ i: {a2 (eQY i~ + e- Qy J:J 
X [v( q~ - i;qt;iqa; + ) 

+ v( ...!.. _ i;qt;iqa; _ )] e - Qt dt 
qa (a2 + t 2f 

+ ~ V [ v( 1 + :a ;0;2iqa; + ) [ 1 + ;( q~ - qa) ] 

+ 3 + ;( :a - qa); qy;iqa; + ] 

+ [1 + V(1 +.J.... ;O;2iqa; + )] _a_ }. (23) 
qa a2 + y2 

VI. THE POINT CHARGE PROBLEM 

The three-dimensional analog of the line-charge prob
lem is the axisymmetric one in which a point charge e at (a, 0) 
replaces the line charge and, to the first order, we solve the 
differential equation (to), having first found E B, I from the 
corresponding three-dimensional problem of electrical im
ages.7 

Again, we use variation of parameters, and the main 
point of difference, arising from the Bessel-type operator on 
XI' on the left of (to), is that we have no well-known function 
such ~sEi; to assist us, so that, unlike (22) [but like (23)], the 
solutIOn has to be left in terms of integrals. Without giving 
further details, the result is 

xl(r) = Ye a2(10(qr) f~ Ko(qt) 

+ Ko(qr) f 10(qt)) (a2 ~: 2)3 ' 

Ye = e2/21TET, q2 = g( P - m)/T, (24) 

where 10 and Ko are the usual notation for the modified Bes
sel functions of order zero. 

R.Cade 3115 



                                                                                                                                    

A graphical comparison of first-order point-charge and 
line-charge profiles 10 shows that the former are more strong
ly "peaked," as one would intuitively expect. 

We cannot find the second-order profile in the present 
case, being unable to solve the field problem. We could easily 
find the second-order differential profile, solving (16), but it 
is not worth the trouble since, unlike in the problems that 
follow, field reversal is hardly a physically achievable pro
cess. 

VII. THE CONDUCTING CYLINDER AND CONDUCTING 
SPHERE PROBLEMS 

While we are inclinded to regard the line and point
charge problems as theoretically fundamental among those 
for the plane liquid surface, of greater experimental realism 
are the closely related ones in which, instead of a line charge 
and a point charge, we have, respectively, a conducting cyl
inder and a conducting sphere, as shown in Fig. 1, the con
ductor being in each case at a given potential Vo. 

We suppose that the center of the sphere, or of the sec
tion of the cylinder, is (a, 0), and that the radius in either case 
is b « a). To consider first the cylinder case, the first-order 
field problem is that of finding a potential V which takes the 
value Vo on the cylinder and vanishes on the plane x = O. 
This is a problem well known in two-dimensional electro
statics (Smythe ll

), in which the field outside the cylinder is 
found to be the same as if this were replaced by a certain line 
charge passing through a certain point (c, 0). In fact, we have 
now, in place of (17), 

V = -.!::Q. ln (x + C)2 + y2 , 
2a (x-cf +yZ 

a = cosh- I .!!:...-. 
b 

It follows at once, defining the perturbation parameters 

(25) 

f3e = 2lPVoIaT, Ye = EV6/21razT, (26) 

and comparing with the line-charge solution of Sec. V, that 
the first-order profile is given by 

xl(y) = (Ye/8)u(l + i/qc;qy;iqc; + ). (27) 

Unlike with the line-charge problem, we are unable to 
solve the second-order field problem and so cannot find the 
second-order profile, but from the f3f Yf term in the second
order line-charge solution (23), we can infer at once what the 
second-order differential profile will be. It is 

- .. _.-_._._--- ~~ 

FIG. 1. A normally plane liquid surface deformed under the influence of a 
charged conducting cylinder or sphere in the space above. 
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( ) _ f3eYe { cu(1 + i/qc;qy;iqc; + ) 
X d,2 Y - -4- 2 2 

C +y 

X u(1 + i/qc;qt;iqc, + )e-
qt 

dt}, (28) 
C

Z + t 2 

and of course, it is now a relevant, physically achievable at
tribute, the applied field being supplied by a conductor at a 
given potential. 

In the sphere case, even the first-order field problem is a 
nontrivial one, and it is convenient to use the option we have 
of obtaining the general form of solution of (10) by variation 
of parameters, without using a priori a solution for the field. 
It is, in fact, 

xj(r) = _E_ (Io(qr) (00 Ko(qt) 
81TT J 

+ Ko(qr) f Io(qt)) [ E B, J!t )] Z dt. (29) 

The first-order field problem is one well known in the 
theory of "infinite series of images" (see, e.g., Jeans? or 
Smythe ll

), and gives 

00 sinh a tanh a csch na coth na 
EB,I(r) = - 2abVo I ------,----..,.,...

n = 1 (a Z tanh2 a cothZ na + r)3/Z 

(a = cosh -I(a/b)). (30 ) 

This form has, however, the drawback of slow convergence, 
especially if alb is close to 1, and nowadays one has the 
advantage of progress that has been made in the solution of 
problems of the kind by bispherical harmonics. In our case, 
an immediate adaptation of a solution obtained by Warren 
and Cuthrell12 gives 

E (r) _ - 4 Voc
2 ~ 2n + 1 P (r - c

2 
) 

B,I - (r + CZ)3/Z n~O e(Zn + I)a _ 1 n r + c2 

(c = (a2 _ b 2)1/2), (31) 

where Pn are the Legendre polynomials, and this form con
verges more rapidly than (30). With either (30) or (31), of 
course, the use of (29) in practice would present a consider
able computational task. 

To calculate the second-order differential profile in the 
present sphere case, we have to appeal to the solution of (16). 
With the same approach as led to (29), we obtain 

xd,z(r) = 2; {qZ(Io(qr) 100 
Ko(qt) 

+ Ko(qr) f Io(qt ))xl(t )EB, J!t )dt 

- x\(r)EB, 1 (r)}, (32) 

and, as with (29), we may use either (30) or (31) for the field. 
We have not introduced perturbation parameters for the 
sphere problem as this is not done before the explicit use of a 
field formula. 
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VIII. THE HALF-SUBMERGED CONDUCTING CYLINDER 
AND SPHERE 

A fascinating problem, which we believe is being stud
ied now for the first time, is where the cylinder or sphere of 
the last section is half-immersed in the conducting liquid 
(Fig. 2), forming with it a single conductor at potential zero, 
and the applied field is a uniform field of strength F, with 
positive direction the positive x-direction. In what we call 
the sphere and cylinder problems in the electrohydrostatic 
context, where the zero-order liqUid surface is spherical or 
cylindrical, the problems have been studied of a hemispheri
cal and semicylindricalliquid drop on a plane horizontal 
solid conducting surface.3 The problems of the present sec
tion are those in which the attachment of "solid" and "liq
uid" to the zero-order geometrical configuration is inverted. 

We assume that, both before and in the deformed state, 
the liquid surface meets the sphere or cylinder perpendicu
larly, and that it is precisely a hemisphere or half-cylinder 
that projects above the surface. This could perhaps be 
achieved experimentally by having, instead of a sphere (cyl
inder), a body in the form of a hemisphere (half-cylinder) 
above, with a flange below, as shown in Fig. 3, and with a 
facility to adjust the height of the body. In this way, one 
could force artificially a "contact angle" of 1T12, and the 
arrangement might be experimentally advantageous. For 
whereas the measurement of a maximum height of electro
hydrostatic displacement would normally be optical, it 
would now be mechanical, as by a tum of a micrometer 
screw. 

The theoretical implication of the assumption is that, in 
the present problems, the end conditions (12) are to be re
placed by 

x(y)(x(r))-o, y (r)-oo, x'(b) = O. (33) 

In the cylinder case, the first-order field is the same as 
for the uniform-field problem in the cylinder theory,3 except 
that E B, \ is now calculated at the plane liquid surface instead 
of at the cylinder, and we find that 

We define the perturbation parameters 

PF = F<P IT, YF = EF 2/81TT, 

(34) 

(35) 

and with the use of (34) in Eq, (8), solving the equation and 
applying the conditions (33), we obtain for the first-order 
profile 

FIG. 2. A half-submerged conducting cylinder of sphere with ambient con
ducting liquid deformed under a uniform applied field. 
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FIG. 3. Practical achievement of the 
conditions assumed in the half-sub· 
merged cylinder or sphere problem. 

1 {( 2b 2 ) x\(y)=T yFb 2 1-
q

I2 
[v(l;qy;O;+l 

+ eq(b- Y )v(l;qb;O; -)] 

- :y: + + ( qb - ~~ )eq(b - Y)}. 

Using (34) in (15) and writing (36) as 

x\(y) = YF ply), 

we find for the second-order differential profile 

xd, 2 (y) = PFYF {q(eqy Loo e - qt + eq(2b - y) iCC e - qt 

+ e - qy J: eqt y(t)( 1 - ~: ) dt 

- 2p( y) (I - ~: )} . 

(36) 

(37) 

(38) 

Some reduction of the integrals here is possible, using (36) 
and (37), but with no computational advantage since the re
sulting expression is much longer while still containing inte
grals that cannot be formally evaluated. 

In the sphere case, the first-order field is the same as for 
the uniform-field problem in the sphere theory,3 except that 
again E B, \ is taken at the plane liquid surface. Then, the 
theory is parallel to that above for the cylinder case, solving 
now the differential equations (9) and (16). In fact, we have in 
place of (34) and (36)-(38), the respective formulas 

EB,\ (r) = F(1 - b 3Ir), (39) 

x\(r) = YF(Io(qr) ro Ko(qt) 

+ Ko(qr)/tlgb) roo Ko(qt) 
K\(qb) Jb 

+ Ko(qr) f Io(qt)) (1- ~: rtdt, 

x\(r) = YF p(r), 

x d , 2 (r) = 2P FY F {q2( Io(qr) ro Ko(qt) 

+ Ko(qr)/\(qb) roo Ko(qt) 
Ktlgb) Jb 

+ Ko(qr) L Io(qt ))p(t 1( 1 - ~: )t dt 

- p(r1( 1 - ~ ) } , 

(40) 

(41) 

(42) 

using the same perturbation parameters PF' YF' given by 
(35). 
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IX. THE PECULIARITIES OF THE PLANE-SURFACE 
THEORY 

We tum finally to the special features of the plane-sur
face theory which were mentioned cursorily in Sec. I and 
subsequently passed over tacitly. 

Referring to the last paragraph of Sec. II, where the 
perturbation method was briefly described, it will be seen 
that the field effects and gravity were to be regarded as per
turbations. This is indeed done in the sphere and cylinder 
theories,3 but here, we have taken account of gravity exactly 
in the differential equations, treating only the field effects as 
perturbations. A consequence of this is that the equations are 
generally rather more difficult than those of the sphere and 
cylinder theories. 

In fact, ifin the present context we had treated gravity 
as a perturbation, we should have obtained absurd results. 
The gravity terms in (8) and (10) would be second-order ones 
and so drop out. We should then be left with equations 
whose only nonzero solutions are unbounded. In other 
words, either equation in the absence of both the electrical 
term and gravity, is unstable, so that to introduce both omit
ted terms as perturbations is a misapplication of perturba
tion theory. 

We have here a sharp difference from what happens in 
the sphere and cylinder theories,3 but it is in perfect accord 
with physical intuition. A drop ofliquid in an equal-density 
liquid environment will have a perfectly spherical form as 
determined by surface tension. A slight inequality of density 
introduces a gravity effect small in relation to the surface 
tension and whose observable consequence is a slight flatten
ing of the sphere. But a plane separating surface between two 
liquids of equal density is not determined by surface tension, 
and one can only imagine its being produced artificially. 
Then, an arbitrarily small disturbance will introduce curva
ture and so bring surface tension into play, whose effect, in 
the absence of gravity, will be to cause the disturbance to 
grow until, ultimately, the surface breaks up into globules. 
This emphasizes to us the fact that the mathematical insta
bility is in complete correspondence with physical instabil
ity. 

In the case of liquids of unequal density, a plane separ
ating surface is the only one determined solely by gravity. It 
is stable, as represented by the dictum of elementary physics, 
"a liquid seeks its own level." In fact, if the surface is dis
turbed but the disturbance is not too large, surface tension 
will come into effect but will not prevail. More reasonable 
then it would be, perhaps, to treat surface tension as a pertur
bation, so that, with gravity treated exactly, the sphere-cyl
inder approach is in a sense inverted. But, since the surface
tension effect depends in the main upon the second 
derivative of the profile, it would be a singular perturbation, 
and as such, something known through differential-equation 
theory to be avoided. We think that the proper course in the 
plane-surface theory is the one we have taken, in which both 
surface tension and gravity are taken into account exactly, 
inasmuch as the approximation in the solution process re
lates only to the electrical perturbation parameters. 

The other peculiarity of the plane-surface theory is 
deeper and more subtle, if not totally unrelated to the one 
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just described. We recall the statement after the stress equa
tions (7), to the effect that we cannot determine the function 
N (x) in those equations. This, as we said, is of no consequence 
at the first order. In fact we find, attempting to determine the 
functions in (7), that 

(43) 

so that, even if N (x 1) is of order zero, we find when we substi
tute in the first ofEqs. (3) that, to the first order, the stresses 
TA , xy and TA , yx disappear. 

Working to the second order, we still obtain no infor
mation concerning N (x), and to secure its disappearance, we 
have to make the assumption, perhaps reasonable (but not 
mentioned), that (when x = Xl) it is a first-order quantity. At 
the third order, we are stopped. Our inability to determine 
N (x) prevents our proceeding to this order. A completely 
parallel situation holds in the axisymmetric theory. 

The point represents a real difficulty, one quite in con
trast with the situation in the sphere and cylinder theories, 3 

where, at each order, the stress system is fully determinable. 
Without its resolution, we must reckon with the possibility 
of the whole plane-surface perturbation theory being wrong. 
For it is quite clearly not enough that we are not precluded 
from going to the second order. 

We have to examine closely the situation in which we 
were obliged to introduce a tensor like (7), which is not a 
multiple of the fundamental second-rank tensor aij (the mul
tiple being minus the familiar hydrostatic pressure). The lat
ter form of tensor is suitable in ordinary hydrostatics and 
nonviscous hydrodynamics (and also in electrohydrostatics 
if we have no cP effect). But the essential requirement of a 
stress tensor in fluid mechanics is that its divergence should 
give correctly the force density, and if another has this prop
erty and can be used consistently with other, more special, 
considerations, it will do just as well. This seems rarely to 
happen. It does, however, in the trivial hydrostatic problem 
concerning the form of a free liquid surface. This problem is 
solved by (7), taking G (y) = 0 and N (x) as any differentiable 
function. But if the surface is not free, being constrained, say, 
by surface tension, this incompletely specified form does not 
suffice, and we have to take, as usual, 

Txx = Tyy = - Po + gpx, Txy = Tyx = O. (44) 

This is what happens in a process of exact solution, and 
herein lies the clue to our difficulty. For in the perturbation 
theory, the determination ofthe stress tensor at any stage is 
by modification of that, insofar as it is known, at the previous 
stage. Thus, for example, at the second order, where we be
gin with the first-order curved surface, we are trying to find 
the second-order stress tensor by modifying a tensor which is 
insufficiently specified for a surface which is not plane; and 
yet there is no way out, for the first-order theory itself is one 
which perturbs the zero-order plane surface, for which, as 
we have seen, the stress tensor is not unique. 

However, the first-order theory is unobjectionable in 
itself, and we propose an answer to the difficulty in the fol
lowing way. Having got the first-order surface, we begin a 
new perturbation process in which this surface is the zero
order one. This means, according to the general electrohy-
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drostatic theory, taking the coordinate system Xi [cf. Eqs. 
(1) and (2)] as one such that a surface X 0 = const gives the 
new zero-order surface. It now appears that the stress tensor 
would be fully determinable at each stage, just as in the 
sphere and cylinder theories, for the essential thing which 
makes the stress tensor more determinable when the coordi
nates are "more curvilinear' is the presence of undifferentiat
ed components when we write out in full Eqs. (2). 

We are not suggesting that the process just outlined is 
one practicable to carry out; we are merely trying to establish 
the point of principle that there exists a solution as a pertur
bation series whose terms are, in principle, calculable. As
suming that we have done this, there remains one last ques
tion: is the assumption that N (x dis of first order, tacitly used 
in the derivation of the second-order solutions in this paper, 
justified? We can use the suggestion we are making to show 
that it almost certainly is, which is for the present the only 
point of a practical nature that it achieves. 

For recalling our remark before (44), to the effect that, 
in elementary hydrostatics, curvature of a surface removes 
the nonuniqueness of the stress tensor, we may assume that, 
in the perturbation process starting from our zero-order sur
face which is curved, the zero-order stress tensor is fixed. In 
Cartesian form and without a field-dependent term, it would 
be (44). To Tyy there must evidently be added a field term 
Q (x, y), small to first order, whereby the N (x)H (y) in (7) 
would, at the surface, be gpxl + Q !x1(y),y), a first-order 
quantity. This argument does not purport to be a proof, 
something beyond the scope of this paper and probably not 
simple. But pending a formal proof, it seems to make our 
conjecture highly reasonable. 

To summarize, the perturbation method that we used is 
correct to, and only to, the second order. Strictly speaking, 
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therefore, it is not perturbation theory at all, but is just an 
approximation method valid to the first order, and to the 
second order only by a justification which borrows from 
what would be a real perturbation theory. 
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equation in m dimensions to construct a Lyapunov functional which characterizes the evolution 
of the profile to its self-similar solution. 
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I. INTRODUCTION 

Many problems in physics are characterized by density
dependent diffusion. Some of these problems possess a con
servation law and a unique, dimensionless combination of 
the spatial coordinate x, the time t, and the conserved quan
tity. In such problems, there is substantial experimental, 
computational, and analytical evidence that the fluid varia
bles lose memory of their initial behavior and relax to a state 
characterized by an unchanging or "self-similar" profile 
specified solely by the dimensionless combination present. 
The existence of this unique dimensionless scaling is the re
sult of certain transformation properties in the origial partial 
differential equation. We propose to show, using the porous 
medium problem as an example, that these transformation 
properties permit the construction of a Lyapunov func
tional, a quantity which (loosely speaking) provides a mea
sure of the information lost as the profile asymptotically ap
proaches self-similarity. 

As a paradigm for density-dependent diffusion, consid
er the following diffusion equation in the density p; namely, 

a: =V·[D(p)Vp] , (1) 

where D (p) denotes a diffusivity or diffusion coefficient 

D(p) = (N + l)pN, (2) 

and where N> O. These equations are frequently combined 
in the form 

a: =.:1(p)l+N, (3) 

where.:1 denotes the Laplacian operator in m dimensions. 
From the latter equation, we identify two integral invariants, 
namely 

M= ipdmx (4) 

and 

(5) 

which we associate with the conservation of mass and the 
first moment (or center of mass) of the distribution. Without 
loss of generality, we shall assume that the center of mass X 
is situated at the origin. 

Equation (3) describes the so-called "porous medium 
problem" 1 and is frequently encountered in hydrology and 

soil science. In such applications, one considers the flow of a 
fluid through an m-dimensional porous medium. The mass 
of the fluid is conserved and the fluid is assumed to obey a 
polytropic equation of state. Instead of the Euler force equa
tion, the fluid is said to obey Darcy's law which provides for 
a velocity proportional to the pressure gradient. This in tum 
gives rise to a power-law dependence on the density by the 
diffusion coefficient. A suitable scaling of the density then 
yields the diffusivity (2). 

The porous medium equation emerges in other physical 
contexts where a dissipative process employs a diffusion co
efficient which varies as some power of the flow quantities. 
In plasma physics, the diffusion of heat introduces a diffusi
vity which varies as the ~ power of temperature. In such 
instances, Eq. (3) is said to describe the "thermal wave prob
lem." 2 

Density-dependent diffusion introduces a degeneracy 
into the parabolic character of the problem which manifests 
in a "boundary layer" near p = 0 which propagates at a 
finite speed. This, in tum, guarantees that an initial distribu
tion with compact support (i.e., a spatially confined distribu
tion) will preserve compact support. It has been shown that, 
if p;;'O initially, p will remain non-negative. These features 
are appealing from a physical standpoint, in contrast with 
the infinite propagation velocities peculiar to linear diffu
sion. Although these properties of nonlinear diffusion have 
been known empirically for a long time,2 their rigorous deri
vation has been accomplished only recently.3-5 

The apparent simplicity of the porous medium equation 
combined with its mass conservative property together with 
strictly dimensional considerations implies that there is a 
possible direct relationship between the spatial extent of the 
mass distribution and the time. Moreover, we might expect 
the effect of diffusion to erase all memory of the initial condi
tions (apart from the integral invariants) producing a distri
bution whose spatial characteristics, apart from a multipli
cative scaling, remain unchanged in time. Indeed, such a 
"self-similar solution" exists and is described by an equation 
of the form 

p(x,t) = g(t) F[x/L (t )], (6) 

where L (t) is a measure of the distribution's length scale 
which is assumed to vary as a power law in time, namely 

L (t) = t1' . (7) 

The presumption of self-similar, symmetric flow reduces the 
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partial differential equation to an ordinary differential equa
tion in the variable x/L. (We will assume, for the moment, 
that the initial conditions are angle-independent so we need 
only explore radial variability in the distribution. Once we 
have derived the Lyapunov functional, we can trivially dem
onstrate its validity in the presence of any asymmetries.) Bar
enblatt and Zel'dovich5

,6 have argued that a self-similar so
lution is not a singular or degenerate solution but describes 
what they have called the "intermediate asymptotic" behav
ior of a system where the solution no longer depends on 
details of the initial or boundary conditions but is far from 
equilibrium. The porous medium equation possesses, using 
the terminology established by Barenblatt and Zel'dovich, a 
"self-similar solution ofthe first type," a solution where the 
index r is determined from dimensional considerations and 
conservation laws. BIuman and Cole7 have shown that the 
partial differential equation (3) is invariant under a continous 
Lie group of transformations that is in turn associated with 
the construction of the self-similar solution. Kamenomost
sakaya8 successfully employed these transformation group 
properties in demonstrating the evolution of the porous me
dium solution in one dimension to self-similar form. The 
existence of these transformation group properties has given 
rise to the idea that solutions to the porous medium problem 
are drawn or "attracted" to a self-similar state. 

The characterization of self-similar flow as an attractor 
for porous medium flow has been demonstrated using other 
approaches. The existence of boundary layers which confine 
porous medium flow to a region of finite extent necessitates 
the classification of the solution to (3) as a moving boundary 
problem. In one dimension, Berryman9 employed a (Lagran
gian) transformation which transformed the original moving 
boundary problem into a fixed boundary problem. In so do
ing, he obtained a nonlinear Rayleigh-Ritz quotient and a 
Lyapunov functional which demonstrated the intermediate 
asymptotic character of the solution. Berryman's method, 
unfortunately, cannot be extended to describe asymmetric 
flows in higher dimensions. In the case where N = 0, the 
porous medium problem in m dimensions simplifies to the 
linear diffusion equation. Barenblatt and Zel'dovich5 em
ployed Green's function techniques in order to demonstrate 
the evolution of the distribution to self-similar form, a Gaus
sian profile. Most recently, Friedman and Kamin4 have con
structed a subsolution and a supersolution with a suitable 
comparison principle for the m-dimensional problem, pro
viding the only complete demonstration of convergence to 
self-similar flow in higher dimensions. This approach, al
though rigorously correct, is especially complex and pro
vides little insight into the mathematical or physical charac
ter of the diffusion process. 

By visualizing nonlinear diffusion as an irreversible 
process where memory of the initial conditions are lost, we 
expect that a monotonically increasing Lyapunov functional 
(that describes the evolution of the flow to self-similarity) 
would exist. (The method of Lyapunov is not frequently en
countered in application to partial differential equations. 
For a clear treatment of the Lyapunov functional and exam
ples germane to hydrodynamic stability, the reader should 
consult Pritchard. 10) The Lyapunov functional would occu-
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py the same role as the entropy in thermodynamic problems. 
There, the entropy would invariably increase while the ther
modynamic variables would relax to a state characterized by 
no more information content than that contained within the 
conserved quantities. We shall demonstrate a general proce
dure for employing the integral invariants as well as the 
transformation properties of the partial differential equation 
(associated with formulating the self-similar solution) in or
der to construct a Lyapunov functional. We shall show that 
self-similar flow is an attractor for this nonlinear diffusion 
process, just as a maximum entropy state is an attractor for 
irreversible thermodynamic processes. In particular, we 
shall demonstrate in a heuristic way that the solution to the 
porous medium equation converges asymptotically to a self
similar form. In the succeeding paper, II this demonstration 
will be performed in a rigorous way. 

II. SELF-SIMILAR TRANSFORMATION 

In order to understand why self-similarity is special, we 
must explore the transformation properties of the porous 
medium equation. It is well known5

,
7 that the original partial 

differential equation must be invariant under a scale or ho
mology transformation in order for a self-similar solution to 
exist. Defining a new spatial coordinate x' by 

x' = TfX, (8) 

where Tf is a positive, real-valued constant, the new density 
p' must scale according to 

p' = Tf - m p (9) 

in order to preserve the mass (4) in m dimensions under the 
transformation. The new time variable t ' scales as 

t' = TfmN + 2 t (10) 

in order for the transformed partial differential equation to 
be satisfied. This transformation permits us to generate a 
family of solutions to the porous medium equation (3) from a 
given solution, a family of solutions characterized by a 
"stretching" of the original solution. Under this transforma
tion, only one combination of spatial coordinates and time 
remains unchanged, the quantity y defined by 

y = x/ta = x'/t,a, 

where 

a = l/(mN + 2). 

(11 ) 

(12) 

By replacing the role of the variables x and x' by y, we elimi
nate the spatial characterization that distinguished p' from 
p. In that sense, we see that the quantity r defines a natural 
length scale by which we normalize the spatial variable. 
Comparing the latter with (7), we associated a with rand 
write 

L(t)=r. (13) 

In a self-similar solution, the density profile remains un
changed apart from a multiplicative scaling. Recalling Eq. 
(6), which we now write as 

p(x,t) = g(t) F( y), (14) 

Eq. (10) gives 

(15) 
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while Eq. (9) and (14) give 

g(t') = 1J- m g(t). 

Comparing the latter two equations, we obtain 

g(t)-t -m/(mN+2) = t -ma. 

(16) 

(17) 

Assuming that the original distribution is symmetric, the 
self-similar solution F (y) is now calculable as a solution to an 
ordinary differential equation, a feature discovered indepen
dently by Barenblatt12 and by Pattle. 13 Since our objective is 
to obtain a Lyapunov functional for the partial differential 
equation, we will pursue an alternate approach predicted 
upon the original partial differential equation. 

III. SELF-SIMILAR SOLUTION 

As before, we shall assume that the center of mass X is 
situated at the origin (employing a translation of coordinates 
if necessary). We shall assume that the initial data p(x,O);;;.O 
have compact support. We shall momentarily ignore any 
angular variation (i.e., asymmetry with respect to the origin). 
Once we have derived the Lyapunov functional for symmet
ric flow, it will become apparent that the Lyapunov func
tional remains strictly monotonically increasing ifthe distri
bution is initially asymmetric. 

For ease of calculation (with no loss of generality), we 
shall normalize x, t, and p(x,t) so that the porous medium 
equation becomes 

ap = Na _1_~ [xrn-I pN a p ] , (18) 
at 2 xm - I ax ax 

and so that the mass (the first invariant M) is numerically 
equal to 

M= f (1_ y 2) lIN d my. (19) 
J1Y1<1 

From the preceding discussion, we expect the self-similar 
solution to have the form t -rna F(x/t a), where Fmust be 
consistent with the mass normalization above. Recalling the 
definition (11) of y for t > 0, we can without loss of generality 
consider the behavior of I( y,t ) defined according to 

p(x,t) = t - rna I(y,t) (20) 

in place of the density p(x,t). The rationale for seeking a 
solution I( y,t ) instead of p(x,t ) is that, if the self-similar solu
tion is an attractor for this dissipative system, then 

lim/(y,t) =F(y). (21) 
t~oo 

Since the latter equation is especially simple to test, we re
place the roles ofx and p(x,t ) by yand I( y,t ), quantities that 
we have established to be "natural" in the context of self
similar solutions. [Berryman's 9 Lagrangian approach em
ployed another form of "natural" coordinate representation. 
However, that approach is inapplicable to asymmetrical, 
higher-dimensional problems.) 

For convenience, we define a time variable r according 
to 

r=ln!. (22) 

Transforming from x, t, and p(x,!) to y, r, and I( y,r), Eq. 
(18) and (19) become (after a substantial amount of algebra) 
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al = !!..._1_i. [ym-I/i. (IN + y2)] 
ar 2 ym - I ay By 

(23) 

and 

(24) 

Note that the right-hand side of(23) isjust the radial term in 
V·[jV(lN + y2)], where lis assumed to depend on the vec
tor y. This feature will permit the straightforward general
ization of the Lyapunov functional for radially symmetric 
distributions to initially anisotropic distributions. 

The self-similar solution for this problem emerges if the 
left-hand side of (23) vanishes and we replace the role of /by 
the self-similar solution F. Thus, ym -I F(d /dy)[FN + y2] 
must be constant. Since I and, hence, F have compact sup
port, that constant must be zero (since our expression van
ishes when F does). Thus, when F is nonzero, 

(25) 

where C is a real-valued, positive constant. Since F must be 
continuous (there is a discontinuity in the derivative of F 
which provides for a finite propagation speed), the latter 
equation must be connected to the solution F = O. The nor
malization constraint (24) selects C to be unity and 

y""" {(I _yZ)lIN 1 1/1 
F(y) = 0, Iyl> 1. (26) 

Having obtained the similarity transformation and solution, 
we turn our attention to obtaining the Lyapunov functional. 

IV. L YAPUNOV FUNCTIONAL 

We assume a representation for the Lyapunov func
tional H (r) of the form 

H(r) = -1 h (f,y) dmy. (27) 

In particular, we seek a quantity H that is monotonically 
increasing, i.e., 

dH (r) ;;;.0. (28) 
dr 

[In what follows, we shall assume that I has all necessary 
derivatives, a feature not enjoyed by the similarity solution. 
In the succeeding paper, II these technical difficulties will be 
addressed.] Evaluating the derivative of H, we see that 

dH(r) = _ f ah (f,y) al d"'y, 
dr In al ar 

(29) 

where ah (f,y)lalis the functional derivative of h with re
spect to f Introducing (23) into (29) and integrating by parts 
(assuming that I has compact support so that total deriva
tive terms vanish), we find 

d~;r) = ~ 1 I(~ (fN + yZ)] (: :1 h (f,y)] dmy. 
n ~ (30) 

In order for H to be monotonically increasing, the integrand 
must be positive. Since 1>0, (aZ 

/ By a I)h (f, y) must have the 
same sign as (a/ay)(r + yZ). A particularly simple choice of 
h (f, y) with this property is 

h(f,y)= [l/(N+ l)]IN+I(y,r)+/(y,r)yZ, (31) 
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which provides 

ah (J,y) =fN(y,r) + y2. 
af 

Then, Eq. (30) becomes 

dH(r) = ~ ( f[1... (fN + y2)] 2d 'JI>0 
dr 2 In ay 

(32) 

(33) 

since the integrand is non-negative. Therefore, the Lya
punov functional 

H(r) = - ( [_I_ fN + l(y,r) + f(y,r)y2] dmy 
In N+ 1 

(34) 

is strictly increasing unless either fvanishes or fN + y2 is 
constant over the entire range [subject, of course, to the mass 
normalization equation (24)]. The latter, as we have already 
seen, only occurs when f corresponds exactly to the self
similar solution. The rate of convergence to the self-similar 
solution can be determined by evaluating d In H (r)/dr. The 
latter shows that convergence is fastest at early times and is 
achieved only in an asymptotic sense. 

Finally, by generalizing (34) for N>O to read 

H(r) = - ([_I_ fN + 1(y,r)+f(y,r)y2]d'JI (35) 
In N+ 1 

and by extending (23) to read 

;~ = ~ Vo[fV(fN + y2)] , (36) 

we readily observe that (35) is a Lyapunov functional for the 
porous medium equation with an initially asymmetric mass 
distribution. 

For the sake of completeness, we note for the linear case 
(N = 0) that the partial differential equation for f( y,r) is 

af = ~ Vo[fV(lnf + y2)] (37) ar 4 

with a normalization condition of 

L F(y) dmy = [iT. 

The self-similar solution is observed to be 

F( y) = exp( _ y2), 

(38) 

(39) 

a Gaussian as we expect. The corresponding Lyapunov func
tional is 

H(r) = - L [f(y,r)lnf( y,r) + f( y,r)y2] dmy. (40) 

(Here, the fIn f term is reminiscent of the entropy of a distri
bution function where the S n f( y,r) y2 d my term corre
sponds to the temperature in the thermodynamic problem. 
In that case, the temperature would be used as an additional 
constraint.) 
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The method developed here for deriving a Lyapunov 
functional can be adapted for treating other nonlinear diffu
sion problems which manifest self-similarity. The procedure 
we have developed consists of three steps: (a) isolate the natu
ral similarity variables; (b) express the partial differential 
equation in a manner that separates out the self-similar solu
tion in a simple way as well as factors terms so that integra
tion by parts is computationally simple; and (c) isolate a 
functional that exploits these properties and the factoriza
tion in order to provide a quantity which, like entropy, grows 
monotonically with time. To rigorously show that the mono
tonic character of the Lyapunov functional implies asympto
tic convergence to self-similarity requires functional analytic 
arguments. These are given in the succeeding paper 1 1 by Ral
ston. Indeed, nonlinear diffusion problems possessing trav
eling wave solutions are amenable to this approach, a conse
quence of the relationship between self-similar and 
traveling-wave flows discovered by Barenblatt and Zel'do
vich.5 (In a separate paper,14 we examine several nonlinear 
diffusion problems manifesting traveling wave solutions.) 
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equation to self-similarity. II 

James Ralston 
Department of Mathematics, University of California, Los Angeles, California 90024 

(Received 30 November 1983; accepted for publication 4 May 1984) 

This article continues the analysis of the preceding article, showing that the Lyapunov functional 
introduced by Newman can be used to prove the stability of the Barenblatt-Pattle solutions of the 
porous medium equation. 
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I. INTRODUCTION 

The objective of this article is to show that the Lya
punov function introduced by Newman in the preceding ar
ticle l can be used to prove that finite mass solutions of the 
porous medium equation tend to self-similar solutions as 
t -+ 00. Precisely stated, given tP E L l(R m), tP;;;.O, letp(x, t) be 
the solution of the porous medium equation with 
p(x,O) = tP (x) (the precise meaning of "solution" here is ex
plained in Sec. II). Then 

,~": Lm Ip(x, t) -Ps(x, t)ldt = 0, (*) 

where 

Ps(x, t) = t ~ mara; - t ~ 2alxI2)I~N, 

a", is determined by 

( tP dx = ( (a; - IxI2)I~Ndx, 
JR m JR m 

and a = (Nm + 2)-1. In the language of dynamical systems 
this says that similarity solutions are "stable attractors" and 
in what follows we refer to (*) as the stability theorem. We 
will follow the notation of Ref. 1 as much as possible. 

If one restricts attention to bounded initial distributions 
tP, the stability theorem of Friedman and Kamin2 gives more 
information than (*). However, the proof given here does not 
require the substantial regularity results for the porous me
dium equation used in Ref. 2. 

II. EXISTENCE THEORY 

We begin with a few results from the existence theory 
for quasilinear parabolic equations. Let tP (x) be a smooth 
nonnegative function of compact support; we will denote the 
space of such functions by CO: + (R m). Then for E> 0 the 
initial value problem 

a: = dpl + N, p(x,O) = tP (x) + E ( 1) 

has a unique classical solution such thatp and its derivatives 
in x up to order 2 are bounded on R mX [O,T] for all T. 
These solutions satisfy the maximum principle 

tPI(X) + El ;;;'tP2(X) + E2 =? PI(X, t );;;'P2(X, t). 

These results can be obtained from [Ref. 3, Chap. V, §8] by 
first replacing (1) by 

ap =cV.h(p)Vp, p(x,O)=tP(X)+E, (1') 
at 

where h is a smooth, strictly posItive function with 
h (p) = (1 + N)pN for p;;;'E, and then using the maximum 
principle to conclude solutions of (1 ') solve (1). 

For solutions of (1) one has the estimate of Vol pert and 
Hudjaev [see formula (0.11) of Ref. 4] for A> 0, t, s;;;.O, 

( IpI(x, t + s) - P2(X, t )Iw,dx)dx JR m 

where W A (x) = exp( - A ~ 1 + Ix12) and 

kA =m(A2+A)(N+ 1) 

X max { (sup PI (x, S))N,(SUp P2(X,0))N J . 

(2) 

We define T (t)tP as the limit in L I~ (R m) of the solution 
PEh t) of (1) aSE -+ O. Estimate (2) and the results cited in the 
first paragraph imply that T (t ) extends to a contraction semi
group on L 1+ (R m) = ( gEL I(R m): g;;;'O J, i.e., for t, s;;;'O, 
T(t + s) = T(t )T(s), and 

IIT(t)g1 - T(t)g2111<lIgl -g2111' 

It also follows that gl(X);;;.g2(X), a.e. implies 
[T(t )g1](x);;;.[T(t )g2](X), a.e. Moreover, the uniqueness argu
ment of Ref. 4 (see §2 and 3) or the uniqueness theorem of 
Brezis and Cranda1l5 [see Remark (1.22)], implies that for 
g(x) = (a2 - IxI2)I~N, T(t)g is the similarity solution 

Ps(x, t) = (1 + t) ~ ma(a2 - (1 + t) ~ 2alxI2)I~N. 
Hence, if tP is a function in CO: + (R m) and "a" is large 
enough that (a2 - IxI2)l~N;;;.tP (x) for x E R m, then T(t)tP is 
bounded by the similarity solution with initial data 
(a2 

- IxI2)I~N for all t;;;.O. Since the integral of a similarity 
solution over R m is constant in time, it follows from the 
contraction property that for t> 0, 

( T(t)tPdx= ( tP dx. 
JR ffl JR m 

III. CONSEQUENCES OF EXISTENCE OF THE 
L YAPUNOV FUNCTIONAL 

Since T (t ) is a contraction semigroup ;and CO: + (R m) is 
dense in L 1+ (R m), it will suffice to consider T(t)tP for 
tP E CO: + (R m). 

Let 

H(p, t) = tmaN(p(x))1 +N /(1 + N) + t ~2alxI2p(x). 
Then 
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1m H(p, t)dx 

is Newman's Lyapunov functional, written in terms of the 
original variables. FortP E C;' + (R rn)setp = T(t )tP. Sincepis 
bounded by a similarity solution, given t/J E C 0'((0,00)) we 
can choose X E C orR m), such that X (z) == I on the support 
of t/Jp. Hence, 

f ~~ (1m H(p, t)dx )dt 

= ( dt/J (t )x(x)H (p, t )dx dt 
JR m + I dt 

= lim r dt/J (t)X(x)H(PE' t)dxdt, 
E~oJRm+1 dt 

where PE is the (classical) solution to (I)-note that 
E<PE <maxtP + Eby the maximum principle. Integrating by 
parts and substituting from (I), 

r dt/J XH(Pot)dxdt 
JR m + I dt 

= - r t/JX(~H(Pot)Cilp;+N + aaH(PE,t))dXdt 
JR m + 1 up t 

= C ( t/J(VX' Vp; + N)aH (Po t )dx dt 
JR m + 1 ap 

+ r t/Jx(cv aH . Vp! +N _ aH)dx dt 
JR m+ I ap at 

= -c r [t/J(ilX(tmaN( N+ I )p;N+I) 
JRm+1 2N+l 

+ (V . Ixl 2Vx)t - zap~ + I) JdX dt 

+ f t/JX(cV(p~tmaN+t-zalxI2).Vp!+N 
maN 

- 1 + N tmaN-Ip! +N + 2at -2a- IlxI 2PE)dx dt 

=11 +12, (3) 

Since X = I on the support of t/Jp, II ----+ 0 as E ----+ O. Here 12 
contains the term 

i maN - t/JX ---p! + Nt maN - I dx dt 
R m + 1 I+N 

i aN 
= - t/Jx ---(V .x)p! +NtmaN-I dx dt 

R m + 1 1 +N 

+ r t/Jx. Vx ~p! +NtmaN-I dx dt 
JR m + 1 I+N 

=13 +14 , (4) 

Again 14 ----+ 0 and E ----+ 0, and substituting (4) into (3) we have 

f ~~( 1m H(p, t)dX)dt 

= lim ~ r t/Jxl~ Vp~+ IIZt IIZ-a 
E~O 2 JR m + 1 N+! 
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+ 2t - a - 1I2Xp!1212 dx dt. (5) 

Here we have used c = [N /(2N + 2)][1I(mN + 2)] and 
maN = 1-2a. 

Equations (3)-(5) correspond to the more transparent 
formal computations given by Newman in Ref. 1 to show 
that 

f H(p,t)dt 

is a Lyapunov functional. We will exploit (5) by choosing 
t/J E Com, 00)) such that t/J(t) == Ion [2,T], Idt/J/dt 1< 1, and 
(dt/J/ dt )(t )<0 for t> T, and then choosing R so that the sup
port of t/Jp is contained in Ixl <R. Then it follows from (5) 
that 

(2 dt ( H(p, t)dx 
JlIz JR m 

;;,!!....lim sup (dt r I~ 
2 E~ 00 J2 )Ixl <R N + ! 
X V( p~ + 1I2)t 112 - a + 2t - a - I12Xp;12 I 2dt. (6) 

Since E<PE <max tP + E, (6) implies that 

( dt ( IVp~+ 1I212dx<C, 
J2 Jlxl <R 

where C may depend on Rand T but not E for 0 < E < 1. 
Hence we can choose E; W so that V p~ + 112 converges weakly 
in L 2(1 Ix I < R 1 X [2, T]). Since p~ + 112 converges in norm to 
pN + lIzinL 2(1 Ixl <R 1 X [2,T]),itfollowsthattheweaklimit 
of V p~ + 112 is V pN + 112 in the sense of distributions. Thus, 
since norms are lower semicontinuous under weak limits in 
Hilbert space, 

(2 dt ( H(p, t )dx dt 
JI /2 JR m 

;;,!!.... ( dt r I~ V(pN+ 1I2)t 1I2-a 
2 J2 Jlxl <R N +! 
+ 2t - a - 1I2Xp l/21

2 

dx. 

Since T is arbitrary and given T we can take R arbitrarily 
large, it follows that 

00 > (00 dt r I N V x (pN + 1I2)t 112 - a 
J2 JR m N + 1/2 

+ 2t - a - 112Xp 1/21
2 

dx. (7) 

Equation (7) is all that we will need to prove stability. 
At this point it is convenient to switch the variables 

used by Newman. We set x = tayand/(y, t) = tmap(tay, t). 
Since p is bounded by a similarity solution we have 

Oq(y,t)< a2 _ t lyl2 . trna ( 2a ) liN 

(I + t )ma (1 + t fa + 

Thus for t;;,2, I( y, t) has support contained in a fixed ball 
IYI <Ro and O<!'(y, t )<a2IN

• Moreover 

r I( y, t )dy = ( pIx, t )dx = r tP dx. 
JR m JR m JR m 
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Changing variables in (7) we have 

("" dt (I N VyfN+ 112 + 2yfl/212 dy< 00. 

J2 t J R m N + 1/2 
For almost all t, V y fN + 1/2( y, t) belongs to L 2(R m) by Fu
bini's theorem, and one shows directly from the definition of 
distribution derivative that, for almost all t, Vy fN + 112( y, t) 
is the distribution gradient off (y, t ) considered as a function 
of y alone. Thus we can choose a sequence tj i 00 such that 

1",1 N+N1/2 VyfN+1I2(y,tj)+2YfI/2(y,tjf dy-+O, 

(8) 

and V y is the gradient to the sense of distributions. 

IV. COMPLETION OF THE PROOF OF STABILITY 

Setting/" (y) = f( y, tn ), we can formulate the final step 
in the proof of stability as a lemma. 

Lemma: Suppose 0-ifn(y)..;;M, support fn(Y) is con
tained in Iy 1 < Rand 

( fn dy = c, 
JR m 

for all n. Then if 

(I N Vf~/2+N + 2Yf~1212 dy-+O, 
JR m N + 1/2 

there is a subsequence ! fnj J such that 

( lfn) - J.ldy -+ 0, (9) 
JR m 

where J. = (a~ - lyI2)I~N and ac is determined by 
fRmJ. dy = c. 

To see that the lemma implies stability note that 

1m Ip(x, t) - t -rnaJ.(t -ax)ldx = f Ih (y, t) - J.(y)ldy. 

Thus, using the fact that T(t) is a contraction, (9) implies 

lim ( Ip(x, t) - Ps(x, t )Idx = 0, 
t_ 00 JR m 

whereps = t -rnaJ.(t -ax). 
Proofof Lemma: By the triangle inequality for the L 2_ 

norm we have immediately 

( IVyf;;+ 11212 + If;;+ 11212 dy<K, 
JR m 

for all n. Thus by Rellich's compactness theorem, ! f;; + 1/2 J 
is precompact in L 2( y2 < 2R 2). Thus, there is a subsequence 
( fn) J such that 

( If;; + 112 - g"" 1
2dy -+ o. JR m ) 

Since taking a further subsequence, we may assume 
f~ + I12( y) -+ g"" (y), a.e., definingf"" (y) = (g "" (y))IIIN + 112), 
we have/,,) y) -+ f"" (y), a.e., and hence 

( lfnj(y)-f",,(y)ldy-+O. 
JR m 

Now let tP ( y) be a smooth function of compact support. 
Then for l..;;k..;;m, 
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Thus 

0= ( (- JtP f:+1I2+Yk(2+1-)r~2tP)dY, (10) 
JR m JYk N 

Equation (10) implies thatf"" is a function of lyl2 alone. 
To see this let R (t) be a rotation matrix depending smoothly 
on t and let tP (z) be a smooth function of compact support: 

~ (( tP (R (t )Ylf: + 112( Y)dY) 
dt JR m 

= ( (VztP(R(t)y).R'(t)Ylf:+I12(y)dy 
JR m 

= 1m (VytP (R (t )y) . R T(t)R '(t )y)f:+ 112(y)dy 

= 1m ((2+ ~ )Y' R T(t)R '(t)y )f~2tP (R (t )y)dy 

-1 m (Vy . R T(t)R '(t) y)fN + 112tP (R (t) y)dy 

=0, 

since R T(t)R '(t) is skew-symmetric. Thus 

1 m tP (R (t )Ylf: + 112(y)dy = 1 m tP (zlf: + 112(R T(t )z)dz 

is independent of t and, modifyingf"" on a null set, we can 
assume it is a function of y2 alone. 

Equation (10) implies, taking tP = Yk t/J 

0= 1 m (( - y . vt/Jlf: + 112 

+ (2 + ~ )iYI2t/Jf~2 - mt/Jf:+ 112)dy . (11) 

Setting t/J(y) = A, (lyI2) and u = lyl2, integrating (11) in polar 
coordinates yields 

0= ("" - ~(urn/2A, (u)lf: + 112(U) 
Jo du 

+ (1 + 2~ )UmI2A, (Ulf~2(U)du. 
From this one concludes thatf: + 112(U) is absolutely contin
uous on (1/ k,k ) for k> 0 with derivative 
- (1 + 1/2N)f~2(U). Sincef:+ 112 continuous and non

negative impliesf ~2 continuous'/: + 112 is continuously dif
ferentiable and 

"" + 1 + _1_ 112 = O. dlfN + 112 ( )r 
du 2N "" 

Hence, if f"" (uo)#O, f: (u) = ao - u on lu - uol <15 for 
some 15 > O. Thus, sincef: is continuous and 

( f"" (y)dy = c, 
JR m 

we concludef"" = J. and the proof of the lemma is complete. 
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By conditioning on a subalgebra of observables, we develop low temperature expansions for 
certain quantum Ising models, which include transverse Ising models and anisotropic xy models. 
These expansions are majorized by the series for functions solving certain nonlinear partial 
differential equations. Convergence for the majorizing series follows from Cauchy-Kowalevski 
theory applied to the partial differential equations. The low temperature expansions imply long
range order. 

PACS numbers: 64.60.Cn, 05.50. + q, 75.IO.Jm, 02.30.Mv 

I. INTRODUCTION 

The intent of this article is to show that the thermody
namic states for certain quantum Ising models exhibit long
range order at sufficiently low temperature. Let H be a quan
tum Ising Hamiltonian defined by 

i,jEA 

Here,if(i), cr(i) are Pauli spin matrices at site iEA Cl,d, d;;'2, 
and O'°(A ) = IIiEA cr'V), A CA. The first sum on the right
hand side of (1.1) is taken over nearest neighbor bonds and is 
simply the classical Ising Hamiltonian Ro. (For simplicity 
we confine attention to the nearest neighbor case; more gen
eral classical Ising Hamiltonians as well as other perturba
tions could be accommodated.) The second sum, which we 
treat as a perturbation, is a generalization of the transverse 
Ising term or xy model perturbations considered by numer
ous authors [see, e.g., Refs. 1-7 and references cited there]. 
The thermodynamic state at inverse temperature fJ is defined 
as a thermodynamic limit of 

PA (.,/J,€) = (tr exp( - fJHA (€)))-I tr((.jexp( - fJHA (€))). 

We develop a low temperature expansion for the finite vol
umestatesPA which is uniform inA. We then use this expan
sion to show, in Sec. III, that if the Hamiltonian is isotropic 
and translation invariant and if the sum for V (i) defined by 

V (i)=o L V(AJ cr(A) 
A3i IA 1 

(1.2) 

consists of a finite number of terms, then there exist €c > 0 
andfJc > Osuch that ifl€1 < €c andfJ>fJc long-range order in 
the variables ( tr(A ) J obtains for the infinite volume thermo
dynamic state. 

This result should be compared with that of Ginibre, 1 

who also showed long-range order for a variety of quantum 
Ising models at low temperature by a Peierl's contour argu
ment. The interactions Eq. (1.2) considered here, however, 
generalize some of those considered by Ginibre; moreover 
his estimates required €--D as {3- 00; no such condition is 
needed here. Our results should also be compared with those 
of Fr6lich and Lieb,4 who used reflection positivity to estab
lish long-range order at low temperature for a variety of 
quantum models; see also the work of Kirkwood7 who 
showed using reflection positivity that, € need not go to zero, 

as fJ- 00 . Our methods do not require reflection positivity of 
the interaction. Finally, we remark that when € is large the 
quantum fluctuations brought about by the perturbation 
term of the Hamiltonian can destroy long-range order; in 
Ref. 6, it is shown that in a variety of transverse Ising-like 
models, for € sufficiently large, long-range order does not 
hold for any sufficiently low temperature. 

The expansion for P A which we develop involves two 
principal ideas, prObabilistic conditioning of the state PA ' 
and then some simple nonlinear analysis to estimate the ex
pansion. These same ideas were used in Ref. 6 (see also Ref. 
5) with an important difference in the nonlinear analysis de
scribed below. Let 0' denote a point in f - 1,11 /1, i.e., a classi
cal spin configuration, O'(i) the coordinate of 17 at site i. Let 
/(7) = ®;EA I17(i), where 1000i) is an eigenvectorofcr(i) satis
fying cr(i)I17(i) = O'(i)I17(i). (The set of vectors 1(7) forms a 
complete orthonormal set.) Suppressing the A subscript, we 
define h (17',17,1',€) by 

h (O",17,l',€) = In (17'lr rH 1e\I(7). (1.3) 

Then we conditionpA onto observables at "times" 0,1',21', ... , 
(N - 1 )1', l' = fJ / N for some suitable integer N; if 
Xo(O),x,(l'), ... ,x N _ 1 ((N - I )1'), are observables at these times 
then 

PA (XO(O)Xl(l')",XN _ 1 ((N - l)l'j,fJ,€) 

= ~ tr(Xo(O)e - rH(e)x
l
(l') 

1, 

Xe - rH(E) ... XN_ 1 ((N - l)l')e - rH(el) 

1 
= - L Xo(O) 

Z d', ... ,(f'" I 

We will show that for l' appropriately large, hr can be ex
panded in a power series and that it has a suitably small 
density which implies long-range order. (Since N;;. 1 is arbi
trary, all suitably large inverse temperatures, fJ = l'N, give 
rise to long-range order.) 

The power series for the local density of h (17',17,T,€), in 
fact a double power series in powers of e - 21" and €, can be 
obtained in a straightforward manner. To prove that the se
ries is convergent, we majorize the double series by the dou
ble series for a function which satisfies a nonlinear first-order 
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partial differential equation, see Eq. (2.24). The convergence 
of the double series for the majorizing function is assured by 
Cauchy-Kowalevski theory applied to this partial differen
tial equation. (This analysis is described in a somewhat ab
stract setting in Sec. II.) The method for obtaining the major
izing function here should be contrasted with that in Refs. 5 
and 6, where the majorizing function was simply the solution 
to an implicit nonlinear equation, rather than a partial differ
ential equation. We also remark that the partial differential 
equation we obtain is complicated in appearance, reflecting 
the fact that the combinatorics of these quantum expansions 
are complicated. Fortunately, we are not concerned with 
solving the equation, but only with existence of a solution, in 
this case an immediate application of Cauchy-Kowalevski 
theory. 

As a last remark, we note that Eq. (1.4) is the expecta
tion for a periodic process of period P = Nr. 8 But again our 
estimates are uniform in N, suggesting that the methods de
scribed here could be used to develop expansions for certain 
infinite particle stochastic processes. This work will be re
ported elsewhere. 

II. INTEGRAL EQUATION FOR THE CONDITIONED 
CLASSICAL HAMILTONIAN 

Define the conditioned classical Hamiltonian h by 

h (0"',0",1",£) = In (0"' Ie - 'THIEl 10") . (2.1) 

The purpose of this section is to write out an integral equa
tion for h and to investigate its analytic behavior. By differ
entiating Eq. (2.1) with respect to £, we obtain 

i. h (0"' ,0",1",£) = exp( - h (0"' ,0",1",£)) 
a£ 

= exp( - h (0"' ,0", 1",£)) I (0"' Ie - 'TH lEI I 0"" ) 
CT' 

= I exp(h (0"',0"",1",£) - h (0"',0",1",£)) 
CT' 

(2.2) 

with 

(2.3) 

Integrating Eq. (2.2) and suppressing the variable 0"', we ob
tain our integral equation 

h (0",1",£) = ho(O",1") 

+ r r(exp aAh (O",1",£'))(O"A IVT(£')IO") d£', 
AcAJO 

where 

ho(O",1") = ho(O"',O",1") = h (0"',0",1",0), 

and we use the notation 
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(2.4) 

(2.5) 

(.) _ { a1i), O"A I -
-a1i ), 

if iM; 

if iEA; 
(2.6) 

and the differentiation with respect to the subset A is defined 
by 

(2.7) 

The integral equation (2.4) determines h (O",€) as a formal 
power series in €; successive Taylor coefficients of h are de
termined inductively by the equation. Our task is to investi
gate the convergence of the series. 

We begin by casting the integral equation into a form 
more convenient for its analysis. Let 

J(O") = I/(A )a1A ). (2.8) 
ACA 

Then define the linear operator r by 

rJ= I laA 1/(A)a1A ). (2.9) 
A¥<p,A 

Here laA I denotes the surface area of the boundary of A, i.e., 
the area of the Peierl's contour associated with A. Let 
b = [iJJ with iJ nearest neighboring sites. Then we note the 
following identity involving r and the set of all nearest 
neighbor bonds: 

1 
r J(O") = - - IabJ 

2 b 

which follows from the identity 

ab J(O") = - 2 I /(A )a1A ), 
ACA 

IbM I = 1 

(2.10) 

(2.11) 

Remark: The Hamiltonian which we are considering 
leaves the states [ 10"): an even number of a1i) = - 1 J [[ 10"): 
an odd number of a1i) = - 1 J] invariant. Consequently 
a1A ) = a1A - A ) [resp. a1A ) = - a1A - A )] on these invar
iant subspaces so that the Fourier coefficients of the func
tions encountered below are not independent. We do note 
that of course A and A - A have the same boundary. For the 
sake of definiteness, given the choices of representatives 
a1A ), a1A - A ), we choose the one corresponding to the sets 
A or A - A with the smaller cardinality; if IA I = IA - A I, 
either representative can be selected. Henceforth, we will 
consider ourselves as working on either the even or the odd 
subspaces(wewiIIsuppressa ± sign); a term such as/(A )a1A ) 
in Eq. (2.8) will then be absorbed into the/(t,6 )-term. 

Using the identity Eq. (2.10), the integral equation can 
then be written 

+ r r rE(exp aAh (O",1",€'))(O"A I VT(€')IO") dE'. (2.12) 
AcAJO 

Assume now that ho(O",1") has a formal power series in a 
parameter A. Then h has a formal double power series with 
€'" An-coefficient h mn given by 
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m-I 1 
= 8morhon (u,r) + rr 2: r - Pjn (J A h ) 

iEA j=O ACA m 

X (UA 1V,.(i,m - 1 - j)lu). (2.13) 

Here we use the notation that if/(x,y) = ~m,n Imnxmyn with 
100 = 0, Pmn(f) is the polynomial in theJ,.;s, O<,r<,m, 
O<,s<,n, defined by 

ef(x,y) = 2: P mn (f)xmyn. (2.14) 
m.n 

Clearly the polynomial P mn has positive coefficients. The 
operator V,.(i) is defined by 

(2.15) 

V,.(i,m) is the coefficient of €'" in the Taylor expansion for 
V,. (i). 

Let us begin estimating Jb hmn in Eq. (2.13). First we 
note that by translation invariance and the isotropic proper
ty of the interaction, 

1 1 
'2IA Id IIJbhmn h·,rlllo = '2 ~ II Jbhmnh',r) II 0 

= II ~ ~abhmnh.,r)llo' 
(2.16) 

where the 11·110 norm of a function/(~',u) = ~A,B f(A,B) 
u'(A )u(B )isdefinedas 11/110 = ~A,B I/(A,B )1. Recall that we 
are working on the invariant subspaces, so 11·110 may have 
different values on the two subspaces, but it does not affect 
our results. The latter equality in Eq. (2.16) follows by the 
closure proyerty (see Ref. 6), which here means that if 
I(u) = ~A I(A )u(A JandA is a subset such thatbandb' inter
sect the boundary of A, then the coefficient of the u(A I-term 
in the Fourier expansion for Jb I equals the coefficient in the 
Fourier expansion for J b ' f 

Equations (2.13) and (2.16) give us an estimate on Jbhmn 
form;;;d 

m-I 

X 2: Ilr[Pjn (JAh)(uAIV,.(i,m-l-j)lu)] 110' 
j=O 

(2.17) 

Second we note the following property of the r-oper
ation; if I = I(u',u), g = g(u',u) are two functions of u' and u, 
then 

IIr(fg)llo<,11F 1II01Igii0 + 1l/llollrgllo· (2.18) 

Theorem 2.1: Assume there exist positive constants K, 
C I , C2 , and 8 such that 

(i) Form + n;;d, 

IIrPmn(JAh 1I10<,K(m + n)pmn(llJAh 110)' 

and hoo is independent of both u' and u. Here P mn (IIJ A h 110) 
denotes P mn OIJAhodlo, IIJA hlOllo' ... , IIJAhmn 110)' 
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(ii) For each A CA, iEA and m>O, 

IIr (uA I V,. (i,m)lu) Ilo<,K (m + 1)11 (uA I V,.(i,m)lu) 110' 

(iii) SUPACA II (uA I V,.(i,mllu) Ilo<'C ';' +', for m>O. 

(iv) Let d'(i,m) = {ACA III(uA 1V,.(i,m)lu)lIo#OJ. 
Then the cardinality of d'(i,m) is less than C; +', for m)O. 

(v) If (U,4 I V,.(i,m)lu) #0, then A can be written as 
A = b,AbzA ... Abr with r<,8(m + 1) and b/s are nearest 
neighbor pairs, for m>O. 

(vi) ~: = 0 IIJbhon lIolA In < 00, for smalllA I> O. 
Then there exists a r> 0 such that if k/ < rl(C,C2 ), IA I < r 
then 

00 

2: Jbhmn€"'A n 
m,n=O 

is an absolutely convergent series in the sense that 

m,n 

Proof: Applying Inequality (2.18) and the hypotheses 
above to the right-hand side of Inequality (2.17), we obtain, 
for m>O, 

m-I 

X 2: Pjn OIJ A hodlo,· .. , IIJ A hjn 110) 
j=O 

2Km+n m
- ' <, --- r 2: Pjn (8(m - j)llabhodlo' 

d m j=O ACA 

... ,8(m - j)IIJbhjn 110) 

X II (UA /V,.(i,m - 1 - j)U) 110 

2Km+n m
- ' <,--- L~n(8(m-}IIIJbho,lIo, 

d m j=O 

... ,8(m - jll/Jbhjn lIo)C; -jC,;,-j 

2K m+n m-l 
<, - -- L Pjn (8(m - j)ko" 

d m j=O 

... ,8(m -j)kjn)C;-jc,;,-j=kmn , (2.19) 

where kon is defined by kon = IIJbhon 110 and all other kjn's are 
defined inductively by the last identity of (2.19). Then it suf
fices to show that there exists a r> 0 such that if lEI < rl 
(C,Cz), IA I <r, then 

(2.20) 
m.n 

Let C = C1C2• Multiplyingll. non both sides ofEq. (2.19) and 
then summing over O<,n < 00, we obtain that for m) 1, 

00 2K + m-I I -~ I Pjn (8(m -})koo, .. ·,8(m _j)kjn)cm-j).,n 
n=O d m j=O 

00 2K ( 1 a )m - 1 = I - 1+ -A- I ~n(8(m -j)koo, 
n = 0 d m all. j = 0 

... ,8(m - jlkjn)C m -1)., n 

2K ( 1 a )m-l 
= - 1 + -A - 2: ~(c5(m - j)ko(A), 

d m all. j=O 
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... ,5(m - j)kj(A ncm- j 

=km(A), (2.21) 

where, for allj;;"O, kj(A ) = 1:: ~ okj"A nand lj is defined by 
00 00 

exp I /"x" = IPj(/o, ... Jj)xi, (2.22) 
,,~o j~O 

(cf. Ref. 5). Multiplying €'" on both sides ofEq. (2.21) and 
summing over 1 <m < 00, we obtain 

00 I k m (A )€",==k (£,A ) - kolA ) 
m=1 

= i: 2K mil[£j(CE)m-jPj(5(m-j)ko(A), 
m~ 1 d j~a 

... ,5(m - lJkj(A)) + CA ~ (fE,j(CE't -j- 1 dE')Pj(5 

x(m - j)ko(A ), ... ,5(m - j)kj(A n). (2.23a) 

Let n = m - j; the sum on the right-hand side ofEq. (2.23) 
can be written as 

+ 2K CA ~ r i: (C£'t - 1 exp 5nK (E',A )dE' 
d JA Ja ,,~I 

2K C£ exp 15k (E,A ) 
=-

d 1 - CE exp 15k (£,,1 ) 

+ 2K CA~ r exp8k(E',A) dE'. 
d JA Ja 1 - CE' exp 15k (E',A) 

(2.23b) 

Combining Eqs. (2.23a) and (2.23b) and differentiating them 
with respect to E, we obtain 

(
1 2K CE exp 15k (E,A ) ) Jk 

d (1 - CE exp 15k (E,A W JE 
2K C exp 15k (E,A) = - ------'--....:......:.--'--
d (1 - CE exp 8k(E,A W 

+ 2K CA8 exp 15k (E,A ) Jk (2.24) 
d (1 - CE exp 15k (E,A))2 JA 

Let E = CE, k (E,A ) = k (E,A ); then Eq. (2.24) is a differential 
equation of form 

Jk _ cr(- 1 k- Jk) 
--J E,r..." , 
JE JA 

with Y an analytic function of all four variables for small E 
and A. Then, by Cauchy-Kowalevski theory, it is solvable 
(cf. Ref. 9), and the solution" (E,A ) is an analytic function ofE 
and A at the origin provided that the initial value ka(A ) is 
analytic in A. Thus we conclude that there exists a y> 0 such 
that if lEI < (yIC), 1,1 I <y, then 1::.n~okm,,€"'A" converges 
absolutely. It follows that 1:Jb hmn ~A 11 converges absolute
ly. 

Corollary 2.2: Under the same hypotheses of Theorem 
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2.1, assume moreover that for some K " a;;..O 

IIr 2Jbhmn Ilo<K '(m + ntllJbhmn 110' 

Then for some C (y) independent of ijEA, 

m,n 
for C lEI, IA I <y. 

Proof Let! bl,bz, ... ,bl J be a path, Le., bk's are nearest 
neighbor bonds with b] = ! i,i1 J, 
b2 = {i1,i2 ) , ... , bl = {iI _ pjJ and I = Ii - jl. Then we have 

II a", 11 h." 110 ~ 211 ~/." (A ,o')o(A III 0 

+ 211 ~h."""o'la(A 1110 

I 

<2 2: I' hmn (A,O")a(A ) 
k= 1 A3i 

+2 

IAnbkl ~ 1 0 

I 

I I 'hmn(A,O")a(A) 
k~1 A3j 

IAnbl_kl ~ 1 

r 2hmn (A,0")a(A) 

IJA 12 

a 

o 

+ I' 
A3j 

IAnbl_kl ~ 1 

r 2
hmn (A,0")a(A) ) 

IJA 12 
o 

I T 2hmn (A,u')(A) 

+ I' 
A3j 

IAnbl_.1 ~ 1 

A3i 

IAnbkl ~ 1 a 

J 
<+ kt. k12 (IIr2Jbkhmnlla+ Ilr2Jbkhmnllo) 

<.! ± ~2K'(m+n)aIlJbhmnlia 
8 k~1 k 

= K "(m + ntllJbhmn Ila, (2.25) 

where 1:' denotes that the sum is over all A 's such that i E A 
and k is the smallest integer for which IAnbk I 
= 1( IAnbI _ k I = 1), and the upper bound is uniform in i and 

j. Then the corollary follows from the fact that the series 
l:m,,, IIJbhmn I/a€'" A n and the series 
l:m,n IIJbhmn Ilo(m + n)a€",A n have the same radiusofconver
gence. 

This corollary implies long-range order. 
Theorem 2.3: Under the hypotheses of Theorem 2.1 and 

Corollary 2.2 long-range order holds in the sense that for 
i,jEZd, 

PA (<r(i)cr(j),/3,E};;"Co( /3,£) > 0 

uniformly in A, for some Col /3,E). 
Proof We have that 

L. E. Thomas and Z. Yin 
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P A (cr(i)cr(j),P,E) 

+ h (O"I,er) + ... + h (crv-I,O"0)) 

= ~ I exp(a1i•jj h (O"0,O"I))exp(h (0"0,0"1) 
Z d' ..... c?<-I 

+ h (O"I,er) + ... + h (crv-I,O"0)) 

;;>exp( - /la1i.jj h ("')/10) 
=co( p,E);;>exp( - C (y)) > 0, 

where we have used the symmetry of h, i.e., 
h (0"0,0"1) = h (0"1,0"0). 

III. SOME PROPERTIES OF ho AND V 

A. ho-term analysis 

If 10"') = cr(A )10") with A a set with even cardinality, 
we have 

= (O"lcr(A )e - TH(OIIO") 

= (cr(B )O"lcr(A)e - TH(Olcr(B )10") 

= 2 -1,1 I I (cr(B )O"lcr(A)e - TH(Olcr(B )10") 
BCA 

= 2 -1,1 I tr cr(A )e -7H(O) 

= 2 - 1,1 I tr cr(A )exp T I cr(i)O"(j), (3.1) 
(i.j) 

where we have used the facts that cr(A ) is self-adjoint and 
that criB ) commutes with H (0) and cr(A ), and we have made 
a unitary transformation to obtain the last equality. The lat
ter expression can be written in a Peierl's contour represen
tation; 

x I I IT e - 271r.1( - 1 (iF;), (3.2) 
n>I1r, ..... rnli~ I 

where P(Fi) = 0 or 1 according to whether the number of 
sites of A inside (oroutside)Fi is even or odd (recall that IA I is 
even). If cr(A )= 1, i.e., A = t/J, then, renormalizing H (0) by 
adding a suitable constant, we have 

ho(0",0",7) = In (O"le - .,.H(O) I 0") 

00 1 T n _ 27lr;1 
= I - I cP (FI,· .. ,Fn )II e , (3.3) 

n ~ I n! Ir, ..... rnj i~ I 

see Ref. 10, whereas if A =f.t/J, e - 271 r
n is replaced by 

e - 271r.1( - 1(F;) = e - 271r.1 II O"(k )O"'(k), 
keEj 

aBj=r; 

where Bi is the set of sites inside F i. Thus 
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x IT e - 27lr,1 II cr(k )O"'(k ). (3.4) 
i= 1 k€Bj 

aB;=r; 

Moreover, the series for abhO(J.. ) is absolutely convergent for 
7 sufficiently large, i.e., for J.. =e - 27 sufficiently small, and 
the convergence is uniform in A. In particular, for small J.., 

00 

I /labhonllolJ..ln< 00. 
n~O 

We have already proved the following fact. 
Lemma 3. i: There exists a Y I > 0, such that for IJ.. I < r I 

andACA, 
oc 

I lIaA hon lioJ.. n < 00, 

n=O 

and the convergence is uniform in A. 

B. V-terms analysis 

Now we investigate the properties of the potential V. 
Definition 3. i: A collection of sets Bo,BI, ... ,Bn is called 

an (n + 1 )-diagram starting at site i, if 
(a) iEBo; 
(b) V(Bj)=f.O, for O<j,;;;;n; and 
(c) distance (Bk , uHk Bj ),;;;;I, O,;;;;k,;;;;n. 

An (n + 1 )-covering of a set B is an (n + 1 )-diagram 
(Bo,· .. ,Bn J such thatBo.d BI.d .. ·.d Bn = B. 

Remark: We will not be concerned about the order 
among Bj's. 

Lemma 3.2: Let D be the maximum of the diameters of 
sets B such that V (B) =f. 0, s the number of sites within a dis
tance2D + 1 ofagiven site and t the number of terms in Vii) 
in Eq. (1.2). Then the number of (n + 1 )-diagrams starting at 
site i is less than s2n(t + 1 fn + 1. 

Proof For each (n + 1 )-diagram starting at site i, choose 
ikEBk, l,;;;;k,;;;;n. Re-enumeratingthem and perhaps counting 
some sites more than once, we obtain a new sequence of sites 

io = iJIJ2, .. ·J2n' 

such that Ii, - i, + I I < 2D + 1, 0,;;;;1,;;;;2n - 1. Fori, = i k , we 
set 

c. = {Bk , ifim =f.ik , 

Ii t/J, otherwise. 

Thus each (n + 1 )-diagram starting at site i corresponds to 
such a sequence. Since there are at most s2n(t + 1)2n + 1 such 
sequences for fixed site i, the number of (n + 1 )-diagrams 
starting at site i is less than s2n(t + 1 )2n + I. 

We define V7(i,A,B,n) by 

00 

= I I En V.,. (i,A,B,n)cr(A )cr(B). (3.5) 
n~OA.B.CA 

Thus if A cA and iEA, we have 
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(uA I V,.(i,m)lu) = :rX,.(i,A,B,m)u(B). 
B 

Lemma 3.3: There exist positive constantsK, CI , and C2 

such that for each m;>O, the following estimates hold. 
(i) For each A CA, iEA, if V-rli,A,B,m) =1=0, then 

laB I <K (m + 1). In particular 

IIrl (uA I V,.(i,m)lu) 110 

<KI(m + 1)/11(uA 1V,.(i,m)lu) 110' 1=1,2, .... 

(ii) SUPACA II(uA IVT(i,m)lu)llo<C;n+ I. 
(iii) Let.Q( (i,m) = {A III(UA IVT(i,m)lu)llo=l=Oj. Then 

the cardinality of .sf (i,m) is less than C ~ + I. 
(iv) If II (uA iVr(i,m)lu) 110=1=0, then A can be written as 

A = b l .:1 b2 .:1 ... .:1 b, with r<X (m + 1) and b/s are nearest 
neighbor bonds. 

Proof It is easy to see that 

L"etH(~)V(f)e- tH(E) dt 

00 r'" + I 

= I, [H(E),[ ... ,[H(E),V(i)] ... ]]. (3.6) 
m~O (m + 1)1 

From this expansion one sees that V,.(i,A,B,n) = ° unless 
IB I <Co(n + 1), where Co is the maximum of the cardinalities 
of the terms of VIi), Eq. (1.2). 

Let B be a collection of n sets: BI,Bz, ... ,Bn. Then we 
define 

H(B,E) = Ho(B) + EI,'V(Bj)aiBj), (3.7) 
j 

whereHo(B) is the sum of all terms from H (0) not commuting 
with some if(Bj) and l:' denotes a sum over distinct Bj 's in B. 
Note that H (B,E) has no more than (maxI<jo;;;n IBBj I + l)n 
terms, hence for lEI < 1, satisfies an ~timate: IIH (B,E)llo<a n 
with a = max BIBB 1+ maxB I V(B )1· 

V(B)#O 

Let f!# n + 1 be the collection of all (n + 1 )-coverings of 
B. From Eqs. (3.5) and (3.6), we have 

I V,. (i,A,B,n) I 
(3.8) 

where VT(i,A,B,Bo,n) is the €"d'(A )if(B )-coefficient of Eq. 
(3.5) but with H (E) replaced by H (B,E) and VIi) replaced by 
(V(Bo)/IBol)if(B). But by the Cauchy integral formula and 
the orthogonality of the aiA )'s, we have 

I V,. (i,A ,B,Bo,n)I 

=_1 !"~B)(U 1_1 f ~ 
- IA I LVI A 2' _ -1l+ I 

2 (T TTl lEI - 1 e 

X fTetH(B,E) hBo) if(Bo) 
Jo IBol 

Xe- tH(B,E) dt lu) I 

2an 

I V (Bo) I ezran 
2an 

Thus 
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(3.9) 

(3.10) 

It is evident that the number of sets B such that 
V,. (i,A,B,n)=1=0 for some A is less than the number of all 
(n + I)-diagrams starting at site i. hence the number of such 
B 's is bounded by s2n(t + 1 fn + I according to Lemma (3.2). 
Therefore, 

II Vr(i,A,B,n) I <s2n(t + 1)2n+ l.s2n(t + Ifn+ l·te2ran 
B 

«S2(t + 2j2)2(n + l)e2ra(n + l)=C 7 + I, 

(3.11) 

which proves (ii). 
For a fixed set B, with B an (n + I)-covering, we have 

seen that Ho(B) has at most K (n + 1) terms, 
K = maxV(B)#O laB I. Hence the number of d'(A )-factors 
which can be formed from these terms is less than 2K

(n + I). 

Taking into account the number of(n + I)-coverings, we ob
tain that the number of sets A for which V,. (f,A,B,n) =1= ° is less 
than CiJ + I), for some constant CA' Recalling the fact stated 
above Inequality (3.11), we get (iii). 

To get (i), note that if aiB) appears in the expansion of 
(uA I Vr(i,m)lu), then B = Bo.:1 BI .:1 ... .:1 Bm for some 
(m + I)-covering of B. Since 

m 

IBB 1< I IBBjl«m + lLmax IBB 1= (m + I)K, 
j~O V(B)#O 

(i) follows. 
Now we prove (iv). If /I <UA I Vrii,m)lu> 110, then there 

exists a setBsuch that V,. (i,A,B,m) =1=0. From Inequality (3.8) 
we have that Vr(i,A,B,Bo,m)=1=0 for some (m + I)-covering 
ofB, !Bo,Bw .. ,Bm j, B = !BI, ... ,Bm J. HenceA is formed by 
some nearest neighbor bonds which cross the boundaries of 
theB's. The number of such bonds is bounded byK(m + 1). 

Lemma 3.4: Let A CA with even cardinality. If 
m + n;>1 andPmn(BAh) = l:BPmn(BAh,B)u(BL1 and 
P mn(BAh,B )=1=0, then IBB I<K (m + n). In particular 

IIr'Pmn(BAh )llo<K1(m + n)IPmnliIBAh 110)' for 1=1,2, .... 

Proof First from Eq. (3.4), we see that if 
hon (u) = l:hon (~)aiB ) and non (B) #0,. then laB I = n. Thus if 
Pon (BAh) = l:BPon(BAh,B )u(B) and pon(aAh,B )=1=0, then 
IBBI<n. 

Now suppose m;> 1. From Eq. (2.4), we have 
m-I 1 

hmn(u,r) = I I, I-
iEA j=O ACA m 

XPjn(BAh )(UA I Vr(i,m -1- j)lu). (3.12) 

Assume that if Pkn(BAh) = l:BPkn(BAh,B )aiB), and 
Pkn(BAh,B )=1=0, then IBB I<K(k + n)forallO<k<m - 1 and 
n. Then by (i) of Lemma 3.3 and Eq. (3.12) we have that if 
hmn(u,r) = l:Bhmn(B,r)u(B) and hmn(B,r)=I=O then 
IBB I <K (m + nl Therefore, bythede~nitionofP mn(BAh), if 
P mn(BAh) = l:BP mn(BAh,B )aiB) and P mn(BAh,B )=1=0, then 
IBB I<K(m + n). 

Theorem 3.5: Let HA (E) = HA (0) + EV with V defined 
by Eq. (1.2). Then HA (E) satisfies the hypotheses of Theorem 
2.1, Corollary 2.2 and Theorem 2.3 so that long-range order 
holds, for/3>/3c' IEI<Ec· 

Proof This follows from Lemmas 3.1, 3.2, 3.3, 3.4. 
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That not all zeros of the partition function of an Ising 
ferromagnet need move towards z = 1 as the temperature is 
lowered was pointed out by C. Y. Weng in an unpublished 

thesis (Carnegie-Mellon, 1968) using an example of the sort 
we considered in Sec. V D with n = 4, and we want to point 
out the priority of his work. 

Erratum: Simple calculation of L()wdin's alpha-function [J. Math. Phys. 25, 
1133 (1984)] 

Noboru Suzuki 
Department of Materials Science, The University of Electro-Communications, Chofu-Shi, Tokyo 182, Japan 

(Received 25 May 1984; accepted for publication 8 June 1984) 

PACS numbers: 31.15. + q, 71.10. + x, 02.30.Mv, 99.10. + g 

summation symbols. 1. The 2's in front of the summation symbols in Eqs. 
(2.2), (2.6), and (3.14) and in front of the first summation 
symbol in Eq. (3.11) do not mean twice the respective sums, 
but that the summation indices run by step 2. Therefore, 
these 2's should be replaced by small 2's just in front of the 

2. The small symbol 2 with the same meaning as above 
should be placed just in front of the first summation symbol 
in Eq. (3.17). 
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